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Abstract. Extended bounding theorems on maximum deformation and minimum

response time are developed for dynamically loaded rigid-plastic structures in the

range of large deformations. It is proved that the existence of bounds is directly

related to a so-called complementary gap function and its directional-derivative.

1. Introduction. Impulsive loading theorems for rigid-plastic structures have been

studied for more than 25 years (see Martin et al. [1-7]). But there still exist some

theoretical difficulties in attempting to extend the bounding methods to large defor-

mation problems. It is known that bounding theorems in geometrical linear problems

are usually derived from the extremal energy principles. However, in finite defor-

mation theory, the extremum properties of both the total potential energy and com-

plementary energy functionals cannot be guaranteed due to geometrical nonlinearity

(Gao-Strang, 1988, [9]). So the existence of bounds on maximum displacement

and minimum response time for impulsively loaded, rigid-plastic structures is re-

lated to the questions of stability (Ploch-Wierzbicki, 1981, [8]). Moreover, by using

Lagrangian approach, the plastic yield function depends not only on the Kirchhoff

stress tensor, but also on the displacements, which also brings some difficulties in

constructing bounding theorems.

Recently, systematic research has been devoted to the geometrical nonlinear me-

chanics by Gao-Strang (1989). It is proved in [9] that in the finite deformation theory,

the extremum property of primal-dual variational problems is determined by a so-

called complementary gap function, which plays a key role in nonlinear mechanics

[10-13]. The application to impulsive loading problems under moderate large defor-

mation, yields an upper bound theorem for displacement when the gap function has

the right sign (see Gao, 1990, [13]).

In the present paper, the bounding theorems on maximum displacement and min-

imum response time are extended to the cases of arbitrary large deformations. We

will see that the existence of the bounds is directly related to the property of the gap

function and its directional-derivative.
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2. Governing equations of dynamic problems. In Euclidean three-dimensional space

R3, let the reference configuration and current configuration 38 of a body

be referred to two independent rectangular Cartesian coordinate systems: Lagrange

system {^n} and Euler system {xt}, respectively. The corresponding basis vectors

are Ga and g(. The deformation of the body from 38® to 38 may be described as

x = x(X) = X + u(X). (1)

We adopt the gradient notation V = (d/dXa)Ga in reference configuration 38® , and

Vr = (d/dx^gj in current configuration 38, then the deformation gradient tensor

may be written as

dx
D = xV = —<8) G = I + uV = Z) g; ® G . (2)3 X a v '

a.

For an admissible deformation, D is nonsingular and finite, then we have the inverse

of D:

D_1=XVr = ^G0®8/ = I-uVr- (3)

Let Q be an open, bounded, connected subset of R with Lipschitz boundary

r = r, U r . % is the admissible displacement space. For any given u e %, the

Green strain tensor is denoted by the following geometrical relations:

E := ^[Vu + uV + (Vu)(uV)] = ^[D7D - I]

= 2^U»,P + Ufi,a + Ua,yUy,^Ga ® G/T (4)

The abstract description of Eq. (4) can be given as [9]:

E = /4(u)u, (5)

where is a geometrical nonlinear operator, % is the admissible strain

space. The directional-derivative of E at u in the direction v e ^ is defined as:

xvr ^ r E(u + 6\) — E(u)<SE(u;v) := lim      - -4,(u)v, (6)
e^o+ V

where At: % —> % is called the Gateaux derivative (cf., e.g., [15, 16]) of E(u) at u,

which is also a nonlinear geometric mapping:

v4f (u)v = i[Vv + vV + (Vv)(uV) + (Vu)(vV)].

Its complementary operator is defined as

^(u)v:=-i[(Vv)(uV) + (Vu)(vV)]. (7)

So the material derivative of E may be written as

E(u) = /l,(u)u = D7 (u)d(u)D(u)

= ^[Vu + uV + (Vu)(uV) + (Vu)(uV)] (8)
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where

d(u) := 2(Vr" + »Vr) = 2("i-,y + /)g/® 8/

is the rate of deformation tensor.

