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Abstract. A system of retarded functional differential equations is proposed as a

model of single-species population growth with dispersal in a multi-patch environ-

ment where individual members of the population have a life history that takes them

through two stages, immature and mature. The persistence of the system as well as

the existence and global asymptotic stability of a positive equilibrium is proved by

using the monotone dynamical systems theory due to Hirsch and Smith, and a con-

vergence theorem established in this paper for nonautonomous retarded equations

by using limiting equations theory.

1. Introduction. The effect of environment change in the growth and diffusion of

a species in a heterogeneous habitat is a subject of considerable interest in the eco-

logical literature. The theoretical study of this subject was pioneered by Skellam [35]

and detailed bibliographies can be found in the work of Levin [29], To study such a

habitat effect, one technique is to divide the habitat into two or more homogeneous

patches connected by dispersion. Much research has been devoted to the mathemati-

cal analysis of model equations for the growth of single-species population dispersing

among patches in a heterogeneous environment. For details we refer to [5, 6, 9-15,

23, 25, 31, 34, 35, 37, 38, 41],
On the other hand, the description of the age structure of the population in the

long run is also an interesting problem in population dynamics. Many models have

been proposed and analyzed concerning single-species population growth with various

stages of life history. Bibliographies can be found in [1, 2, 4, 17, 18, 28, 39-41],

It is the main purpose of this paper to propose and analyze a model of single-

species population growth dispersing in a multi-patch environment, where individual
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members of the population have a life history that takes them through two stages,

immature and mature. Under the assumption that the dispersion of population be-

tween patches is symmetric, the subsystem for the mature population in our model

is a cooperative and irreducible system of retarded functional differential equations

with a discrete time delay representing the time from birth to maturity. By using

the monotone dynamical systems theory of Hirsch [24] and Smith [36], we will show

the persistence of the subsystem for the mature population and the existence as well

as the global asymptotic stability of a positive equilibrium state. The subsystem for

the immature population is a system of ordinary differential equations with a per-

turbation term representing the net flow of the birth from the mature population

into immature population and the removal rate from immature population to ma-

ture population. We will show that this subsystem has a positive equilibrium state

which is globally asymptotically stable.

We will also investigate the global convergence problem in the case of nonsymmet-

ric dispersal of population between different patches by using a convergence theorem

via limiting equations for general nonautonomous "regular" and "precompact" func-

tional differential equations, representing an extension of a result due to Artstein [3]

for nonautonomous ordinary differential equations to retarded equations.

We should mention that the global stability of the positive equilibrium state has

been proved by Aiello and Freedman [1] for a model of a single-species population

with stage structures where the population is assumed to be distributed over a ho-

mogeneous environment. For other related results, we refer to [1, 2] and references

therein. Our results in this paper show that, as far as our model is concerned, the

heterogeneity of the environment may change the size of the positive equilibrium

state but cannot change its global asymptotic stability.

This paper is organized as follows. In Sec. 2, we develop our model and present

some standing assumptions. In Sec. 3, we consider the global dynamics of both

mature populations and immature populations in the case of symmetric dispersion

of the population between patches. Section 4 contains a global convergence result in

the case of nonsymmetric dispersion of the population between two patches. In Sec.

5, we briefly indicate how the approach employed in Sects. 3 and 4 can be effectively

combined to establish the global asymptotic stability of a positive equilibrium state

in a general multipatch environment with possible nonsymmetric dispersion.

2. Model equations. We suppose that the system is composed of n patches

connected by dispersion and occupied by a single species. Let I^t) and M^t)

denote the concentration of immature and mature populations in the z'th patch,

i = 1, 2, ... , n . To derive our model equations, we make the following assump-

tions.

(HI): The birth rate into the immature population in the z'th patch is proportional

to the existing mature population with proportionality constant a, > 0, i =

1

(H2): The death rate of the immature population in the z'th patch is proportional

to the existing immature population with proportionality constant rt > o,

i = I, ... ,n.
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(H3): The death rate of the mature population in the 2th patch is of a logistic

nature, i.e., proportional to the square of the population with proportionality

constant /?. > 0, i = 1, ... , n .

(H4): The length of time from birth to maturity is a constant i > 0, which is

uniform for each individual in all patches.

(H5): Those immature individuals born at time t - x and surviving to time t exit

from the immature population and enter into the mature population.

(H6): The net exchange of mature and immature populations from the yth patch to

the z'th patch is proportional to the difference of the concentrations Mj(t) -

Mt(t) and Ij(t) - It{t), respectively, with proportionality constants Dji > 0

and djj > 0, / f j, i, j = I, , n.

Under the above assumptions, we propose a model to describe the growth of a

single-species population dispersing in an n patch environment where individual

members of the population have a two-stage structure as follows

w - - yJSt) + £ W) - 7«W] + a>MM) - */('> t-x),
j&

j-M+t) = - + £ Dji[Mj(t) - Mt{t)] + Xi(t, t - x), {2A)
j&

t> 0, i = I,... ,n,

where for any s, t - x < s < t, xt(s, t - x) denotes the growth rate at the instant 5

of the immature population in the ith patch born at the instant t-x.

