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LONG WAVELENGTH INSTABILITY OF THE ABC-FLOWS
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Abstract. Multiple-scale and spectral (Galerkin) techniques are employed to ana-

lyze the long-wave stability of a simple periodic helical flow at large Reynolds num-

bers. For a certain class of long-wave perturbations the corresponding mathematical

problem admits an exact asymptotic solution, showing that the helical flow is always

unstable.

I. Introduction. In recent years, significant attention has been attracted to the prob-

lem of long-wave instability of periodic flows [1-18]. It is believed that these systems

may provide important insight into the phenomenon of inverse energy cascade and

spontaneous formation of large-scale structures in 2-D and 3-D turbulence.

One of the simplest periodic flows capable (due to its intrinsic instability) of gen-

erating large scale structures is the so-called Arnold-Beltrami-Childress (ABC) flow

(i) h = V0[A sin(z/d) 4- B cos(y/d), A cos{z/d) -I- C sin(x/d),

B sin (y/d) + C cos(x/d)].

Here VQ is a typical velocity, 2nd is the space period of the flow.

In order to sustain the time-independent flow with (i) one must introduce an

external force field

<«> '=-(£)"

where v is the kinematic viscosity. Previous studies have been focused primarily

around two specific cases: A = B = C - 1 (quasi-isotropic ABC-flow [12]) and

A = 1 , B = C — 0 (Beltrami flow) [12, 14, 17], It was found that at finite Reynolds

numbers (R = VQd/u ~ 1) the quasi-isotropic ABC-flow is stable relative to long-

wave perturbations [12], while the antisotropic Beltrami flow loses its stability at

R > \fl [12, 14]. The long-wave instability at large Reynolds numbers has been

studied only for the Beltrami flow [17],

The present work extends the long-wave stability analysis developed in [17] to the

general case. It turns out that at Re > 1 for a certain class of long-wave perturbations

the corresponding mathematical problem admits an exact analytical solution, showing

that ABC-flow is always unstable—even in the quasi-isotropic case.
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The paper is organized as follows. First, the limit of ideal nonviscous (R = oo)

fluid is studied in detail (Sec. II). The results obtained are then extended to the case

of large Reynolds numbers (Sec. III).

All the equations are written in the nondimensional form with d , d/VQ, V0 taken

as units of length, time, and velocity, correspondingly.

II. ABC-flow in the ideal fluid. Consider the Euler equation in the rotational form

|^(rotV) + rot[rotVx V] = 0, (1)

where V = (V, (x, y, z, t), V2(x, y, z, t), V3(x, y, z, /))

div V = 0. (2)

Let h be the ABC-flow:

(A sin z + B cosy

A cos z + C sin x

B sin y + C cosx

Since roth = h, h is a solution of the Euler equation (1). The linearization of Eq.

(1) around h yields

f^rotu)+ rot[h x (u - rotu)] = 0,

divu = 0.

The main object of the present analysis is to verify the stability of the trivial solution

u = 0 of Eq. (3).
The first step is the scaling transformation of Eqs. (3):

u(x, y, z, t) -► u(x, y, z, £, t], d, r),

Vv.v.- V v.--- + e^i„6 (£ = EX > 1 = ey ,0 = ez), (4)

dl —> edr (t = et).

Therefore

and

r0tvvr ^ r°V- +£ T°k;0

d™xy:-*dW.xy:+edWW

The rescaled equations (3) become

etk(TOt.xyz u) + £2^(roti'/e) rolvi -th x (u " rotu)l

- rotvv;[h x roun0 u] + e rot^Jh x (u - rotvl,__ u)]

-e2 rot^e[h x r°t^e U] = 0,

div.vvz u = "£ u-

We are seeking solutions of (5) which are 2^-periodic in x, y, z. Hence, the

(5)
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integration of (5) from 0 to 2n in x, y, and z yields

q rln r2n rln

ctnI Jo L
r2n r2.1l r 2n

+ Jo Jo Jo TOkielhx (u-roXxy:uNdxdydz (6)

r2n r2n r2ll

~ E Jo Jo Jo r0ti"e[h X TOii"e u] dx dy dz = °'

We now consider e as a small parameter and seek a solution of the system (5), (6)

in the form of an asymptotic expansion in powers of e :

u(x, y, z, Z, tj, 8, t) = U0 + eu, + £2u2 + • • • .

Thus for the e°-approximation of (5) we obtain

roWA X (U0 - TOtxyz Uo) = 0 '

d%.- U0 = °-

Consider the following set of vectors:

(?)