The stress tensors commonly used in finite deformation theory are Cauchy stress

a (= aijgl ® g^); Piola stress; r (= Tmg( <g> Ga) and Kirchhoff stress: S (=

SapGn <S> G^). They are interrelated with each other by

<7 = jDSD7 = ;'tD7 , (9)

r = DS = J(D~~'cr), (10)

S = J(D"'ctD"17') = D~'t, (11)

where j is the volume ratio of volume element before and after deformation, and

J = 1 /j. It is easy to prove that

o": d = 7S: E.

The double dot product of two tensors A and B means A: B = trace(AB).

Let ^ be the admissible velocity space, S? the admissible force space. The

bilinear form (*,*): & * 2? 92 puts ^ and in duality. Let % and S? be

the admissible strain rate space, admissible stress space, respectively. The bilinear

form (*, *): % xS —► R puts ^ and S? in duality. So the dual pair between u e &

and t e 2? can be represented as (u, t) = ut = ujpGoG^ = uja . The dual pair of

Ee^ and S e S? is given: (E, S) = E: S = tr(ES) = En/jSn/j. Throughout this

paper, the notations

(* > *)n '■=[(*> *) d&, (12)
J a

(* , *)tt :=/(*,*) dQ +[(*,*) dT (13)

are used for convenience. Then the Gauss-Green law for energy integration

fa j[Vu + uV + (Vu)(uV) + (Vu)(uV)]: S \ d£l

= -J |u[(I + uV)S] • V c/Q + J ii[(I + uV)S]n oT (14)

can be written as the following simple form:

(,4,(u)u, S)n = (u, ^*(u)S)s, (15)

in which A *: S? —> 2C is the conjugate operator of At, denoted as:

A*, \<s J -[(I + Vu)S]. V inQ,
A, (")S= \ ,T , V7 ,c r (16)I (I + Vu)Sn on r,

where n is unit normal vector on T, i.e., A* is just the equilibrium operator. So

the equilibrium equations for dynamics problems

[(I + uV)S] ■ V — b = p0u infl, \

(I + uV)Sn - t = 0 on f(, J 1 '
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can be written in an abstract form:

^*(u)S - f = p0ii inQuT,, (18)

where b is the body force, t the surface tractions, and

( b in Q,

f := < t on r(,

1 t(S, u) on rtl.

For rigid-perfectly plastic media, the constitutive equations in Euler approach are

given

d = , A>0, F(o)< 0, AF(<t) = 0 in Q. (19)
do

F (a) is the plastic yield function, which is assumed to be convex, lower semicon-

tinuous. For Mises material, it takes

F.(a) = (2°)

k is the material parameter. In Lagrange approach, the yield function should be

Fs(S, ») = - K = jF„(a), (21)

where K — Jk ,

H „ = D d\ D DT — H ,, = H„ . (22)apyK la pj ly kj yKap payK v '

For any given admissible deformation D(u), Fs\5? —> R is convex. The constitutive

relations Eq. (19) in Lagrange approach can be written as:

E = A^> A > 0, Fs(S,u)<0, AF5(S,u) = 0. (23)

Let 3? be a subset of S? x %:

JT := {(S, u) x W\FS{S, u) < 0 in Q}, (24)

the so-called complementary plastic superpotential W* \ y. f/ R \= R U [+oo]

is defined as following (see Gao-Strang and Gao-Wierzbicki, 1989, [10, 11]):

f0 if(S,u)eJr
^(S,u)= y/ (25)

I +oo otherwise.

In the theory of convex analysis, W* is called the indicator of the subset 3? . For

any given ue^, W*: 5? —> R := R U {+00} is convex, lower semicontinuous. Its

subdifferential gives the unified form of the constitutive relations Eq. (23)

Ee9s»''(S,u). (26)

Here u) denotes the partial subdifferential of W* for S at (S, u), which

is a convex subset of % :

dslV*(S, u) -

5 ̂ Fc(S, u, \
k—^  if Fs{S, u) = 0, k > 0,

{0} if Fs(S, u) < 0, (2?)

0 if Fs(S, u) > 0.
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For a given u e %, the conjugate function of W* , i.e., the plastic superpotential

W: If —► R may be obtained by using the Legendre-Fenchel transformation:

fV(E, u) = sup{(£, S) - ^*(S, u)}
ses

= sup (£, S), (28)
sejr

i.e., W is the support function of the confex subset . It is obvious that for a

given ue^, W: J? —> R is convex, lower semicontinuous. For Mises material, Eq.