Obviously,

x({t - x, t - x) = atkft(t - x). (2.2)

To derive an explicit formula for xt(s, t-x) in terms of M-{t), j = 1, ... , n,

we denote by yt(s, t - x), t - x < s < t, the total immature population in the /th

patch born at the instant t-x. Then §-syt{s, t - x) - Xj(s, t - x) and we have the

following relation

xt{s, t — x) — -ypiis, t - X) + E djittjis ,t-x)~ yt{s ,t-x)]
j*i

from which it follows that
A

—y,(s ,t- x) = ,t-x) + J2 Sj^yjis, t - x) - y.(s, t-x)],
jfr (2-3)

t - x < s < t.

Let A = (aij) with

and

alj = 8Jl for i,j= 1,...,«, i ± j,

aa = -Vi-^2Sji> i=\,...,n.
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exists and for any t > 0, eAt is a matrix whose entries are nonnegative. Evidently,

Then a(j > 0 for i / j, and i a,j = _y,- <0 f°r i = 1 • Therefore ^4"

md for any f > 0,

(2.3) can be rewritten as

t-r)\

= ^
ds

\yn{s, t — t) )

fyx{s, t- x)\

Vy„(s, t-x)J
from which it follows that

/yAs, t- x)\

_ e-4(i-(+r)

\yn(s,t-r)J

and thus
(yx(s, t-x)'

d_

ds '■
t-x).

Substituting (2.2) into (2.4), we get

/ ayMx(t — x) >

/ y;(/ -x, t-x)'

\yn(t-?, t-x)

AeA(s-'+r)

fyx(t-x, t-x)'

\yn(t~r, t-x).

(2.4)

\anM^t - T)/

/^(f-T, f-t)\

?-t);

Consequently,
fyAt-x, t-x)\

\yn(t-x, t-x)J

/ QjMx{t - x) \

\anMn{t-x)J

and

d_

ds

(yx{s, t-x)\
= AeA{s~'+x)A-1

( axMx[t - x)

\anMn{t-x).

= e

f q, Afj (t - x)\
A(s-t+x)

\anMn{t-x)J

f yx{s, t-x) \
d

ds
\yn(s> t-T)J

/ axM{(t — x)\
Ax

= £ .

\anMn(t-x)J

Vj^. *-*)/
Therefore

( xx(t, t-x)\

\xn(t, t-x))

Let eAr = {bjj). Then bi - >0 for i, j — 1, ... , n and

n

Xi(t, t — x) = bijajMj(t — x)

from which our model equation (2.1) can be reduced to the following form

( P,W = -y,i,«) + WO -',(')] + «,«,(') - C;., fyy*/'"T' ■ (2 5)
\ = -f- M,(()J + E;_, - t),
for ? > 0 and / =
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To specify a solution of the model equation (2.5), we assume that the distribution

of the mature population over the initial period -t < t < 0 is given as follows

Mi{d) = (Pi{d), -t<0<O, i = 1, 2, , n, (2.6)

and the immature population at t = 0 is given as follows

/,(()) = /i0, i - 1, 2, ... , n, (2.7)

where (p^d) is a nonnegative continuous function on [—t , 0] and 7/0 is a given

nonnegative constant, i - 1, ... , n .

3. Persistence and global convergence in the case of symmetric dispersal. In this

section, we consider the global dynamics of our model equation (2.5) under the

following assumption concerning the dispersion between different patches.

(H7): The dispersion matrices D = (D^) and A = (S^), where Sjj = Dij = 0,

i = \..... n are irreducible.

We begin by considering the subsystem for the mature populations

d_
dt
d Mt{t) = + Y.DjiWjit) - M^t)] + i2bljaJMj(t - t) (3.1)

i*i j=1

where t > 0, / = 1, ... , n . Let Cn = C([-t, 0]; Rn) and C* = {(p e Cn; rp -

{(px, ... , tpn), (p^d) > 0 for i = I, , n and 9 € [-r, 0]}. Define F = (F{, ... ,

Fn) : Cn - Rn by

Ft{(p) = -fii<p-( 0) + J2Dji[<Pj( 0) -
j¥' J=l

where <p e Cn . It is easy to verify the following quasimonotonicity condition: for

any <p e , if <pt(0) = 0, then F^tp) > 0. Therefore, by Corollary 2.1 of Smith

[36], Cis positively invariant, i.e., for any <p e C*, Mi(t, ^) > 0 for f > 0 and

/= 1, where Af(i, (») = {M{(t, <p), ... , Mn(t, <p)) is the unique solution of

(3.1) satisfying Mj(0, p) = ^(0) for 0 e [—t , 0] and / = 1, , n .

The following result indicates that all solutions of system (3.1) are bounded.

Lemma 3.1. For any cp e C* , we have

0 <Mi(t,(p)<L(<p), t > 0, i = 1, ... , n,

where
[ £"=.*>■a- )

L(e)) = max< max max <p,(8), max ———- + 1 > .
I-t<0<Oi=1 n 1 i=/}j

Proof. Let

V{t) = max < max max Af,(0, 9)), max — „ + W •
I -T<0<ti=l,...,n ' 1=1,... ,n />■

For any given t > 0, if max;=1 ^) < then clearly D+V(t) = 0,

where
n+I... F(/ + /z)-F(0
D V(t) = lim sup —  j- — .

