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Abstract. We consider a model that governs the behavior of a premixed flame

anchored on a flat burner. We show that a steady planar flame is stable for Lewis

numbers L in the interval L, < L < Lu where Lf < 1 and Lu > 1 and unstable

otherwise.

We derive and analyze a Ginzburg-Landau equation for this problem in a neigh-

borhood of the critical Lewis number Lf. We find that a family of spatially periodic

solutions which correspond to stationary cellular flames, bifurcates from the basic

solution. Subcritical bifurcations are found to be unstable. In the supercritical case

there is a range of wavenumbers satisfying the Eckhaus criterion, within which these

solutions are stable.

We also find spatially periodic solutions modulated by slowly varying amplitudes.

The amplitude may be stationary spatially periodic, stationary solitary, or a travelling

wave.

1. Introduction. In the diffusional-thermal theory of flame propagation, two types

of instability are known to exist. These are the pulsating and cellular instabilities

which occur when the Lewis number, defined as the ratio of thermal to mass diffu-

sivities, is sufficiently bigger and smaller than unity, respectively.

Pulsating instabilities in combustion were studied in the theoretical works of

Matkowsky and Sivashinsky [21], Matkowsky and Olagunju [16, 18, 19], Margo-

lis and Matkowsky [13], and Margolis et al. [11], to mention just a few, and the

experimental work of Blackshear et al., [2] and Mapp et al. [10].

Studies of cellular instabilities appear in the theoretical papers of Matkowsky,

Putnick, and Sivashinsky [20], Sivashinsky [24, 25], Margolis and Sivashinsky [14],

and Buckmaster [3] (detailed bibliographies can be found in Buckmaster and Ludford

[4], Margolis and Matkowsky [12], and Sivashinsky [25]). Experimental observations

of cellular flames have been reported and are well documented in the literature.

Extensive references can be found in Markstein [15], Gaydon and Wolfhard [8],

Lewis and von Elbe [9], and Buckmaster and Ludford [4],
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In this paper we show that cellular flames arise as a bifurcation from a planar flame.

In Buckmaster [3], a similar analysis was carried out using a different burner model.

His single mode analysis was, however, restricted to long wavelength instabilities and

to flames with large stand-off distances. In this analysis we place no restriction either

on the wavelength or on the stand-off distance and instead of a single mode analysis

we consider a continuous band of wave numbers centered around the most unstable

wave number. Hence even for parameter values for which Buckmaster's analysis

yields stable bifurcation, we find a range of wave numbers for which the bifurcated

states are unstable.

2. The mathematical model. We consider a two-dimensional premixed flame an-

chored on a flat burner (Fig. 1). The model we use is a straightforward extension

to two dimensions of the one used in Matkowsky and Olagunju [17] in which the

burner is modelled as a heat sink. This approach was first used by Carrier, Fendell,

and Bush [5]. We make the usual assumptions of weak thermal expansion of the

gas, large activation energy and Lewis number close to unity. We also assume that

reaction can be modelled by one-step Arrhenius kinetics; and for mathematical sim-

plicity we take the temperature of the burner to be equal to that of the fresh mixture.

We introduce the nondimensional parameter

M = JL( l-i)»l, (2.1)
RTa \ Tj

where E is the dimensional activation energy, Tu and Ta are the dimensional fresh

mixture and adiabatic flame temperatures, respectively, and R is the gas constant.

m

Fresh Mixture

Burner ■

<t>(t,y)
Burned gas

-- Flame front

Fig. I. A two-dimensional flame stabilized on a flat burner.
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We seek perturbation expansions of the nondimensional temperature T(t, x, , x2)

and mass fraction Y(t,x{,x2) as

T - T T T
T=^ ^-~0 + + + (2.2)

T - T A/ M
a u

Y Y Y
Y = ~ Yq + -rj H =5" + ... , (2.3)

Y M m2 '

where Yu is the mass fraction of the fresh mixture. In addition, we scale the Lewis

number L and the heat loss coefficient H as

L= 1 + A, (2,4)

The boundary conditions T'x = T(t, +00, x2) and Y{t, +00, x2) are not known

a-priori and have to be determined from the analysis, but we assume that T - 1 =

0(1 /M). In the limit of large activation energy, the reaction zone becomes a thin

sheet of flame whose location in nondimensional rectangular cartesian coordinates

(x,, x2) is given by

x, =$(/, x2), (2.6)

where <J> is to be determined. The burner is located at x, = 0. We assume that

reaction comes to completion at the flame front so that Y = 0 behind the flame.