(28) gives

W(E, u) = K\JH~pyK{v)EapEyK. (29)

Then the inverse form of the constitutive relation (26) can be given as:

Se9eW/(E,u). (30)

Moreover, according to the theory of convex analysis, Eq. (26), Eq. (30) and

(£, S) = W(E, u) + fV*(S, u) = W(E, u) (31)

are equivalent to each others. By performing integration over Q, using Gauss-Green

law, Eq. (31) gives

[ fV(At(u)u)d£2= (u, A?(u)S)n
J n

= [ iib^Q+ [ iitdr. (32)
J n J r

This is the virtual work principle.

During dynamic deformations, suppose that body Q is subjected to an impulsive

loading system: surface tractions t(X, t) on T( x [0, t] and the impulsive initial

velocity field u0 in Q. Therefore, in the case of large deformation, the impulsive

loading problem for rigid-perfectly plastic dynamical is that to find field variables

u, u, S and response time tf such that

(1) Geometric Equation:

^,(u)u - E = 0 in H x [0, tf]

u = 0, u = 0 on rr x [0,

(2) Equilibrium Equation:

^4*(u)S + >o0ik = 0 inf2x[0,/y]

y4*(u)S-t = 0 on T( x [0,

(3) Constitutive Equation:

£eds^F*(S, u) or Sea£PF(E,u) in Q x [0, tf]

(4) Initial Conditions:

u - u0 = 0 in Q x [0]

u - u0 = 0 in 12 x [0]

(33)
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where pQ denotes the initial mass density. It is rather difficult to find exact solution

for given loading systems, because of double nonlinearity (geometric nonlinearity and

constitutive nonlinearity). So the bounding methods for displacements and response

times will be useful in engineering application.

3. Lower bound theorem for response time. Let i/a be a time-independent kine-

matically admissible space:

^fl:={(v,v)c^x^|v = v = Oonr);}. (34)

Introducing the so-called gap function [9] G\ % x S? —► R :

G(y, T) := <-^„(v)v, T)n - j j[(Vv)(vV)]: Td£l. (35)

The directional-derivative of G at (v,T) in the direction v is:

SG(v, T; v) = T)n. (36)

One can propose the following lower bound theorem for response time t f:

Theorem 1. Suppose u, u, S solves the boundary-initial value problem (33). For

any given time-independent kinematically admissible fields (v, v) e , if during the

time of motion, t,,

SG{\ - u, S; v) = (-2An{\ - u)v, S)n > 0, (37)

then

^ fo dt fr, + fn /W^Q
tf~ fafV(At(v)v)dn ' ( ]

Proof. Since for any given W(E, v): I? —» R is convex, so the constitutive

relation Se^^fE.u) yields

W{A,{\)\) - W(A,(u)u) > (^,(v)v - /l,(u)u, S) V(v,v)G^a. (39)

Integrating inequality (39) over £2, by using Gauss-Green law, one has

LW(.4((v)v) dQ. > {At(y)y, S)Q

= M,(u)v, S)Q- (2^n(v-u)v, S)n

= (v, /4*(u)S)jj + (~2An(\ - u)v, S)a

= (*> t)r, ~ ^o"' v>n + (~2An(y ~ u)i' s)a- (40)

By performing a time-integration in the interval [0, tA, noting that the tractions

t(t) only act during t < t , Eq. (40) can be written as

f'dtf W(A (v)i/) dQ, > f(v, t(X, 0>r dt
Jo Jn Jo '

+ (Poito'*)n+/ (-2AJv-u)v, S)Qdt. (41)
Jo

For any given (v,v)e&, fV(At(v)v) is independent of time, and fV(Af(v)v) > 0 in

Q. So the left-hand side of Eq. (41) can be written as tf fQ W(At(v)v) dQ . Dividing

both sides of Eq. (41) by W(At(\)v), Theorem 1 is proved if the condition (37) is

true. Q.E.D.
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4. Upper bounding theorem on deformation. Let S?a c 5? x ^ be a time-indepen-

dent statically admissible space:

5Pa := {(T, v) e x ^Mj(v)T - b = 0 in £2

A*(y)1 - t - t = 0 on T(}. (42)