A—o+ "
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If max\,...,nMi(t' <p) = then for any j <£ J := {k : Mk{t, <p) = V(t)},

Mj{t + h , <p) < Mk(t + h , (p) for any k e J and sufficiently small h > 0. Select a

sequence hm —>0+ such that

d+v(i) = lim
m—> oo h

m

Then two cases may occur:

Case 1. There are infinitely many hm's such that V(t + hm) < V(t).

In this case, it is clear that D+V(t) < 0.

Case 2. There are only finitely many /im's such that V(t + hm) < V(t).

In this case, there exist a k e J and a sequence {h*mj with 0 < h*m < hm such

that V{t + hm) = Mk(t + h*m , <p). Therefore

+ M,At + h* , <p) — M, (t, (p)
D V(?) = lim —£  kK ' . (3.2)

m-oo hm

Note that

Mk(t + hm> 9) - Mk(t' 9)
lim

m —► oc

= - PkMW> (P) + ^JDjk[Mj{t, <p)-Mk(t, <p)] + ^2bkjajMj(t-r, <p)
J*k j=1

n

< - PkMk(t, <p) 4- ̂ 2 hkjajMM - T' f>)
j= 1

<
zu b,

fik

kjaj
- Mk{t, <P) PkMk{t, q>)< 0.

Therefore, Mk(t + h*m, <p) < Mk(t, <p) for sufficiently large m, from which result

together with (3.2) it follows that D+V(t) < 0.

Therefore for any t > 0, D+V(t) < 0 holds. By the well-known result of differ-

ential inequalities (see, e.g., [28]), we obtain V(t) < F(0) for / > 0, from which

our conclusion follows. This completes the proof.

The following result shows a dissipative property of system (3.1).

Lemma 3.2. There exists a constant B > 0 such that for any (p e , we have

limsup[M,(r, cp) + Mn(t, <p)]< B .
/—► OO

Proof. Let p > 1 be a given constant and

M _ "2(P max^l ,max,-l „ buaj + max^l ...... max^/ Dji)

min i nP,
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Define Mt{t) = Mt(t, q>) and W(t) = . Then

W(t) =
(=i

-PiMfit) + J2 - Mt{t)) + £ - t)
7yi 7=1

< -( min M-(t) + n( max maxZ). )H/(f)
1=1,...,n ' i=\,...,n j^i J

i=l

+ n max max bna-W(t-r)
i=l,...,nj=\ n 7 7

min, , „ /?, 2
 <  " ' W\t) + n( max max/),,)W{t)

n i=l,...,n j^i J'

+ n max max b;iaW(t- r).
/=iy=i'JJ

Therefore, if W(r - i) < />W(f) and W{t)> M, then

^(0 < "2(maX,= l,...,„ maXJ*iDji + ^maX/=l,...,n ma^l « V;) _ ^(?)

min
!=1 n

min,-l nPi
X FP(f) ' <0.

n

Therefore by the classical Liapunov-Razumikhin theorem for uniformly ultimate

boundedness (see, e.g., [21]), there exists a constant B > 0 uniformly for all (p e

such that lim^^ supX)"=i , <P) < P ■ This completes the proof.

By the general dissipative dynamical systems theory (see, e.g., [22]) system (3.1)

has a globally compact attractor. We want to show that this attractor contains at least

one positive equilibrium point. To provide a tool for the study of the existence and

stability problem of equilibria, we briefly describe a result due to Smith [36].

Suppose / : Cn —> Rn is continuously differentiate such that for any (p e Cn

there exists one and only one solution of the following initial value problem

37 *<'>«/<*,). <2°- (3.3,

x0 = <p.

Let x(t, <p) be the unique solution. We obtain a semiflow {T(t)}t>0 defined on Cn

as follows

T{t)4> = xt(<f>) for t > 0 and <p € Cn.

Denote by df(y/) the Frechlet derivative of / at y/. Then by the Riesz repre-

sentation theorem we have the following standard representation

= J2 [ tjWdlijiV'6)*
7 = 1 J~T

where for each y/ e Cn, ■) : R —> R satisfies riij(y/, 0) = , 0) for

0 > 0, rjjjiy/, d) = 0 for 6 < —t, , ■) is of bounded variation on [—r, 0] and



358 H. I. FREEDMAN and J. H. WU

is continuous from the left on [—t , 0], i, j — 1. We say / is cooperative

and irreducible in C* , if for any y/ £ C* the following conditions are satisfied.

(i) For any <f> £ with <pt{0) = 0, it follows that J2"=1 f-T ^
0.

(ii) The matrix (df(y/)el, ... , df(y/)en) is irreducible, where [e{, ... , en} de-

notes the standard basis in Rn and ~ denotes the inclusion Rn —► Cn by

x —> x, x,(0) = xt for Q e [-r, 0] and i = 1, , n .

(iii) For every j there exists i such that for all y/ £ and all small positive

e, riij(y/, -t + e) > 0.

In Smith [36] the following result is proved.

Lemma 3.3. Let / be cooperative and irreducible in . Then the semiflow

{T(t)}t>0 defined on C* is monotone and eventually strongly monotone. That

is,

(i) if yj - (f> £ C* , then xt(y/) - xt{<f>) eCa+ for t > 0;

(ii) if y/ - 4> £ C* \{0}, then xt{y/) - xt(4>) £ Int Cfor t > (n + l)r.