Introducing a coordinate system attached to the flame front

x = x,-0(r,x2), v = x2, (2.7)

the model is given by

0 + > 0 = 1, (2.8)

d® / <J0\ OQ I 21 1/2 /S\

a7 + ('"~ a7jfe=Ae+{1 + (aF) / (Z9>

If + (m - ^7) If = AS + M© - KQS(x + <D), (2.10)
subject to the boundary conditions

o C*

0=1 forx>0, — >0 as x —* +00, (2.11)
dx

0—>0, S —♦ 0 as x —>-00, (2.12)

|0| < 00, |5| < 00 asv—+±00. (2.13)

Here the variable S is defined by

S=Tl + Y^ (2.14)

S is the Dirac delta function and the Laplacian in the moving coordinate system is

d2 o2 d2<& 0 d2 /\2 d2
A — —2 H -)   tj 2—— ————K I ~7r— ) —7 . (2.15)

dx dy1 dy dy dxdy \ dy J Ox

After solving for 0 and S and O in (2.9)-(2.13), we can determine Yq from (2.8).
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0.0 0.5 1.0

m

Fig. 2. Plot of h vs. m for A' = 1 .

3. The basic solution and its linear stability. The problem (2.9)—(2.13) has a steady

solution given by
. 1 , x > 0,

©n(x)= ,„v - (3.1)

where

and

0^"/ I rnx ^ r\
{ e , x < 0,

B, x > 0,

S0(x) = B - pmxe"'x , -h < x < 0, (3.2)

Bem(x+h) _ pmxemx ^ ^ < _h ^

d>0 = h, (3.3)

B = 2\n{m), (3.4)

h = iinfz^V (3.5)
m \Bm J

This solution, which we refer to as the basic solution, represents a stationary planar

flame located at a stand-off distance xx = h. Given the flow rate m and heat

loss parameter K , we determine B , which is the 0( 1 /M) correction to the flame

temperature, and the stand-off distance h from (3.4) and (3.5), respectively. We

find that h is a CZ-shaped function of m (see Fig. 2) but only the branch on which

h —► +oo as m —♦ 1~ is of physical interest because as m —> 0, B —* —oo and the

basic solution becomes unbounded. Therefore we restrict the value of m so that it is

bounded away from zero. For further discussion of the basic solution see Matkowsky

and Olagunju [ 1 7],
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We now consider the linear stability of the basic solution. To this end we introduce

the perturbations

</> = &-h, (3.6)

d@
w = e-eQ(x)-<j>-^, (3.7)

z = i>- S0{X) - 4 dSl

From (3.7) we obtain

z = S-S0(x)-^. (3.8)

4>=^[u>]0. (3.9)

The notation [f]a denotes the jump in / across x = a

[f]a = fit, a+ ,y)~ f{t, a~ ,y).

Substituting (3.6)—(3.8) into (2.9)—(2.13) and linearizing about 4> = w = z = 0 we

obtain the linear problem

^ + w^-V2«; = 0, x/0 ,-h, (3.10)

- V"z - (lV2w = 0, x^O ,-h, (3.11)
dt dx v '

subject to the jump conditions

dw

dx

dz

[z]0 + P[w]o = 0, (3.12)

-m[w]Q + ^z{t,0+,y) = 0, (3.13)
o z

dx
+ P

o

dw
+ Pm[w\ = 0, (3.14)

o

dx

and the boundary conditions

dx

[z]_h = 0, (3.15)

Z -Kw(t,-h,y) = 0; (3.16)
-h

d z
w = 0 forx>0, — -> 0 asx—>+oo, (3.17)

to—>0, z—> 0 asx-^-oo. (3.18)

