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Abstract. We discuss the displacements and stresses in a shallow membrane cap

with either displacement or stress prescribed on the boundary and subjected to a small

applied pressure. It is shown that if the prescribed boundary stress is sufficiently large

there is a rotationally symmetric solution and if the applied pressure is large there

is a solution to the problem with zero displacement prescribed on the boundary.

However, there are situations in which there are no rotationally symmetric solutions.

One case is described in which there are no rotationally symmetric solutions unless

the prescribed boundary stress or prescribed boundary displacement is large.

1. Introduction. The purpose of this paper is to find the displacements and stresses

in a shallow membrane cap with displacement or stress prescribed on the boundary

and subjected to a small gravitational force or normal pressure.

A small strain theory for the rotationally symmetric deformation of membrane

caps has been obtained by Bromberg and Stoker [1], Reissner [2], and the author [3],

[4], In the appendix (Sec. 6) it is shown that the small strain, small pressure theory

described in [3] and [4] can be written

,V + 3™; = f(z')2-f (£)\ (i.n
('= d/dr) where ar is the radial stress, E is the Young's modulus, and G is the known

function

' tP{t)dt (1.2)— fEhr J0

with h the thickness of the membrane and P(r) the applied pressure. The undeformed

membrane has the shape of the surface constructed by rotating the curve Z = Z(r)

(0 < r < a) about the Z axis. We will assume that Z(r) has the form

Z = C^l-(£)^, 0 < r < a. (1.3)

The constant C is the height of the membrane at the center and the shape of the

membrane is determined by y. For example, if y — 1, Eq. (1.3) describes a cone
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with altitude C and base radius a. We will see in Sec. 2 that y = 2 corresponds to a

spherical cap if C is small.

Once ar is determined from (1.1) the circumferential stress cj#, the radial displace-

ment u, and the displacement in the Z direction w are determined. In particular (cf.

[3] or [4])

ae = (rar)' (1.4)

u = ^{{rar)' -var) (1.5)

w = E f — dt (1.6)

where u is the Poisson ratio. For the boundary conditions on (1.1) either stress is

prescribed

ar{a) = a (1.7)

or radial displacement is prescribed (cf. (1.5))

u{a) = aa'r{a) + (1 - t/)ar{a)) = fi. (1.8)

For both (1.7) and (1.8) we will need a regularity condition at r = 0. The appropriate

condition is discussed in Sec. 3.

Two special cases of (1.1) have been studied in detail: The plane membrane, i.e.,

C = 0 (cf. [5-9]) and the spherical cap, i.e., y = 2 (cf. [1] and [10-11]). For

the plane membrane it is known that under reasonable assumptions on the applied

pressure Eq. (1.1) has a solution satisfying the boundary condition (1.7) for all a > 0

and it has a solution satisfying (1.8) with fx — 0. For the spherical cap it has been

shown by Baxley [11] that Eq. (1.1) has a solution satisfying the boundary condition

(1.8) with n = 0 for all constant values of the pressure.

In this paper we treat Eq. (1.1) with y > 1 and, for simplicity, constant P. In Sec.

2 Eq. (1.1) is rewritten in dimensionless variables. In Sec. 3 an existence result is

proved for Eq. (1.1) with boundary condition (1.7) if a is sufficiently large. In Sec.

4 an existence result is proved for Eq. (1.1) with boundary condition (1.8) if n — 0

and either the applied pressure is sufficiently large or the membrane is sufficiently

shallow. In Sec. 5 we discuss the special case y = f. It is shown that if y = | and

the pressure is large enough there is a solution to the stress problem for all a > 0

and to the displacement problem for all On the other hand if the pressure is small

it is shown that the stress problem has no rotationally symmetric solution unless

a is sufficiently large, and the displacement problem has no rotationally symmetric

solution unless n is sufficiently large. In particular there is no rotationally symmetric

solution to the displacement problem with fi = 0. A different result has been obtained

for the spherical cap {y = 2). In this case it has been shown that the displacement

problem \x = 0 has a solution for all values of the pressure (cf. [11]).

2. Dimensionless form of the equation. It is convenient to rewrite Eqs. (1.1) and

(1,4)-( 1.6) in dimensionless variables. Using Eq. (1.2) (with P = constant) and (1.3)

Eq. (1.1) takes the form

2 - , . C2y2 jy—2 £P2a2p2
p a, + 2par = -^tP --gjP-D
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('= d/dp) where

?='-■ (2.2)

Define two parameters

and a new dependent variable

or = KSr. (2.5)

In this notation Eq. (2.1) becomes

p2Sr + 2pSr = jp2^2-^. (2.6)

The Eqs. (1.4)—(1.6) become

= TP(pSr) (2-7)

U = p(pSr + (l-v)Sr) (2.8)

• l

W -SAr"' <2'9)
where Og = KSg, U = Eu/aK, and W = 2EhKw/Pa2. The boundary conditions

(1.7), (1.8), and (1.9) become

Sr(l) = j=S (2.10)

U(l) = Sr([) + (\-u)Sr(l)=^=T. (2.11)

As a special case consider a spherical cap which is a portion of a sphere of radius

R and has base radius a. The exact equation for such a cap is

Z = VR2 -a2 - VR2 -r^ = R^y/1 - (a/R)2 - sj \ - {ap/R)2^J , 0<p<l.