Here b(X) and t(X) are statically admissible external forces associated with (T,v)e

Denoting KQ the initial kinetic energy:

V= /jw°^ (43)

and uD the displacement measure:

uD := (b, u-u0)n + (t, u-u0)F( (44)

Then for rigid-perfectly plastic material, the upper bound theorem on maximum

displacement may be given below:

Theorem 2. For any given time-independent statically admissible fields (T, v)

if the gap function satisfies: G(v, T) > 0, then the following inequality holds

uD <K0 + G(y-u0,T)+ [ W*(J,y)dQ. (45)
Jci

Proof. Let (u, S) be the solution of problem (33). According to the convexity of

the plastic superpotential W*(T, v), for a given ve^, the subdifferential constitu-

tive relation E(u) e ^^*(8, u) yields the following variational inequality:

W*(T, v) - W*(S, u) > (/lr(u)u, T - S) VYeS*. (46)

Let u = v + (5u. Noticing that v is time-independent, the time derivative gives

u = (Ju. One has

^4,(u)u = v4((v)<5u — 2An(Su)dii. (47)

Substituting into (46), using Gauss-Green transformation, one has

[ W*{T,y)dQ- [ W*{S,u)d£l

> {A,{y)6u, T)n - {2An(8v)5ii, T)n - (i4,(u)<Ju, S)n

= (<5u, /l*(v)T-^*(u)S)jj- (2An{Su)8u, T)n V(T, v) € S? x %

= (b, <5u)n + (t, <$u)F( + (/>0ii, <5u)n

— {2An{dv)d\x, T)n V(T ,y)eS"a. (48)

By performing the time integration in the interval [0, tf], noticing that v, T are

time-independent, it is easy to obtain

[' [ W/*(T, v)dCldt - [' [ W*(S,u)dtodt
Jo Jq Jo Jli

>uD + \ [ p0iiiidQ - K0
1 Jn

+ G(u-v,T)-G(u0-v,T) V(T, v) eS"a. (49)
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For a given (T, v) e S?a , if condition G(\, T) > 0 holds, we have G(u - v, T) > 0 .

Omitting the nonnegative terms in the right-hand side of Eq. (49) and noticing the

property (25) of the superpotential W*, the theorem is easily proved. Q.E.D.

5. Complementary optimal bounds. Let t~ : &a —> R be a lower bound of response

time t f:

, fodtfr, t^r+/n

1 (V'V)' faW{Atmda ■ ( }

According to Theorem 1, an optimal lower bound approximation on t f can be given

as:

t f > sup t (v, v)
(v.v)e^

s.t. SG(\ - u, S; v) > 0 V(v, v) e &a. (51)

On the opposite side, let u+ \ <9^—> R be an upper measure of the displacement uD :

"+(T, v) := K0 + G{\ — u0 , T) + f W*(T,v). (52)
J a

Then according to Theorem 2, an optimal upper approximation of uD can be given

as:

uD < inf i/+(T, v)
(T,v)€^

s.t. G(v, T) > 0, V(T, v) eS?a. (53)

This a nonlinear optimization problem with two variables defined on the feasible

set 5^a . According to various constructions of the plastic superpotential W*, (see

Gao, 1988, [17, 18]), different variational approximations may be given to solve the

problem (53).

Theorems 1, 2 given above show that in impulsively loaded plastic systems under

finite dynamic deformation, the existence of bounds on maximum displacement and

minimum response time are determined by the property of the gap function:

G(v,T)= / \vnv,TnRda,

and its directional-derivative SG{\, T; v). In the geometrical nonlinear structural

analysis, this gap function also provides a global extremum creteria for the dual-

complementary variational problems (see [19, 10]). In one-dimensional beam bend-

ing problem, the gap function will degeneralize to the following form (see [11]):

-L

G(w ' N) = J ^{w x)2N(x)dx,

where w is deflection of the beam, and N is axial force. It is obviously that if

N(x) > 0 Vx e [0, L], the gap function G(w, A') > 0 Vw(x). In this case, the

structure is stable. Theorem 2 assures that there exists an upper bound on deflective

for impulsively loaded plastic beam. Otherwise, the structure may be unstable.
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