This problem has solutions of the form

W \ cot+iky ( W
zj=Re '(z)+ c.c., (3.19)

0, x > 0,

-epx, x < 0,W=\ ' p* _n' (3.20)

and

Z -

~e'x , x > 0,

Ce,x + Depx + xepx , -h < x < 0, (3.21)

Eepx + ^Pxepx, x < —h,
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where R is an arbitrary complex constant and c.c. denotes complex conjugate. The

coefficients appearing in (3.20)—(3.21) are defined by

p = ^{m + [m~ + 4to + 4A-2]l/2} , (3.22)

/ - m - p, (3.23)

C = - + P(' ~k,\ (3.24)
m (P - I)2

D = p + — - C, (3.25)
m

and

E = D + Ce{p !)h. (3.26)

The solution (3.19) is nontrivial if and only if the following dispersion relation is

satisfied

21(1 - pf + pm(l2 - k2) + Km(l - p)eh('~p] = 0. (3.27)

The basic solution is stable (unstable) according as SH(<y) <0 (> 0). Equation (3.27)

possesses two neutral stability boundaries on which !H(o») = 0. On one to = 0, while

on the other only $(cd) / 0. The former delineates the region corresponding to the

cellular instability while the latter to that of the time-periodic (pulsating) instability.

The stability diagram for K = 1 and for selected values of m is shown in Fig. 3.

The picture does not change much with K . In this figure, the curve corresponding to

m = 1 is the same as that obtained by Sivashinsky [24] for adiabatic flames. For fixed

values of K, the region of the pulsating instability increases as m increases while

that of the cellular instability decreases with m . As in the adiabatic case, the cellular

instability is confined to the region /? < -2 . The cellular instability boundary is

given explicitly by

0 8k2 2Kae~h"
P = ~ 2 ^ + ^ r» (3.28)

m- m(m - a)

2 2 2
where a' = m + <\k~.

4. Nonlinear analysis. In this section we carry out a bifurcation analysis from

the stationary planar flame (the basic solution) into a stationary cellular (nonplanar)

flame. Hence, we confine our attention to the lower part of the stability diagram, i.e.,

the region ft < 0. For admissible values of the flow rate m , the neutral stability

curve has a local maximum at (fjQ, k0) with A:0 / 0 (Fig. 3). We seek steady

nonplanar solutions in a neighborhood of this point, using perturbation analysis.

Thus we introduce a small parameter £ to be defined below, scaled variables

2
t = e't, >] = £)>, (4.1)



BURNER-STABILIZED CELLULAR FLAMES 651

and expand as

P ~ + pe ) + •••> (4-2)

(f> = ® — h ~ Sep| + e cf>2 + ... , (4.3)

w = Q - ~ stu, + e io2 + ... , (4.4)

.dS 2
z = S - S0- ~ ezi + e'z2 + ■■■■> (4-5)

where the basic solution SQ(x) is expanded as

S0 ~ 50° + eSq + e2S20 + ... . (4.6)

Substituting (4.1)—(4.6) into the nonlinear problem (2.9)—(2.13) and equating coef-

ficients of like powers of e, we obtain the following sequence of problems for the

recursive determination of w}, z -, 0. for 7 = 1,2,3,....

dWj dWj
+ m-^z- ~ V w. = rn , x/0 ,-h, (4.7)

at dx j ~ j[
dz

J _i_ lit L_

dz, dz ■ 2

Jt+m~di~V (ZJ + = rj2' (4-8)

k

Fig. 3. Stability diagram for K = 1 .
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subject to the jump conditions

(4-9^

dWj

dx

dz

dx

dz

\

m

[Zj\ + PQ[Wj\ = 0, (4-10)

- m[Wj]Q + yziT, 0+ , y) = p, (4.11)
0 z

dw.
+ /V"K]0 = p,2 ' (4-12)

0
+ /?0

0 dx

[Zj]-h = Pj-3, (4-13)

<9*
- KwAt,-h, y) = pj4; (4.14)

—/?

and boundary conditions

dz ■
w- = 0 forx>0, —0 as x —>+oo, (4.15)