As an application of the above result, we obtain the following result concerning

the persistence of system (3.1).

Theorem 3.1. For any <fi £ \ {0}, we have liminf^^ Mf{t, <p) > 0 for i =

1, ... , n.

Proof. It is clear that F : Cn —> R" is continuously differentiable. For any y/ £ C*

and <p £ Cn , we have

n

dFi(y/)<j) = -2^.(0)^.(0) + J2DjW0) " <t>M + £ b^^-r),
j*i 7=1

where i = 1, ... , n and dF{yy) = (dFl(i//), ... , dFn(y/)). Therefore we have the

following observations.

(i) dFt(y/)4> >0 if (f> £ C* and 0,(0) - 0.
(ii) The matrix

(,dF(v)ex, , dF(v)en) =

~ V\ (0) - I2jyi Dji + b\\a\ £*21 + ^12q2 ®nl + b\nan

/>12+i>21al -2^2^2(0) ~ Djl + 622Q2 ^>n2+b2nan

D\n+bn\a\ D2n + bn2a2 -2PnVn(0) ~ Zj/n Djn + bnnan ■

is irreducible, since by assumption (H7), the diffusion matrix D is irreducible

and the matrix eM = (&(..) is positive.

Therefore, F is cooperative and irreducible in . By Lemma 3.3, we know

that if 4> £ C* \ {0}, then M^t, <p) > 0 for / > nx and / = 1, ... , n. To

prove the theorem, it suffices to verify that if e > 0 is sufficiently small, then the

set C*(e) = [cp € C*; (pt{d) > e for 6 £ [-t, 0] and i — 1, ... , n) is positively

invariant, i.e., if cp £ C*(e) then Mf(t, <p) > e for t > 0 and i = I , , n . This is
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true for any e with 0 < e < mini={ „(!£"= 1 bijaj)l Pi > since f°r anY <P € ^(e) if

9>,(0) = e for some /, then

F,#) = - p/ + ^Dj&jiO) - 0f(O)] + YJblJa](P]{-x)
jfr 7=1

> - /]/ + ]TDjt[9j{0) - e] + £ bijajE
j# j= 1

= +

(see, e.g. [30]). The proof is then completed.

We will show that the persistence implies the existence, uniqueness, and global

asymptotic stability of a positive equilibrium state. To show this, we need the fol-

lowing result due to Hirsch [24],

Lemma 3.4. Suppose F = (F{, ... , Fn) is a C1 vector field in Rn satisfying the

following conditions.

(i) The off-diagonal elements of the Jacobian DF(x) of F(x) are nonnegative

for any x 6 Rn+:= {x e Rn : x = (x,, ... , xn), x. > 0, i = 1.

(ii) DF(x) is irreducible for any x £ Rn+ .

(iii) DF(y) - DF(x) G Rn+xn for any x, y € i?" with

(iv) All solutions in /?" of the system x = F(x) are bounded.

Then either trajectories in Rn+ tend to the origin, or else there is a unique equi-

librium p e Int Rn+ and all trajectories in Rn \ {0} tend to p .

Theorem 3.2. System (3.1) has one and only one positive equilibrium. This positive

equilibrium is globally asymptotically stable over \ {0} .

Proof. According to the proof of Theorem 3.1, the set C*(e) = {(p £ C* :

<p{(8) > e for 8 € [-r, 0], i = 1, ... , n} is positively invariant for any e with

0 < e < min;=1 „{(2"=1 b^otj)/f}t} . Lemma 3.2 shows that system (3.1) is point

dissipative. Therefore, by Theorem 4.1.2 of [23], there is a global attractor G£ in

C*(e). Since for a strongly monotone dynamical system, the global attractor con-

tains at least one equilibrium point (see, e.g.. Theorem 3.1 of [24]), Ge contains at

least one equilibrium. Therefore, system (3.1) has at least one positive equilibrium

state.

We now consider the ordinary differential equations

n

xi = E bijajxj - Pixi + E DjMj - xi)' /= 1• (3.4)
7=1 j*i

Let F = (Fj, ... , Fn) : Rn Rn be defined by

% - E buajxj ~ P.xi + L Dji{xj ~ xi)' 1'
7=1 7

n.
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Obviously, ^-{xx, ... , xn) - bjjaj + Dji > 0 for / / j , DF(x) is irreducible for

x £ Rn+ , since the dispersal matrix (Dij) is irreducible. Moreover, it is easy to verify

that DF(y) - DF(x) £ Rn+Xn if x, y £ R"+ and x — y £ Rn+ . Employing the same

argument as that for Lemma 3.1, we can prove that all nonnegative solutions of (3.4)

are bounded. Therefore by Lemma 3.4, either there is no positive equilibrium and

the origin is globally asymptotically stable, or there is a unique positive equilibrium

which is globally asymptotically stable over Rn+ \ {0}.

On the other hand, we have shown that system (3.1) has at least one positive

equilibrium. Clearly, any equilibrium of system (3.1) is also an equilibrium for

system (3.4) and conversely. Therefore, (3.4), and hence (3.1), has one and only one

positive equilibrium.