«o

<o

(8)

( cos y'

0

V sin v

( - sin y'

0
V cos

Vectors (8) from the orthogonal basis of the proper subspace of the rot operator

in the Hilbert space with eigenvalue 1. we should seek uQ in the following form

u0(x ,y,z,£,ri,e, t) = aQ{rj, 8 , r)g0 + , 8 , r)f0 + y0(£ , rj, r)e0 (9)

+ ai{ri, 8, r)g, + /?,(<!;, 8, r)f, t)e1 + G,

where G = [Gx (£, rj, 8, r), G{£, rj, 8, t) , G3(£, rj, 8 , r)]. Actually h = Ae0 +

BfQ + Cg0 . The substitution of (9) into (7) yields

AGy£\ + BG~,i\ + CGc | = 0.

Hence

G = 0, if/f^O, 5^0, C/0.

For u0 in the form (9), the integral relationship (6) for ^-approximation is auto-

matically satisfied. In order to determine the coefficients in (9) we have to pass to

the e1 -approximation in (5) and ^-approximation in (6),

fATOtxvz Uo) - roWh x TOkie uo] + TOkielh x (u0 - rotxvz uo)]
= -roWhMui -roV-ui)]'

"xyz "1 - tie "0 ■

d%2 U2 = di%0 UI >

D r2n r2n r2n
,tfo"fo'fo"rotci^uOdxdydzox Jo Jo Jo

+ fon fon fo" rot{,fl[h X (U2 - TOtxyz U2)] dx dy d 2

= fo2" fo2" fo2" rokn01/2 x TOkne ui 1dx

(10)
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Set

«, = [Vx{x, y, z, £, rj, 6, t) , V2(x ,y,z,^,tj,0,r), V3(x, y, z, £, tj, 0, r)].

Thus, in view of (9), the second equation in (10) is

dJl + aJi + dXi = +5iUz
dx dy dz \0i] d£ ) V dri J

°P\ dP0\ • , (dP\ , dPo
+ 1 St ~ ~ae)smy ~ {w + St 1C0SJ' <1|;

da, 0an\ . f da. Oan
+ I —7.— sin x - —- + —f I cosx.

06 Ot\ J V dtj 06

Since V{ , V2, V3 are 27r-periodic in x, y, z we get

/ / datr. On. \ (On. , Onn\ • \
((-rf-Ue)cosx-(l>i + Ue)smx\

ui 7^ + To ) sin v(S - lk) cosv ~ (

(t^ ~ 7#) cosz ~ (l^ + 7^)sin;: )

S^, rj, 6, t)'

+ ( S2(£, t], 6, T) I + w,

<f3(£, tj,6, r). (12)

= V, + y + w,,

where div^w, = 0, div^ <S = 0, and the projection of w is orthogonal in the

Hilbert space to the subspace of constant (in x, y, z) vectors, and on the subspace

of vectors with zero vorticity is null.

Note that the first two vectors in the right-hand side of (11) (v and (5) belong

exactly to these subspaces. In view of the specific choice of coefficients in (9), direct

evaluation of rot^ 0 u0 yields

j (1# - 7&) cosv - (t^ + Hf) sinrA

('iTo ~ ) cos y ~ ( ~0i 77^ ) sin ,

V(®-^)cosz- (g + ^)sinz J

roWu 0

i.e.

or

rot^uo = vi (12a)

" 1 = Wk>l»u0 + S +W1-

Hence rotvl,_ [h x rotcVi u0] = rotV(,_[h x V,]. On the other hand, in view of (12)

Or
^(rotx.i-z wo) + roWh xi] = 0. (13)

Direct evaluation yields:

[hxd] = AS3et +BS2f] +C5,g, (14a)

/ Csinx \ f ~Ccosx\ / 0
-f <53 I -ficos.v ] + d2 I 0 J + ( B sin y

V 0 ) \ Asm z J V-^cosx

Last three vectors in this expansion are of zero vorticity. Thus

rot [h xd] = A8^x + BS2f, + C<5,g, • (15)
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In view of (9) we get from (10a)

irf eo + -7rrfo + ) ei

Or

^oe + dM + +(^
dx 0 dx 0 dx 0 \ dx

^ + BS1)l, + (jt+cS,)S,=0.

^S = 0; ^=0; ^1=0;dx ox ox

^ = f» = -W2; ^ =at 1 ox z at J

(16)

(17)

In the seeking of solutions of (5) which grow in time, a0, /?0, and y0 are of no

interest for our purpose.