Wj -+ 0 , Zj —> 0 as x —> -oo. (4.16)

The small parameter e is defined by

' \ / w

Z , , ,
= e. (4.17)

The vector (u>*, z*)7 is the long-time solution of the adjoint problem given in Ap-

pendix B where the scalar product is also defined. This definition of e implies that

where dj{ is the Kronecker delta. The inhomogeneous terms r, , rj2, pj{ , pj2,

pj3, and pj4 for j — 1-3 are given in Appendix A. For j = 1 these quantities are

all zero, and the general long-time solution of the homogeneous problem (4.7)—(4.16)

is given by

'M , - j (ww\
= (Re' °y + Re 'v) Z(x) , (4.19)

i V i /m J
where W and Z are given by (3.20) and (3.21), respectively, but with /?, k , and

co replaced by /?0, k(), and zero, respectively. All other modes corresponding to

k ± k0 decay in time. The complex coefficient R(t , rj), whose conjugate is denoted

R , must be determined.

The problems (4.7)—(4.16) with j >2 are inhomogeneous forms of the problem

with j = 1 and are in general not solvable unless certain solvability conditions are

satisfied. These conditions are derived in Appendix B.

The solvability conditions are identically satisfied for the problem with j = 2 and

the solution is given by

w2 \ _, „yv . ii-,( "mM \ + rr( n-vi i
z2 , = " + R f • » { z"m )+RR{ G(x)) ■ (4'20)

where the functions W21, Z22, F(x), and G(x) are given in Appendix C.
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Fig. 4a. Plot of b vs. m for A' = 1 .

Applying the solvability conditions for j = 3 , we obtain the evolution equation

^ = vaR + d?-S- + b\R\2R. (4.21)
dr Qt]2

The real coefficients a, b, and d depend on the parameters m and K. For all

values of K considered, a and d are positive if m e (0, 1). For m close to 1, b is

negative but as m decreases b becomes positive and then turns negative again (Fig.

4a). When b — 0, (4.21) is degenerate and additional terms are required to describe

the evolution of R. Therefore we shall consider only the case b / 0. Equation

(4.21), referred to as the Ginzburg-Landau equation, has been derived by several

authors, e.g., in fluid flow problems [22, 23] and by Cohen et al. [6] for nonlinear

diffusion processes.

5. Analysis of the amplitude equation. In this section we analyze the amplitude

equation (4.21). The basic solution is given by R = 0. We first seek nontrivial

stationary solutions of the form R — p(t])e'e{',] . When p is a constant we obtain

stationary spatially periodic solutions, otherwise we obtain stationary modulated spa-

tially periodic solutions. Substituting for R in (4.21) we obtain the pair of equations

dp" + vap - dp{d')2 + bp} = 0, (5.1)

(p2e')' = 0, (5.2)

where primes denote differentiation with respect to rj.

5.1. Steady periodic solutions. Here we seek solutions of (5.1) and (5.2) of the

form p = pQ, where p0 is a constant. It then follows that 6 = Kt] where k is a

constant. Thus
2 dK ~va

Po = T  (5-3)
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provided

rl w — un
>0. (5.4)

b

In the subcritical case [v < 0), (5.3) is satisfied if b > 0 while in the supercritical

case (v > 0) it is satisfied only by a range of wave numbers k given by k > (<)

ua/d according as b>«) 0.

In order to determine the stability of the stationary periodic cellular flame (5.3),

we consider a perturbation % given by

R = p0eiK" + X(r,ri)eiK\ (5.5)

Substituting (5.5) into (4.21) and linearizing we obtain

a J , 2,.. , j(d2X , ^;.,dX

dx dt]

If we now set x - u + IV > then u and v satisfy

= {va-dK +2bp~0)x + d\ —j + Hk—) + bpQx ■ (5.6)

du li, 2 T dv , U /c
— = 2bp0u - 2k— +d—5.7
dz 0 dtJ dr]2

dv ~>du d2 v
— = 2 K—+d—5-8
d t d r\ Qy-

w > = e^+iw (r, ) {5 9)