This unique positive equilibrium, denoted by P, of system (3.1) must be in

C*(e) for any e with 0 < e < min(=1 bijatj)/fii ■ By Theorem 3.3 of

[25], lim^^ Mt{4>) = P for any 0 6 C*(e). This implies that limt^00Mt((p) = P

for any (f> e C*\ {0} since, by Theorem 3.1, for any (j) £ C*\ {0} there exists e > 0

such that £ C*(e) for sufficiently large t. The proof is then completed.

We now consider the subsystem for the immature population

= -wo + £ w> -',«]+- E faMd - r>,
jf6' j= 1

/ = 1. (3.5)

We have the following global convergence theorem.

Theorem 3.3. Suppose that the initial mature population (<p , <pn) e C* and

( ax<px{s)\

ds.

\an(Pn^J

Then /.(£) > 0 for t > 0 and /' = 1, ... , n. If, in addition, (<pl, , <pn) e

C„+ \ {0}, then

(i i(*n
lim

t—KX)

(axM\\

— A~\eAr -1)

\w) \«nO

where (M*, ... , M*) is the unique positive equilibrium of system (3.1).

Proof. Equation (3.5) can be rewritten in the following vector form

a

dt
\wJ

nx(t)\
=A :

woJ
+ :

\«nMnWJ

At
e

t)\

\anMn^-X)j
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Therefore,

d_
dt

-At
= e

-At
= e

dt ■
\WJ

(axMx(t)\

-A

Ax
- e

(W\

wo/.
/axM^{t -t)\

= ~fdt /,_t

l\*nMn(t)J
falMl{s)\

—As
e

from which it follows that

f1 iWA
-At

e

WO 7
i

e
T

/ (s)
As

\anMn(•*)•

ds =

= e

0 / Qfi9»i(j)
As

That is,

'W\

.wJ
Therefore our conclusion follows from the fact that eA< is a positive matrix for

t > 0, eAt —* 0 as t -* oo,

LV/„(0) \an<Pn(S)J J \<*„Mn(t-6)

( a.MAt)\

\anMn(t)J

( a\M{(t)

°\
> | ; for t > -r,

(axM*

as t —> oo .

\aM"v n n\anMn^)

and the following relation

(axM\\ j (a\M\ \ (a, M" \

eA6\ : dd= f A'1
Jo \ ' Jo

\anMnJ

d AS

dde
= A~\eAx-I)

\anM /

l i

\«nKJ
Remark 3.1. To conclude this section, we remark that in the case of symmetric

dispersal, i.e., Djj = 0 iff Sjj = 0 and Djj = 0 iff D]t = 0 for i ^ j, the assump-

tion (H7) can be dropped, since if D or A is reducible, then the subsystem for the

mature population in Eq. (2.5) decouples into two or more smaller irreducible subsys-

tems, and consequently our results in this section can be applied to these irreducible

subsystems.
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4. Convergence in the case of nonsymmetric dispersion: a two-patch environment.

We have considered a single-species population with two life stages which disperses

in a multi-patch environment. In the case of symmetric dispersion between different

patches, we showed that the subsystem for the mature population can be decoupled

into smaller subsystems which are described by cooperative and irreducible retarded

functional differential equations, with the time delay representing the time from

birth to maturity. By using the monotone dynamical systems theory due to Hirsch

and Smith, we proved that there exists one and only one positive equilibrium point

which is globally asymptotically stable.

However, the nonsymmetric case is much more complicated even for the model

describing a single-species population dispersing in a two-patch environment with

S21 = D2l = 0.
In this case,

and

Therefore,

At

A =

e~y■' 0

-yx o
^12 ~ ^12

e -U-te-HW' tie-{yi+s»]{,-s)6ne-Y>sds

_ ( e~y'T 0 \

(bu} - \e-^+s^ f0T e-(y^)(r-s)S12e-y's ds ) '

In particular, bn = 0. Hence the model equation (2.5) becomes

= - ylIl{t) + a- e~y'TalMl{t — r),

^p = - y2I2{t) + dn[I{(t)-I2{0] + a2M2{t) - blxaxMx{t-x) - b22a2M2{t-j),

dM[{t) - - + t) ,
dt

d^fL = - P2M22(t) + Dn[Mx{t) - M2(t)] + bna,Mx{t - t) + b22a2M2(t - r).

(4.1)

Because of the nonsymmetric dispersion among different patches, the vector field

for the subsystem of the mature population is no longer cooperative and irreducible

in the sense of Smith [36], However, we can employ a similar argument to that of

Sec. 3 to prove that for any <p{ e C{[-t, 0], [0, oc)), if <p{ ̂ 0, then the solution

Mx{t) of the following initial value problem

= a,M,(r - z)e~r'T - (t) (4 2)

Ml(6) = ipl(e), 0g[-t,O]

satisfies lim,^^Mx(t) = (a{e~'xZ)l.
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Applying this result to the fourth equation in system (4.1) we obtain an au-

tonomous system

d , , i, s „ o-.e
dlm2(0= ~ Pi^t) + Dn-L-p Dnm2{t)

a e~y,z
+ b2xa b22a2m2(t - t) (4.3)"i

as a limiting equation of

^M2(/) = - P2Ml2{t) + D,2M,{t) -DnM2{t)

+ b2ialMl(t - t) + b22a2M2(t - t) . (4.4)

It is easy to show that there exists one and only one positive value M2 such that

-P2M2 +Dn-L-jj DnM2+b2lai  b b22a2M2 = 0. (4.5)

Evidently, A/2* is an equilibrium of (4.3). By using a similar argument to that in

Sec. 3, we can prove that m2(t) —> M2 as t —► oo if m2{d) > 0 for 6 e [-T, 0]. To

prove that lim,_oo-W2(0 = A/"2 ^or any solution of (4.4) with A/2 e Cj+, we need

the following global convergence theorem via limiting equations, as an extension of

a result in [3] to retarded equations.