Hence u0 = a,(>/, 9 , i)g, + /3{£, 6, r)f, + }>,(£, t], T)e, and

/ Oa, , <9a:, • \
/l^cos.Y + 1Jfsmx\

v, = - dp. . dfi. ■
-^■COS y + y^siny

V^-cosz + ^-sinz 7

(18)

On y-KJO" ̂  oz

Set w, = A,g, +A2f, + A3ej . Clearly rotY Wj = w, . Thus

CU, , 0A.

rot^ W1 =

/ <-'Ai . * \

/ cos x + -^ sin a* \
dX. . OA.
-gfr cos y + -gf sin y
OX. , ox

0X-, • -» / dk-, 1 c i n t \ / 2~W sm

+ | gfcosz
f 7J7T C0S^

0
cU,

V cosz + ^ sinz / V 0 J V dn smy
(18a)

On the other hand

diVvvrU2= -dlV^Ul

= " dlvi,,6 vi - div{,o <5 - d'%« W1

= -div^Wl

9/1. . OX, dA~, .
= —77 sin a —-1 cos a + —/ sin y

90 <9?/ dQ
<9/1, 9/1, . 9/.,

- -r-rf cosy + sm z ——/ cos z.
otJ ' at] dc,

(19)

Therefore
/ , cJA, x
/ cos A + Sin A A

(J A. 1 cJA,
y^cosy + Tj/siny
tM. ,

V cos z + ^ sin z J

+ (5-, + W-, — V-, + <5-, + UK , (20)

where divvv_ w2 = 0, div,);0 = 0. Hence, rot^g w, = V, + f, where

r27l rln rln

/ / / [h x £] (/a t/y d/z = 0.
Jo Jo Jo10 Jo

On the other hand
r2n r2n rln

(21)

r ATI r ATI r ATI

/ / / [h x (w, - rotv w2)] dx dy dz = 0, (22)
Jo Jo Jo
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since w2 —rot w, does not have any projection in the Hilbert space on the subspace

of the gradients of the scalar functions (proper subspace of the rotvv,_ operator with

the eigenvalue 0—the kernel of the operator). Hence, due to (21)

fin r 2ti r2nr ATI r ATI r ATI

/ / / [hx(u2-rot u 2)]dxdydz
Jo Jo Jo

r2"K r2u r

Jo Jo Jo
r 2TI r2n r ATI

= J J J [hxrot^ew {]dxdydz.

2n r2n r2n

[h x\2\dxdydz (23)

r>2n r2n r2n

Hence, the integral in the right-hand side of the integral relationship in (10) is

r2n r2n p2n

[h x rot^0 u, ] dx dy d z

r2n f2n p2n

[h x rot^g V, ] dx dy dz

c2ti p2n p2n

[h x rot« e w, ] dx dy d z

c2n r2n r2n

r2n r2n r2

Jo Jo Jo
r2n rATl rA

Jo Jo Jo
rAn rAn rA

+

Jo Jo Jo
r2n r2n r2n

+ / / [h x d\\dx dydz
Jo Jo Jo

r2n r2u r2n

J J J [h X rotit}6\x]dxdydz

r 2ti r2n r 2tl

+ / / [h x (u2 - rot u2)]dxdy dz.
Jo Jo Jo

(24)

/ 0 JO Jo

Thus, the integral relationship (in 10) is actually

r* 2 7T r2n r2n r2n r2nq r ATI r ATI r ATI r ATI r ATI

— / 8 dx dy dz = I / / [hx rot, g V. ] dx dy d;
Vt J0 Jo Jo Jo Jodi

or
r2n r2n /-2^ f2n r2n r2n

(25)

q rAn rAn rAn rATl rAn rAn

— I J J 6 dx dy dz = J J J th x (rc%,e TOk>ie %]dxdydz (25a)

since V, = rot^u0.

In view of (12), we get (a0 = /?0 = y0 = 0)

/ 0~p, , 0Lp. ■ ci*y. 02y.
' cos v H Q sin v -i cos z - sin zOS, OS ■ i)0i ■' 09 0i

O'y, , 02y. • 0~a. d2a,
Vn cos z + —^ sin z ——4 cos x - sin xrot^Vi =

Oi Or] r of " " Off2 9r,di

d~(t. . • 0~B. da.
\mntic°sx + j/sinx--^cosy-MoiisinyJ

Hence
( Q I Hjh. _i_ 'r"i ^ \

2 +

[h x rot, ,,V,] =

(26)

2 I Olf Off2

B (02Pi , »2P,

2 I oi2 oo2

VM7# + ̂ Fi J

(27)
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where the truncated terms vanish after integration. Thus, after integration (25) be-

comes

(28)

In fact, rot^g of both sides of (25) are equal. Thus, in principle, one can add

grad F{£, rj, 6, x) to the right-hand side. However, divgradF eO or A. gF = 0.