Equations (5.7)—(5.8) have nontrivial solutions of the form

u \   Qz+inrj f r
,v)=e I r

provided £2 satisfies

(Q + p2d)(Q. + n2d - 2bp]) - {2kfi)2 = 0. (5.10)

The solution (5.3) is stable (unstable) acording as Q < 0 (> 0). The condition for

stability is satisfied if and only if b < 0 and

k2 < va/(3d). (5.11)

This last condition, usually referred to as the Eckhaus criterion [7], requires that

v > 0, since as remarked earlier a and d are positive. Hence, only supercritical

bifurcations may be stable. Furthermore, (5.11) implies that a mode with wave

number k is stable if and only if

k - kn - kn
(5,2)

Here k_ and k+ are the points of intersection of the neutral stability curve and

the line fi = pc (see Fig. 3), where fic is a constant less than /?0 . Therefore the

wave number k of a stable stationary cellular flame must be restricted to the interval

(5.12).
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5.2. Periodic and solitary envelopes. We now seek more general stationary solu-

tions of (5.1) and (5.2). From (5.2) we have (p~6') = h where h is an arbitrary

constant. Equation (5.11) then becomes

» va h2 b 3 „ ...

p +Tf,~y' + dp =0- (513)

which after one integration yields

, ,.2 va 2 h2 b 4 „ ,e ,

<p) +TP +Ji + 2dp =E- (5j4)

where E is an arbitrary constant of integration. As shown in [1, 22, 23], if va/d > 0

and b/d < 0, the above equation possesses periodic envelopes as well as solitary

envelopes. Since a and d are always positive these conditions reduce to v > 0 and

b < 0. The solution corresponding to the periodic envelope can be written in terms

of elliptic functions.

We consider in more detail the case h = 0, which implies that 8 is constant.

In the supercritical case [v > 0) a phase plane analysis of (5.13) shows that if

b > 0, the origin is the only singular point and it is a center. On the other hand if

b < 0, there are three singular points, one at the origin (center) and the others at

±\Jva/d (saddle points). Of these only the nonnegative solutions are admissible.

The phase plane analysis shows that the only bounded solutions are the equilibrium

points p = 0 which corresponds to the basic solution, and p = \Jvajd which

corresponds to the spatially periodic solution obtained above, so that the analysis

reduces to that considered in the previous section.

In the subcritical case (u < 0) there is no bounded solution if b < 0. For b > 0

there are three singular points, the same ones as above. However, the origin is now a

saddle while the other two are centers. The centers correspond to periodic solutions

which are given by elliptic functions and the separatrix is a solution of solitary type.

5.3. Travelling waves. Here we seek travelling wave solutions of (4.21). Let

C = 1 - cx, so that travelling wave solutions satisfy

dR" + cR' + vaR + bR* = 0, (5.15)

where c and R are real and primes denote differentiation with respect to £ . Equa-

tion (5.15) can be written as the first-order system

R' = S, (5.16)

S' = -C-,S -^R-bR? . (5.17)
d d

The above system has three critical points at (R, S) — (0, 0) and {±R0, 0) where

Rl = -va/b > 0. Consider the supercritical case v > 0. The points {±RQ, 0)

are spiral points while the origin is a spiral if 0 < |c| < \/Avad and an improper

node if \J\vad < |c|. As shown by Cohen et al. [6] the only bounded solutions are

the separatrices joining the origin to the other two critical points. These solutions

correspond to cellular flames modulated by slowly varying travelling waves. Since the
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Fig. 4b. Plot of k0 vs. m for A' = I .

origin is a spiral, a solution starting close to the origin and lying on the separatrix is

initially oscillatory in time. The amplitudes of these oscillations grow and approach

the value R0 asymptotically. This phenomenon, referred to as a precursor wave, has

been observed experimentally in some chemical reactors [cf. 6], In flame theory, it

describes a mechanism for transition from a stationary planar flame to a stationary

cellular flame. When the stationary planar flame loses stability, a cellular flame with

very small amplitude begins to develop. Its amplitude exhibits growing oscillations in

time, eventually saturating at the value R0 , thus yielding a stationary cellular flame.