We consider a nonautonomous retarded equation

x(t) = f(t,xt) (4.6)

where / : [0, oo) x C([—r, 0], /?") —> Rn is continuous. Suppose that U c

C([—t , 0], Rn) is a given closed set such that for any <p e U and t0 > 0, the

solution of (4.6) with = f exists uniquely for all t > tQ and x{(t0, tp) £ U,

where xf(t0, <p) denotes the solution of (4.6) with x{{tQ,<p) = (p. We say / is

positively precompact with respect to U if, for any sequence f ■ -> oo there exists

a subsequence ti and a continuous functional g : [0, oo) x U —► Rn such that
Jk

f(t + t, <p) — g(t, <p) as k —> oc uniformly for (t, <p) € [0, oo) x U . Let
Jk

H{f) = {,? : [0, oo) x U —> R" : g is continuous

and there exists a sequence tk —► oo such that

f(tk + t, <p) -+ g(t, (p) uniformly for(?, tp) e [0, oo) x U} .

We say that / is regular if, for any g e H(f) and (tQ, <p) e [0, oo) x U, the initial

value problem x(t) = g(t, xt), xt = cp has a unique solution, denoted by xf(t0, tp),

defined for all t > tQ and xf(tQ, <p) 6 U for all t > t0 .

Theorem 4.1. Suppose that / is positively precompact and regular with respect to

U, and that

(i) there exists a vector K e Rn such that the constant functional K : [-t , 0] —>

R" defined by K{6) — K for 6 e [-r, 0] belongs to U and xf(t0, cp) —> K
for (/Q, <p) € [0, oo) x U and for every g e H(f) as / —► oo;
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(ii) K is eventually uniformly stable with respect to system (4.6) and U, namely,

for any £ > 0 there exists 3(e) > 0 and T(e) > 0 such that for any (l0, (p) e

[0, oo) x U, if there exists t* > tQ + T(e) such that \\xf.(tQ, <p) — AT|| <3

then \\xf (tQ, cp) - K\\ < e for t > t*.

Then for any (tQ, <p) G [0, oo) x U such that {xf(t0, <p) : t > ?0} has compact

closure, it follows that lim^^ x{(tQ, <p) = K.

Proof. By way of contradiction, if the conclusion is not true, then there exist

(tQ, <p) 6 [0, oo) x U, e > 0 and an increasing and unbounded sequence tk~* oo as

k —>oo such that ||x{(t0, <p)-K\\>e for k > 1 . By assumption (ii), \\xf (t0, tp) -

K|| > 3(e) for all t > t0 + T(e). Let yk(t) = xf(tk + t; t0, <p), k = 1,2,.... Then

yk(t) solves the following initial value problem

f yk(t) = f(tk + t,ykt),

1 yo=xi^o' <P)-

Because of the relative compactness of {xf (t0, <p) \ t > ?0} and the precompactness

of / with respect to U, without loss of generality, we may assume that x{ (t0, (p) —>

y/ € U and f(tk + t,£,)-j>g(t,£) as k -> oo for (t, £) e [0, oo) x U, where

g : [0, oo) x U —> Rn is continuous. Therefore, by the regularity of / and the well-

known continuous dependence of a solution on its initial data and the right-hand side

functional of the equation, we obtain that lim;_>ooy<:(?) = xg(t\ 0, (//) uniformly

on any compact set in [0, oo). Let k be sufficiently large such that tk > T(e).

Then \\yk - AT|| = \\xf+t(tQ, <fi) - £|| > 3(e) for t > 0 from which it follows that

||xf(0, v)-K\\ > 3(e) for / e [0 , oo), contradicting the assumption (i).

Therefore lim^^ x{(t0, <p) = K . This completes the proof.

We now apply Theorem 4.1 to system (4.4) and obtain

Theorem 4.2. For any solution of (4.4) with M2(6) > 0 for 6 £ [—t, 0], we have

lim,^ M2(t) = M*.