Since we are seeking bounded solutions of this equation in the whole space, F = 0.

Thus, (17) and (28) form a closed system of equations, reducible to three inde-

pendent subsystems

dit = '

ddx C fd2a{ d2a,\ (29-1)

dr ~ 2 \grj2 + 062 I '

d/?,

dx
= -BS. ,

asl _ b (d2p{ d2^\ (29-2)
+

2 \ dd2

(29.3)

Differentiation of the second equation in (2) with respect to x and the substitution

of -C8X , instead of <5q,/9t in the new equation, yields

d2S{ _ C2(S2Sl S2S^

Similarly

dr2 2 \dfl2 + dd2)' (3ai)

d\=_B^(8\ d\\

dx2 2 [d? + dd2 J '

d2S2 _ A2 (d2S} d2S}'

dx2 2 \ d£2 862
+ —t I • (30.3)
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Hence, the corresponding dispersion relations are

a>] =—{I2 + m2), (31)

t R2 ->
co] = —(k2 + m2), (32)

co] = ^-(k2 + l2). (33)

Hence, if A ^ 0, B ^ 0, C^O there are three exponentially growing solutions

which are linearly independent.

It is worth noting that the constructed solutions are the exact solutions of the

system (10)/

The case of the Beltrami flow is of special interest to us. For this flow the system

(29.1-29.3) contains a closed subsystem

7h ~ —A5y,

USt, _ A (V2V, ,

2 ^ oi2 otf-

This means, that we may consider the solutions dependent on z only. The corre-

sponding solution is

u0 + £u, = exp
k2 + l2

i{k£ + hj) + \A\\ —z—t

cos z

- sin z

. ie{/cos z + k sin z) - e\J ^
-+I-

(34)

III. ABC-flow in viscouse liquid at large Reynolds numbers. Consider the Navier-

Stokes equation in the rotational form

^(rotV) + rot[rotV x V] = -^ rot(AV) + ^F,

divV = 0.

Let F be a vector-function such that (35) is an identity for

V = h

= [A sin z + B cos v , A cos z + C sin ,y , B sin y + C cos a ]

= Ae0 + Bf0 + Cg0.

The linearization of (35) around V = h yields

^(rotu) + rot[h x (u - rotu)] = -jj rot(Au),

div u = 0.

Here Au = -(rot)~u , due to div u = 0 .

(35)

(36)

f It should be noted that the relation (5) differs from that which was recently proposed in the work of

Moffatt [9], where the similar system was analyzed by variational methods.
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,-1Consider the scaling transformation (4) of (28), while e = R

e£(roV ») + e2&(rok>,0 + roWh x (» - rotxyz«)] - e roWh x roti,e»]

+ rotf „[h x (u - rot u)] - e2 rot, Jh x rot, g u]^ lKJLxyz">J ° A

£r0t,Tr(AvyrU) + ^ [r0t^(A*yz(A*yzU)) +2fV (ft + Mj + IJTWl)

rotvyz(A^eu) + 2 roW (A + 5^ + A)] + e4(roW(Vu))'+£3

d'VxvrU = -£di%flU'

(37)
where

_ <92u <92u 52u

tie11 - d^2 + dti2 + ge2-

We repeat the procedure of seeking the asymptotic expansion for a solution of the

scaled Euler equation (5) to the scaled form of the Navier-Stokes equation (36). The

integral relationship, obtained through integration of (28) over [[0, In] x [0, 2n] x

[0, 2?r]] in x , y, and z , is
r2n r2n r2n

L L wt«>"dxdydz
r2u r2ll r 2u

+ J Jo Jo rot^Jh x (u - rotxv. u)] dx dy dz

r2jl r2n r2n

: J j J rot^gfh x rot*^ u] dx dy dz- £

^ r2n r2u r2n

eJo Jo Jo rokne(Atr,eu)dxdydz-

This is due to 27r-periodicity of u(x ,y, z,£,rj,6, z) in x, y, and z. In fact,

£°- and e1-approximations of Eq. (38) are the same as in the scaled Euler equation.