6. Summary and conclusions. We have shown that when the reduced Lewis number

p is decreased below the critical value /?0 , a nonplanar cellular flame bifurcates from

the planar flame. Since /?0 < 0 it follows that the bifurcation point corresponds to

a value of the Lewis number Lf < 1 .

The shape of the cellular flame front is given by

O(y) ~ h + -^ecos(ky) + e2p2{2j22cos{2ky) + j2i\ + ... , (6.1)

where j22 = -^[W22]Q and j2} = are computed from the expressions in Ap-

pendix C and p0 is given by (5.3). The wave number of a cell is k = k0 + ek + o(e)

where k is given by (5.11). As shown in Fig. 4b, k0 decreases monotonically to zero

as m increases to unity. Lewis and von Elbe [9] have reported that cell size increases

with burning velocity as this analysis shows. From (6.1) we obtain the mean stand-off

distance of the cellular flame as

O = h + e~j23p~ + o(e2) . (6.2)

The quantity j2J is always negative (see Fig. 4c) so that the mean stand-off distance

of the cellular flame is less than that of the planar flame. The temperature at the flame
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23

Fig. 4c. Plot of y,3 vs. m for K = 1

front is given by

B 4/
Tf = 1 + — H spcos(kv)

1 Mm

+ Ii£2
M

/4/2
cos(2 ky) + I —j + B2} + o(e2). (6.3)

The parameter M is the modified activation energy defined in (2.1) and (1 + B/M)

is the temperature at the front of the planar flame. The constants B„ and 523 which

appear above are defined in Appendix C. From Fig. 5 we see that the cellular flame is

hottest at the troughs and coldest at the crests in agreement with experimental results.

As shown in the previous section, when b < 0 bifurcation is subcritical a.-ic?

unstable. For b > 0 bifurcation is supercritical. However, the range of wave numl t.;'s

for which the bifurcated state is stable is limited, according to the Eckhaus criterion,

to the band (5.12) about the critical wave number kQ . From Fig. 4a we see that as

m increases, b changes sign twice from negative to positive and then to negative.

Let m, and m2 be the values of m at which b changes sign with 0 < m{ <

m2. Suppose further that (mQ, 1) is the range of admissible values of m where

m0 < . Then for flow rates m e (m0, m{) or m e (ra,, 1), b < 0 and so as

the Lewis number L is decreased past the critical value Lt, the stationary planar

flame loses stability and there is a bifurcation to a stable stationary cellular flame.

In his analysis, Buckmaster [3] considered flames with large stand-off distances and

looked for bifurcation to spatially periodic solutions with wave number equal to

kQ. When the flow rate m is close to 1, we obtain the large stand-off limit he

considered (see Fig. 2). Unlike Buckmaster, however, we consider an entire band of

wave numbers centered around k0 . Our analysis reduces to his in the appropriate

limit. We also found solutions which the single-mode analysis cannot describe. These
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Fig. 5. Plots of cellular flame front <J> and flame temperature 7V

for K = 1 , m = .999 and e = 0.5 .

include stationary spatially-periodic solutions modulated by slowly varying periodic

or solitary envelopes. If m e (mi, m2), so that b > 0, the cellular flame is unstable.

In this interval, we showed that there are other solutions corresponding to stationary

cellular flames modulated by slowly varying stationary periodic or solitary envelopes

or by stationary slowly varying travelling wave envelopes.

A. Appendix A. The inhomogeneous terms r, , rj2, pjX, pJ2, p ̂ , and pjA

appearing in (4.7)-(4.14) for j = 1-3, are

''ll = Pu= Pl2 = P\3 = P\4 = °> iA-V'

d2(f>| (dui{ (92O0\ /d(f)x\2 d~90 ^d(f>, 9'w,
<A'2)

r-,-, = --
22 ~ r, 2

dy
^Il + B^ + ch t^ + B^
dx + ^dx +<M dx2 0 dx2

(A.3)

m2(^ + B d-^A -2dJ±(^ + B &2wA
dy ) I dx2 0 dx2 ) dy I dxdy °dxdy

m (d(t>, \ m _+ 2 ,.
Pi\ = — 7^7 ' (A"4)