Proof. For any solution Mx(t) of system (4.2), let / : [0, oo)xC([-r, 0], R) —* R

be defined by

f(t, yj) = -P2y/2(0) + b22a2yj(-x) - Dny/(0) + DnM{(t) + blxaxMx(t - r)

for (t,y/) e [0, oo) x C([-r, 0], R). It is easy to prove, in a similar way to the

proof of Theorem 3.1, that for any <p 6 Cx and t0 > 0, the solution of (4.4)

with M20 = (p (denoted by M2(t0, cp)) and the solution of (4.3) with m20 = <p

(denoted by M2(tQ, <p)) satisfy that M2t(t0, <p), M2t(t0, <p) G Cx for t>t0, where

g : C([-t,0],R)-*R is defined by

g(y/) = -p2y/2(0) + b22a2y/(-z) - Dx2yt(0) + (Dx2 + b2[ax)—^p-

for y/ G C([-r, 0], R).
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Evidently, / is positively precompact and regular with respect to C,+ , and H(f) =

{g} . Using a similar argument to that in Sec. 3, we can prove that for any (tQ, <p) e

[0, oo) x Cj+ , lim^^ A/£(f„, <p) = M*.

We now prove that M* is eventually uniformly stable with respect to system

(4.4) and C,+. Since M*_ is globally uniformly asymptotically stable with respect

to system (4.3), by the well-known inverse theorem of Liapunov direct method (see,

e.g., [43]), there exist a constant 80 > 0 and a continuous functional V(<p) defined

for ip 6 C(+ with \\q> - M2\\ < 80, a constant L > 0 and increasing continuous

functions a, /?, y : [0, oo) —> [0, oo) with a(0) = /?(0) = y(0) = 0 such that

a(\\<p - M*2\\) < V(<p)<P(\\<p-M;\\),

\V{(p) - V(y/)\ < L\\q> - ^||,

g>)) < -y(\\M*t(tQ, <p)-M*2 II)

for all (p , y/ e Cx with \\<p - M2*|| < 80 and \\y/ - M^\\ < SQ . Therefore

<p)) < —y(||Af^(f0, (p) - M*\\) + L(Dn + b2lal)

— V X

e r ax

\ t 1
P\

For any e > 0, there exists 8(e) > 0 and T(e) > 0 such that P(8(e)) < a(e) and

L(Dn + blyax)\\Mu - (a1e-y|T)//?11| < y(<S(e)) for t>t0 + T(e). If at an instant

t* > t0 + T(e), ||M2t.(t0, <p)-M21| < 8(e), then we claim that ||M2t(t0, <p)-M*2 || < e

for t > t*. Otherwise, there exists t2> tx> t* such that || M2t (t0, <p)-M2\\ = 8(e),

||M2t (t0, <p)-M2\\ = e and 8(e) < ||M2t(t0, <j))-M2\\ < e for t e [/,, t2\. Therefore

on [/,, t2], we have

- —7, T

Mu~- < 0jV(Mf2t(t0,e)) = -y(8(e)) + L(Dn + b2lax) ^

from which it follows that

a(e) = a(\\M'2(t0, (P)-Ml||) < V(M^(t0, <p))

< V(M^(t0, cp)) < P(\\Mf2t(t0, <p) - MlII) < P(8(e))

which is contrary to fi(8(e)) < a(e).

Therefore by Theorem 4.1, lim^^ M2t(t0 , <p) = M2 for all t0 > 0 and (p £ C,+ .

This proves the theorem.

Hence, we have shown the global asymptotic stability of the positive equilibrium

for mature populations. It is easy to establish the global convergence of immature

populations.

5. Convergence in the case of nonsymmetric dispersal: a general multi-patch en-

vironment. In this section, we briefly indicate how the approaches employed in the

previous sections can be effectively combined to study the global asymptotic sta-

bility of a positive equilibrium state in a more general nonsymmetric dispersion



366 H. I. FREEDMAN and J. H. WU

situation where the environment is assumed to consist of several groups (denoted

by Gx, G2, , Gm) of patches such that in each group the patches are connected

by dispersal and there further exists dispersal from patches in the group Gk to the

patches in groups G , k < p < m , but there exists no dispersal from the patches in

groups Gp , k < p < m , to the patches in group Gk , where k = 1, ... , m .

To derive a model equation, we suppose that the group Gk , 1 < k < m , consists

of patches Pkl, ... , Pkn . The following notations will be used throughout this

section.

ykj: the death rate of the immature population in the patch Pkj;

akj: the birth rate into the immature population in the patch pkj'

Pkj: the death rate of the mature population in the patch

Ikj: the immature population in the patch V

Mkj: the mature population in the patch Pkj>

xkj(s, t - r): the growth rate at the instant 5, t - t < 5 < t, of the immature

population in the patch Pkj born at the instant t — x, where 1 < k < m and

1 <j<nk\
dkjh : the dispersal coefficient of immature population from the patch Pkh to Pkj>

DkJh: the dispersal coefficient of mature population from the patch Pkh to

where 1 < k <m, 1 < j ± h < nk\

8qkj: the dispersal coefficient of the immature population from the patch Pqr to

the patch Pki>

Dqkj: the dispersal coefficient of the mature population from the patch Pqr to the

patch Pkj , where 2 < k < m, 1 < j <nk, 1 < q < k, 1 <r<nq.