(2.12)
The requirement that the cap be shallow is simply the condition that a/R < 1. Thus

(2.12) can be approximated by

Z = lR{X ~ p2)- (2"13)

It is a consequence of (2.13) that for the spherical cap y = 2, C - a2/2R, and

Eq. (2.6) with X given by (2.14) is exactly the problem treated in [10] and [11],
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3. The stress problem. The differential Eq. (2.6) with boundary condition (2.10)

can be rewritten as a nonlinear integral equation. There is no difficulty in showing

that if y > 1 and Sr satisfies the regularity condition lim^0 P^Sr(p) = 0 then

s'=5-°(i(31)

where

D=M^T)' (3-2)

The problem is slightly simplified if we introduce a new dependent variable

l = Sr + D(\ - p2y~2) (3.3)

so that (3.1) becomes

0.4)
= 7T.

If D = 0 (plane membrane) this equation has been solved by iteration when S

is sufficiently large (cf. [6], [9]) and the Schauder theorem has been used to prove

existence for all S > 0 (cf. [9]). The problem is more interesting if D / 0.

Theorem. If y > 1 and S - D > 0 Eq. (3.1) has a solution satisfying the bounds

1 -P2

64 (S-D)2

Proof. Let X be the Banach space consisting of continuous functions f(p) on the

interval 0 <p< 1 with norm ||/|| = maxo^^^i \f{p)\. Define a subset A of X by

A = {/ & X\m + D( \ - p2y~2) < / < M + D( \ - p2y~2)} (3.6)

with

m = S - D (3.7)

M = S+ 64 {S-D)2' ^3'8)

It is immediate that A is closed and convex. In order to apply the Schauder theorem

(cf. [12]) it remains to show that T (cf. (34)) is a compact operator mapping A into

itself.

Let / e A then (cf. (3.6))

TfiS+U!HC~^)dV'S+ 64CT (3.9)
= M <M + D{i - p2y~2y,

Tf > S > S - Dp2y~2 = S - D + D{ 1 - p2y~2) = m + D( 1 - p2y~2)- (3.10)

Thus T maps A into itself.

S-D<Sr<S+ — ^ (3.5)
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In order to show T is compact let {/„} be a sequence of functions in A. Then

{Tfn} and {j^T/„} are bounded independent of n. The boundedness of {T/„}

follows from (3.9) and the boundedness of {j^T /„} is a consequence of

Vdt;
tpt* — i

8 Wo
1 rf

WJo

[fn-D( l-^-2)]2

- :p ? d£, _ p 1
~ m2 32m2 ~ 32(S-Z))2'

The existence of a uniformly convergent subsequence of {T/„} follows from the

Arzela lemma (cf. [13]). Thus T is compact. The fact that Sr satisfies the bounds

(3.5) is a consequence of (3.3) and (3.6). Q.E.D.

If S - D is sufficiently large it is possible to develop a convergent iterate scheme

such as described in [6]. However, it is not clear that the scheme converges for small

values of S - D. Of course the same difficulty was encountered in [6] and [9].

The theorem only proves existence of a solution to the stress problem (2.6) and

(2.10) in the case S - D > 0. We will see later (cf. Sec. 4) that, at least in the

case in which D is small, the solution of the displacement problem (2.6) and (2.11)

with T = 0 satisfies this condition. Nonetheless, it is plausible that there could be a

solution to the stress problem with S - D < 0. In fact it will be shown in Sec. 5 that

in the special case y — | and D small there is a solution of the stress problem for all

5 > 0.
Equation (3.1) was derived assuming the condition lim^o p3Sr(p) = 0. Equation

(3.1) and the condition S - D > 0 implies a stronger condition. We note that Eq.

(3.4) implies

y - L f ^ (312)8 Plj0 [I-D( 1-^3-2)]2-

Thus I is a decreasing function with 1(1) = S from which we conclude that X(0) > S.

L'Hopital's rule and the fact that 1(0) > S > D yields

Since Eq. (3.3) implies

we find

i(0) = 0. (3.13)

Sr = i + 2(y-l)Dp2?-3 (3.14)

lim pi~2ySr(p) = 2(y - \)D. (3.15)
/>—o

4. The displacement problem. The solution I of Eq. (3.4) has the following prop-

erties:

(1) Let Ei and Z2 be solutions of Eq. (3.4) corresponding to Si and S2 and lying

in A\ and A2 (A, and A2 are the sets (3.6) corresponding to Si and S2). If Si > S2

then Zi > X2 for 0 < p < 1 and 11 > I2 when p is sufficiently close to 1.