-
Pi) ~ 2

dxdy J
2

dy J 2

p22 = 0, (A.5)

dz,'

—h

^2c°d S0

dx2
+ <p |

dx
(A.6)



BURNER-STABILIZED CELLULAR FLAMES 659

P 24 =

r j3coid S0

dxy
+ <t>\

—h

d2z

dx2

d<t>\
dy

dS°

dx
-h

( Bw, <p]d2e0

Y{~ax T~d^~
x=-h

dy J I dx 1 dx2

dz, d2(j), dS~ n , d @n n
r„ = - —-1 T~r~ + P(]V(^\ —r + V* w\
32 dx dy2 dx r| dx3 0 1

d2</>, (c?z2 dw2 dS°0\ d^.dffi^dSn

- ( a? + "o-a7 + *7 J -2m a7 37 rf7

a2^ /az, aw,
" V (i37+/,°^r + ""'irf7j

/ d2z1 d2w2 \ _ Id^1 ( d2z, a2u>, \

yaxa.y °axa.vJ dy ydxdy °dxdyJ

V (?2l 4. » ^ 4. mA. ̂
,0

m, .. d(f),d(t>7 m. ,
^i= - 4-(-,-'2)l„r+'"a7^r-48(-,l.„o*

2
m /d(p\

P32 ~~ ^0U
dw{

dx

P33 ~ ^2

/2 c0

dx2
+ </>

—h

dz2

dx
+ <j>2

-h

dzl

dx -h

1 <2
2

- ^1
a2z,

ax2
1 ,3
2 1

,3C0" Sp

dx3

(A.7)

_ a?^ _ d\ (dw2 d%\ _ d% (dWl d\\

31 dr dy2 { dx + 02 dxi ) dy2 ^ ax + 01 dxi )

_ d(j)| d(j)2 d2@0 _ d(j)l d2w2 _ dcp2 d2w{

dv dy dx2 dy dxdy " dy dxdy

9M2 (»*>,+ 4 (A.8)

' I md 0 2/77 ' 2 0 CA 9)
a.v2 + 01 </x2 J ay 6?x ' (A'9)

+ 4 [it) (zi^=o+>' (A-1Q)

-wt^Jo), (A. 11)
0

(A.12)
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P 34 — r*2
d2 Zj

0x2
+ 4>\i

—h

d2 z2

<9x2

1 ,2

2 1

<93 Zj

dx3

2
d(j)2

dy dy

-h

dS0°

1
2

-

+ ^1^2

-h

/4 c0

d S0

dx3

+ A" -

dx
—h

dw2 dwx

dx4

<9.V

-h

2 rdz{

dx -h

1 Ox 2 O.X

^20o 1 ,2Ci2^, . 1 ,3^0n
-</>, <p2~r^~ + ^

' dx2 2 ' 2 1 ^
(A. 13)

x=—h

B. Appendix B. The problem adjoint to the linear homogeneous problem defined

in (4.7)-(4.16) is given by

dW* dW* 2 * n r—2 * „ , „ , ,
-s— + m—— + Vw + P0V z = 0, x^O ,-h, B.l

at ox u

Q * Q *

-7— + tn-^~ + V2z* — 0, x/0 ,-h, (B.2)
at ox

together with the jump conditions

[z*]0 = 0, (B.3)

dW 0 as x —> 0~ (B.4)
dx

dz
+ '^w* |x=0-=0, (B.5)

0 2dx

[z*U = [w']_h = 0, (B.6)

d:

dx

Ow

dx

= 0, (B.7)
-h

Kz*\x=_h = 0 (B.8)

and the boundary conditions

w*^0, z* —> 0 as x —<-±oo. (B.9)

The inhomogeneous problem (4.7)—(4.17) is solvable if and only if the following

condition is satisfied

h 3
•Pj4

* ()"
-mz -fa

(B.10)
x=-h*
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where the inner products are defined as

•M f gA\ = rlimf Jo "J (f\S\ + f2g2)dtdydx, (B.ll)
/2;'U2//i r

(OD • (*l))2 s (B.12)

The long-time solutions of the adjoint problem, w*, z* are given in complex form

as

Wz*)=e±ik°y(z*)> (B"13)

where

W

C*e-px + P0p-j$xe~px, x > 0,

D*e~'x + E*e~px + p^xe~'x, -h < x < 0, (B.14)

F*e~'x + p0'-j^xe~lx, x<-h,

{ e px, x > 0,
z =1 V (B-15)

[ e , x < 0.