Then based on the same argument as in Sec. 2, we have the following model

equation

= - rk/kiW + "k,Mk,<') -xt/i, i- T->

+ E^»[/hC>-'«(')]+ E sl'iV,A0-hi«)I-
h^j q<k

jiMkjW=

+ EDk^Mu(')-Mkj(t)i+ Y.
h^j Q<k

\<r<nq

OS

Q

^ykj(s' ' ~ T) = xk/s' 1 - T)' xkj~*,t~ t) = akJMkj(t - t) ,

d
ykj{s, t - t) = - ykjykj(s, t - t) + ^ 6kjh[ykh(s, t - t) - ykj(s ,t- t)]

h+j

+ Z] &kj\yqAs> ?-T)]' (5-1)
q<k

where t - r < s < t, 1 < k < m, 1 < j <nk.
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To simplify the above model, we introduce the following notations:

\T

Ik(t) = Iknk(t))\

Mk(t) = (Mkl(t),...,Mknk(t))

xk(s, t — x) — (xkl(s, t-t), ..., xktlk{s, t - x))T,

yk(s, t - t) = {ykl{s, t-r), ... ,yknk(s,t-x))T,

0lkMk(t) ~ iaklMkl^' ••• ' aknk^knkW> '

pX(t) = (pkykl(t),...,f}knMik(t))T,

Ak = (8kjh)\<j,h<nk With Skjj = °> 1 <J<nk>

Dk = (Dkjh\<j,h<nk with Dkjj =0.1 <j<nk,

/ \

r, = diag

Lk = diag

ykj + 8kjh + J2 Skj
hjij q<k

V 7 \<}<nk

( \

EDkJh+ £ Dl>lr.
kj

h^j q<k

\ y i<y<«t

_ (^fc/) !</<"* '

Dka = (Dk,)

where 1 < k < m . Then the model equation can be rewritten in the following vector

form

^-tm = - W)+«a(o - > t -1)+a,/,(o+j2Akqlq(t)>
q<k

j-Mk(t) = -/?X(0 + - t) + + £0^(0,
q<k

xk(t - t, t- z) = akMk(t - t), (5.2)

—yk(s, t-r)n = xk(s, t- r), t-r<s<t,

-yk(s,t- T) = -r^(5, ?-T) + A^fc(5, ?-T) +

q<k

Let
/-fj+Aj 0 0

/I =
Aj| —T2 + A2 • 0

^ral Am2 '
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By the assumption that patches in the same group are connected by dispersion,

Ak and Dk are irreducible matrix for 1 < k < m. This implies that -Tfc + Ak is

an irreducible matrix for 1 < k < m, and thus Bkk = el~Fk+Ak}T is a positive matrix

for 1 < k < m .

Using the same approach as in Sec. 2, we obtain the following formula

(B\\ 0 ••• 0 ^
B1{ B22 • • • 0

/ a.MAt - t) \

(5.3)

. B , B )
^ ml m2 mm y

where

Ax
= e .

( Bn 0 OA
B21 ^22

^ml Bm2 ' " Bmm )

Because the off diagonal elements of A are nonnegative, each Bjj, 1 < j < i < m ,

is nonnegative.

Substituting formula (5.3) into system (5.2), we get the following simplified model

equation

dJjr = - w>++\w+£ v«c>
q<k

i<k (5.4)

+ -T) ~ +

+ BkqaqMg~ T) + DkqMq(0 '
q<k q<k

where 1 < k < m .

The first equation for the mature population turns out to be

dMx{t) n ,r2

dt pxMx(t) - LxMx(t) + BxxaxMx(t - r) + DxMx(t). (5.5)

Since B{{ is a positive matrix and Dx is irreducible, we can use the approach in

Sec. 3 to prove that there exists a unique positive vector M* in Rn' such that

lim^^ Mx{t) = M* if Mx(9) > 0 for 6 e [-t , 0] and A/, ^ 0 on [—r, 0].

Therefore, the system

dm^ = - + B22a2m2{t - r) - L2m2{t) + D2m2{t)

+ B2xalM* +D1XM*X

is a limiting equation of the second equation for the mature population

dMAl)2VV _— - P2M2(t) + B22a2M2(t) - L2M2(t) + D2M2(t) ^

+ BlxaxMx{t - t) + D2xMx(t).
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Using the same argument used in Sec. 3, we can prove that there exists a positive

vector M2 in R"2 such that limt_toom2(t) — M*2 if m2(d) > 0 for 9 e [-t, 0].

Therefore, employing the argument of Sec. 4, we can prove that lim^^ M2(t) = M2

provided M2(9) > 0 for 9 e [—r, 0].

Repeating the above argument for a finite number of steps (m), we obtain that

there exists a positive vector (M*, , M*m) e Rni+'"+nm such that

lim =

if Mj(6) > 0 for 9 e [—y, 0] and i = \, m and ^ 0 on [-x, 0].

Finally, using the same argument as for Theorem 3.3, we obtain the following

global convergence theorem.

Theorem 5.1. There exists a positive vector (M*, ... , M*m) e Rn^+'"+n"> such that

if

(i) Mk(6) > 0 for 9 e [-r, 0] and k=l,...,m,Ml^0 on [-r, 0],

(ii) I : >/_0,e"" : de.

then

( a\M*\

t—* oo

lim (/,(/), ... , = A~'(eAr - /)
t—> OO 1 rn

\*mK

Remark 5.1. The above model can be thought of as describing stage structured

population dispersal in a patchy environment where each patch is subdivided into

subpatches.
Remark 5.2. It would be interesting to consider the competition of the mature

and immature individuals for resources. We wish to investigate such a competition

in a further paper.
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