The ^-approximation of (37) is the same as that of (5):

r°V-[h X (U0 " r0t.v>T Uo)5 = °- (39)

We seek u0 in the form (9)

ul a0(rj, 6 , r)g0 + /?(£, 0, r)f0 + j>0({ , f], r)e0

+ ai{tj,d, t)g, + £,(£, 0, r)fj +y,(^, rj, r)e, +G, ,

where e0, g0, fQ , e, , f, is the basis (8) of the proper subspace of the rot

operator, with the eigenvalue 1. Note that all these vectors are the eigenfunctions

of the Laplace operator A with periodic boundary conditions with the eigenvalue

(-1), since A =-(rotYVJ .

If A f 0, B ± 0, and C ^ 0

as was proved earlier.

G, = 0

The e1-approximation of (37) yields

£(TOtryz U0) " r0tv,,[h X rot^ Uol + rOt^,0(h X (U0 " r0tvyz M

- roVv--(Avy-uo) = - rotAj;;th X (u, - rotvv. Uj )], ) (40)

dlVvv-- U1 = - div<ff?& U0-
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The first equation in (40) is distinguished from the first equation in (10) only by the

last term on the left-hand side. Hence, in view of (17) (and instead of it), we get

= _a - = _B £Zo = _v .
dx °' 0 x °' d x °' ^ j j

dax rr . dfit dyx
—— = Cd.-a.\ —- = -Bd-, - p. , —— =
dx 11 dx 1 1 dx

Thus, a0, P0, and y0 are exponentially decaying in x and so of no interest to

us. As already stated, the integral relationship for e'-approximation remains intact

when we pass from the scaled Euler equations to the scaled Navier-Stokes equation at

large Reynolds numbers. Thus, Eqs. (28) are valid, since the condition div^.Uj =

-div^ eUj remains intact.

Thus, the final system of equations is

dai rA

~~dx = ~Q| 1 '

ddx C f S2a{ ̂  (^2.1)
dx 2 \ dt]2 ' 062

(42.2)

dS3 A (42.3)

Differentiation of the second equation in (33.1) with respect to t and multiplication

by 2C_l together with the application of operator A*g to the first equation and the

subsequent summation of the two new equations yield

2 ̂  = -C(A,„A) - (A„<>,) = -C(A„.<V - P

or

C 2 ~ 1 I# \>~ \) c dx

^ + + (43..:

Similarly

dx1 Ox

d~S1 OS-, B2 (d28~, d'S1
= ,43'2)

!$ + °L *(!$ + ?$). ,43.3)
dx 2 I Qrf )
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Hence, the corresponding dispersion relations are

C2
co j = (co j + 1) = —(I2 + m2),

R2
co2(co2 + 1) = — (k2 + m~), (44)

2
.2

/ 1 \ ^ /; 2 ,2X
co3(co3 + 1) = —(k +1 ).

or

Jl + 2C2(/2 + m2)- 1
co, = ^ r   >0, (45.1]

J\+2B2(k2 + m2)- 1
w2 = 1 x   > 0, (45.2)

w3 = -^   >0. (45.3)
yj 1 + 2A2(k2 + I2) - 1

~2

Thus, if A / 0, B / 0, and C ± 0, there are three exponentially growing solutions.

As for the case of Beltrami flow, one may consider only solutions of (36) depending

only on z , £,, rj, and t.

In the dimensional (*) form, (45.1-45.3) become

J1 + 2R2d2C2(l*2 + m*2) - 1

= V°  2Rd ' (46J)

sj 1 + 2R2d2B2(k*2 + m*2) - 1

-2 - Vo- 2Td 1 ' (46-2>

y/l + 2 R2d2A2(!*2 + m*2)

2Rd
a>; =    . (46.3)

Hence

- v0\c\]
/i*2 , *211 + m

I k*2 + m*2
V0\B |\    , (47)

<k*2 + r2
W3 - K0|y4|l

as R —> oo (cf. 31-33, and Fig. 1).

IV. Concluding remark. The undertaken study shows that at large Reynolds num-

bers there exists a wide class of long-wave perturbations destabilizing the basic ABC-

flows.

The proposed asymptotic analysis clearly does not apply to the perturbations,

whose wave-length is comparable to period 2nd of the basic flow. In a real sit-

uation as the wave-number \Jk2 + I2 + m2 increases, the instability rates a>( are
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(RV2CT
Fig. 1. Rate of instability parameter w, versus perturbation wave-

number p* = \jl"2 + m*2 in region p*d~R~l<^l.

expected to slow down and eventually even to change sign when the perturbation

wave-length becomes comparable to 2nd (cf. Green [2]).

Finally, regarding the quasi-isotropic case A = B = C — 1 , the found transition

from stability at R ~ 1 [12] to instability at R » 1 resembles the similar effect

observed in the 2-D system of triangular eddies [18].
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