The coefficients above are given by

C* = 2(p - l)/m, (B.16)

£* = -(— + fi0 1 ~ \ \ , (B.17)

D* = C* - E*, (B. 18)

F* = D* + E"e{p~l)h , (B. 19)

and / and p are given by (3.22) and (3.23) with w = 0 and k = kQ.

C. Appendix C. The functions Wn(x), Zn(x), F(x), and G(x) which appear

in (4.20) are defined as

1 dW 1 dQ0 ( 0, x < 0,

Z22(x) — „„ . +

W7Jx)= + ^ T^ + i Ax „ (C1)
22K m dx 2m dx \ A22e , x<0,

1 dZ 1 d2S°

m dx 2m2 dx2
B22e(m-X)x , x > 0,

+ I C71e(m~X)x + DveXx + f1(]A22^£xelx, -h < x < 0, (C.2)
'22 T 22 ^ "0 22 m-VL

Ene + P()'^22 m-2k Xe ' X < -h ,

where

X = \-{m + {m2 + I6k2)i/2}, (C.3)
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and the real coefficients A22, B12, C22, D, and Ev are the solutions of the linear

equation

(A2l\ (s\\
B22

(-22

Dn
V e22 )

s2

53

54

\ScJ

The matrix is given by

and

an=i(pD + Po'yzf) • (C I 1)

= + T^f)- <C12>

= (C.13)

2 , 2
P ~k0

m(p - /)

The functions F(x) and G(x) are given by

A23dO0 2 dW

m \ 2 dZ
G(x) = —~r-

m ax

r- mx n * MX i
t2,e - p^Aj.mxe , x<-n,

(C.4)

( -Po 1 -1 -1 0 \
m — X m/2 0 0 0

-/?„ (m + X+^^j m-X l-m -X 0 (C.5)

0 0 e-hX e-hX

V -Ke-"k 0 (m - X)ehi*-",] Xe~hx -X<ThA J

while the right-hand side of (C.4) is

Sl = j£ + a,1 + !£(c.6)
1 In2 — m 2 m

■x/2 k-2 2

S> = ~2nr7Tn-Tn+P' ^ <C7>

S3 = ~ + Pa2-> + ^22 + — _ _ ~ P()P > (C-8)
J m2 11 m 2 m u

s* = {^D-E)-a22 + y22\e~P"' (C.9)

55 = \~(D - E) - *(«22 " ^22) ^ ^ . (C.10)

F(x) = ^-r^ + ~— , (C. 14)
m ax m ax

^23 ' -X" > 0 ,

C23 + D2^e'nx - pQA23mxemx , -h < x < 0, (C. 15)

MX n a
2Se ~ Po^21f
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where the coefficients A23, B-,3, C23, , and E23 are the solutions of the linear

equation

JT

(A2,\

^23

^23

d2}

V£23^

t2

h
U

(C.16)

The matrix yf is defined by

/ -Po 1-1-1 0
0 10 0 0

-/?0 m 0 0 —m 0
0n , — mh — mh

0 1 e -e
Ty — mh r\ n — mh —mh

\-Ke 0 0 me -me J

yy = (C.17)

while the right-hand side of (C.16) is

4I2 2IC
+ —+ 2^-2^, (C. 18)

t2 = -(-^- + 2p~ — + ^| , (C.19)
m \ m w /?z '

4/3 ll2C 28 n2
f, = 7 + 2pa12 + 2<S„ - - 2pup , (C.20)

m2 11 m

t4 = ~(D - E)e~ph -B + 2(a22 - y22)e~ph , (C.21)

t. = -{D- E)e~ph - Bm + 2k2— - Ke~mh
3 m U

+ 2p(a22 - y22)e~ph . (C.22)
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