(2) Let I] and I2 be solutions of (3.4) corresponding to Si and S2 and lying in A\

and A2. Then max0<^<i |Zi(/>) - I2(/>)| = I Si - S2|.

The proofs of properties (1) and (2) are essentially identical to the proofs given

in [6] for the properties of the radial stress in a plane circular membrane. It is a
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consequence of (2) that I{p,S) (and t.(p,S)) is a continuous function of 5. Sr, Se,

U, and W are uniquely determined by X (cf. (3.3), (2.7), (2.8), and (2.9)) and it

follows that Sr, Sg, U, and W are also continuous functions of 5.

Equation (2.8) implies that

U(l)=Sr(\) + (\-ls)Sr(\) = Sr(l) + (l-l/)5 (4.1)

and Eq. (3.1) implies

5,(1) = 2(y- (4.2)

Combining (4.1) and (4.2) we find

U(l) = (l-u)S + 2(y-l)D-±J^dt. (4.3)

Equation (4.3) can be used to estimate 1/(1). In particular the inequality (3.5) implies

t/(l)< (1-^)5 + 2{y-\)D- \ /'  2^. (4.4)
8./ or i - <?2 r

After an integration (4.4) can be written

1/(1) < (1 - v)S + 2{y - l)D-4

5+-l^i—
64(5 - D)2

(S-D)2

256(5- D)4 In

5
/

5

V
5 +

(4.5)

64(5 - D)2 J

If D = 0 there are values of 5 > 0 for which (7(1) < 0. Indeed, if D — 0 and

5 = .12 the right side of (4.5) is calculated to be approximately -.238 (v = 0). Since

the right side of (4.5) depends continuously on D (for D < 5) we conclude that

when D is sufficiently small, i.e., the membrane sufficiently shallow (or P sufficiently

large), there exist values of 5 for which (7(1) < 0. It is easily seen that when 5 is

sufficiently large (7(1) > 0. Thus the continuity of (7(1) as a function of 5 guarantees

the existence of a value of 5 such that U( 1) = 0 when D is sufficiently small. Actually

if Sr is the unique solution of (3.1) satisfying the bounds (3.5) the value of 5 for

which (7(1) = 0 is unique. The proof of this fact is essentially identical to the proof

of Theorem 5.4 in [6].

For the spherical membrane cap (y = 2) Baxley [11] has shown that the displace-

ment problem (7(1) = 0 has a solution for all D > 0. However, it will be shown in

Sec. 5 that this is not true for all y. It will be shown that if y = | Eq. (2.6) with

boundary conditions (3.15) and (7(1) = 0 (cf. (2.11)) has no solution unless X1 is

sufficiently small. This does not mean that the membrane cap has no solution—only

that the solution, if it exists, is not rotationally symmetric.
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5. Special case y = Callegari, Keller, and Reiss [8] have shown the equation

governing the behavior of a plane circular membrane under constant pressure can be

reduced to an autonomous system by an appropriate change of variable. The exis-

tence of a unique tensile solution (Sr > 0) and infinitely many compressive solutions

(Sr < 0) follows from a phase plane diagram for this autonomous system. For the

membrane cap with y — | it is also possible to reduce Eq. (2.6) to an autonomous

system. The phase plane diagram for the membrane cap is more complicated than

the diagram for the plane membrane and yields different results when D is large (P

is small).

If 7 = 3 Eq. (2.6) becomes

p^Sr + 3pSr = ^-p2'3-^. (5.1)

Instead of the boundary value problem for (5.1) we consider the related initial value

problem

p2w + 3pw = y/)2/3 - (5.2)

w{0, b) = b > 0 (5.3a)

lim pl^w(p, b) = \d. (5.3b)
p—»o 3

The condition (5.3b) is simply the regularity condition (3.15). The object is to choose

b so that either w(\,b) = S (stress problem) or w(\,b) + (1 - v)w{\,b) = T (dis-

placement problem). It is convenient to introduce the change of dependent variable

A = w/b (5.4)

and the change of independent variable

t = p/bi'2. (5.5)

In these new variables Eq. (5.2) becomes

t2A" + 3tA' = y/2'3 - ~ (5.6)

('= d/dt). The initial conditions are

^(0) = 1 (5.7a)

? n
lim tl'iA'(t) = (5.7b)
i-*o 3

If A(t) is the solution of (5.6) satisfying the initial conditions (5.7) then w(p,b) =

bA{p/bi/2) satisfies Eq. (5.2) and the initial conditions (5.3).

We will reduce (5.6) to a first order system by introducing the change of variable

(cf- [8])

£ = t~2,iA (5.8a)

rj = t^^A!. (5.8b)
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There is no difficulty in showing that and rj satisfy the equations

? = 7 (?-§«?) (5-9)

"' = K=r-iF + f)- (5J0)
Combining (5.9) and (5.10) we see that >/(£) satisfies the first order autonomous

equation

_ _L ^
dj,^-3 -j(2+ 2

The initial condition on (5.11) is obtained from (5.7) and (5.8). Thus we find

limr^m = limy4(f) = 1 (5.12)
o *-.o

2D
lim i|(/) = lim/'/3^/(0 = ==- • (5-13)
/—o f—o 3

Equation (5.12) implies that lim,_o£(0 = 00> so that

1 im(,({) = Y. (5.14)
£ —*00 J

In order to draw the phase plane diagram for (5.11) we must first find the singu-

larities. These singularities are simply those points which satisfy both

>?-y = 0 (5.15a)

8ti \ X2
3 8p + 7 = 0' (515b)

This pair of equations is easily reduced to the cubic

£3_9^£2+J}_=0 j6)^ 32^ 128 v '

If A2 < (y)1/3 Eq. (5.16) has only one real root and this root is negative. If

A2 > (y)1/3 Eq. (5.16) has three real roots—two are positive and one negative. In

the special case A2 = (y)1/3 there are two real roots—a double positive root and a

negative root. The negative root corresponds to compressive solutions and the anal-

ysis of this case is similar to that in [8]. In the case A2 = (y)1/3 the positive root

is
/ 9 \ 1/3

a-fe) <5-">
and the corresponding value of rj is

i \ 1/3

10=1 £) ■ (5-18)

It may be verified that this is an unstable nodal point (cf. [13]).
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$>,*!>

' £o, 10

' £<,*]<

z

A2> (f)1/3

Fig. 1

*■ i

a2< (f)1/3

Fig. 2

If A2 < (y)1/3 Eq. (5.16) has one positive root £> lying to the right of £o and one

positive root lying to the left of £o, i.e., <^> > £o and <^< < £o. The corresponding

values of t] are rj> = 2£>/3 and ?/< = 2<J</3. The singular point ({>, tjy) is a stable

nodal point while the singular point (£<, ?/<) is an unstable nodal point. The trajectory

which satisfies the initial data (5.14) is drawn in Fig. 1. In the case A2 < (y)1,/3 there

are no stable equilibria in the right half-plane (in fact no equilibria if X2 < (^)l/3)

and the trajectory corresponding to the initial data (5.14) is drawn in Fig. 2.

It is easily verified that if £(1 /b3/2) = S then w(\,b) = S and if rj(l/b3^2) +

(1 - v)Z(l/b3/2) = T then w(\,b) + (1 - v)w(\,b) = T. Thus the solution of the
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stress problem is determined by the intersection of the line £ = S and the trajectory

in Figs. 1 or 2. Similarly the solution of the displacement problem is determined by

the intersection of the line >/ + (!- v)£ = Y and the trajectory in Figs. 1 and 2.

We conclude that if y = | and X1 < (y)'/3 (P large) then the stress problem has

a unique tensile solution for all S > 0 and the displacement problem has a unique

tensile solution for all Y. If A2 > (y)^3 (P small) there is no solution to the stress

problem unless (cf. (5.17) and (5.18))

S>£>>£o (5.19)

and no solution to the displacement problem unless

T > f7> + (1 - !/){> > f/o + (1 - i/){o. (5.20)

Unlike the spherical cap if y = \ and A2 > (y)1/3 there is no rotationally symmetric

solution of the problem T = U( 1) = 0.

6. Appendix. The equation governing the small strain behavior of a shallow cap

under a gravitational force is (cf. [3])

r2T" + 3rT' = ¥Di+v(rG)'j- i (^)2 (6.1)

('= d/dr) where

T = Or/E (6.2)

and the rest of the quantities are defined in Sec. 1. Rewriting Eq. (6.1) in terms of

the radial stress we find

+ £ + (|)2. (6.3)

We are looking for solutions of (6.3) which have the property that as the applied force

P —► 0 (G —> 0), and the applied boundary stress a —» 0 or boundary displacement

H —► 0 then or —► 0. It is a consequence of (6.3) (cf. [3]) that G/or —> Z'IE, i.e.,

GIor J* 0 as P —► 0. Thus, for small pressure, Eq. (6.3) can be replaced by (1.1).

In [3] and [4] it is shown that Eq. (1.1) also governs the small strain behavior of a

shallow cap under normal pressure (pressure normal to the undeformed surface) and

under hydrostatic pressure (pressure normal to the deformed surface).
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