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Abstract. A system of retarded functional differential equations is proposed as a
model of single-species population growth with dispersal in a multi-patch environ-
ment where individual members of the population have a life history that takes them
through two stages, immature and mature. The persistence of the system as well as
the existence and global asymptotic stability of a positive equilibrium is proved by
using the monotone dynamical systems theory due to Hirsch and Smith, and a con-
vergence theorem established in this paper for nonautonomous retarded equations
by using limiting equations theory.

1. Introduction. The effect of environment change in the growth and diffusion of
a species in a heterogeneous habitat is a subject of considerable interest in the eco-
logical literature. The theoretical study of this subject was pioneered by Skellam [35]
and detailed bibliographies can be found in the work of Levin [29]. To study such a
habitat effect, one technique is to divide the habitat into two or more homogeneous
patches connected by dispersion. Much research has been devoted to the mathemati-
cal analysis of model equations for the growth of single-species population dispersing
among patches in a heterogeneous environment. For details we refer to [5, 6, 9-15,
23, 25, 31, 34, 35, 37, 38, 41].

On the other hand, the description of the age structure of the population in the
long run is also an interesting problem in population dynamics. Many models have
been proposed and analyzed concerning single-species population growth with various
stages of life history. Bibliographies can be found in [1, 2, 4, 17, 18, 28, 39-41].

It is the main purpose of this paper to propose and analyze a model of single-
species population growth dispersing in a multi-patch environment, where individual
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members of the population have a life history that takes them through two stages,
immature and mature. Under the assumption that the dispersion of population be-
tween patches is symmetric, the subsystem for the mature population in our model
is a cooperative and irreducible system of retarded functional differential equations
with a discrete time delay representing the time from birth to maturity. By using
the monotone dynamical systems theory of Hirsch [24] and Smith [36], we will show
the persistence of the subsystem for the mature population and the existence as well
as the global asymptotic stability of a positive equilibrium state. The subsystem for
the immature population is a system of ordinary differential equations with a per-
turbation term representing the net flow of the birth from the mature population
into immature population and the removal rate from immature population to ma-
ture population. We will show that this subsystem has a positive equilibrium state
which is globally asymptotically stable.

We will also investigate the global convergence problem in the case of nonsymmet-
ric dispersal of population between different patches by using a convergence theorem
via limiting equations for general nonautonomous “regular” and “precompact” func-
tional differential equations, representing an extension of a result due to Artstein [3]
for nonautonomous ordinary differential equations to retarded equations.

We should mention that the global stability of the positive equilibrium state has
been proved by Aiello and Freedman [1] for a model of a single-species population
with stage structures where the population is assumed to be distributed over a ho-
mogeneous environment. For other related results, we refer to [1, 2] and references
therein. Our results in this paper show that, as far as our model is concerned, the
heterogeneity of the environment may change the size of the positive equilibrium
state but cannot change its global asymptotic stability.

This paper is organized as follows. In Sec. 2, we develop our model and present
some standing assumptions. In Sec. 3, we consider the global dynamics of both
mature populations and immature populations in the case of symmetric dispersion
of the population between patches. Section 4 contains a global convergence result in
the case of nonsymmetric dispersion of the population between two patches. In Sec.
5, we briefly indicate how the approach employed in Sects. 3 and 4 can be effectively
combined to establish the global asymptotic stability of a positive equilibrium state
in a general multipatch environment with possible nonsymmetric dispersion.

2. Model equations. We suppose that the system is composed of n patches
connected by dispersion and occupied by a single species. Let [,(f) and M(¢)
denote the concentration of immature and mature populations in the ith patch,
i=1,2,...,n. To derive our model equations, we make the following assump-
tions.

(H1): The birth rate into the immature population in the ith patch is proportional
to the existing mature population with proportionality constant o, >0, i =
l,...,n.

(H2): The death rate of the immature population in the ith patch is proportional
to the existing immature population with proportionality constant y, > 0,
i=1,...,n.
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(H3): The death rate of the mature population in the ith patch is of a logistic
nature, i.e., proportional to the square of the population with proportionality
constant , >0, i=1,...,n.

(H4): The length of time from birth to maturity is a constant 7 > 0, which is
uniform for each individual in all patches.

(HS): Those immature individuals born at time ¢ — 7 and surviving to time ¢ exit
from the immature population and enter into the mature population.

(H6): The net exchange of mature and immature populations from the jth patch to
the ith patch is proportional to the difference of the concentrations M;(t) -

M(t) and 1 j(t) I(1), respecuvely, with proportionality constants Dj, >0

and 61.1.20, i;éj, i,j=1,
Under the above assumptions, we propose a model to describe the growth of a
single-species population dispersing in an n patch environment where individual
members of the population have a two-stage structure as follows

%Ii(t)= Z (O] + o, M(1) — x,(t, t=1),
J#i

d 2
EM,'(Z) = - BiM,' 0+ ZDJ',‘[M}‘(Z) - M,'(t)] + x,‘(t s 1=1),
J#i
t>0, i=1,...,n,
where for any s, t—17<s <1, x,(s, t — 1) denotes the growth rate at the instant s
of the immature population in the ith patch born at the instant ¢ — 7.

Obviously,
X(t-1,t-1)=a,M(t-1). (2.2)

To derive an explicit formula for X;(s,t— 1) in terms of Mj(t), j=1,...,n,
we denote by y;(s,t—1),1—1 <5 <1, the total immature population in the ith
patch born at the instant ¢ — 7. Then %yi(s, t—1)=Xx,(s,t-1) and we have the
following relation

X5, t=1)= =y y(s, t=1)+Y_8,ly;(s, 1= 1) = y,(s, 1= 1)]

J#i

from which it follows that

Vs, t=1) ==y (s, t—1)+ S, t=1)=y(s, t-1)],
ds ; (2.3)

t—1<s5<t.

Let 4= (aU) with

and
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Thena >0 for i #j, and 211 = -7;<0 for i=1,..., n. Therefore A7

exists and forany ¢t >0, e is a matrix whose entries are nonnegative. Evidently,
(2.3) can be rewritten as

(s, t-1) yi(s,t-1)
35 : =4 :
Vols,t—1) Yuls, t=1)
from which it follows that
yi(s,t=1) yit-t,t-1)
. A(s—t+1)
: =e :
Vu(s,t-1) y,(t—1,1-1)
and thus
P yl(S,t—T)\ y](t_T>t_T)
9 . — A(s—t+1) .
s : Ae : : (2.4)
Vu(s,1-1) V,(t=1,1-1)
Substituting (2.2) into (2.4), we get
a M (t-r1) nie-t,t-1)
: =A :
a,M,(t-1) L= T, 1= 1)
Consequently,
(t=1,1-1) aM(t—‘l')
=T, 0= 1) M, (t-1)
and
V(s,t—1) aM(t—‘t a M (t-1)
9 . A(s t+t)A—l _ eA(s—t+r) .
ds : - :
Vs, t—-1) a,M, (l—r a,M,(t—1)
Therefore
x (t,t—1) y,(s,1-1) a, M (t-r1)
: _ 90 L .
: ~ 9s : - :
x,(t, t—1) V(s,t=1)) |, a,M, (1 - 1)

Let e’"=(bij). Then b,; >0 for i, j=1,...,n and

(t,t—1) Zbu j

from which our model equatlon (2 1) can be reduced to the following form

{%1,-(0: )+ 5,4 8,110 = (0] + e, M (1) = £7_, b o Mi(t = 1), s
4M (1) = -BM (1 +Z#,D IM (1) = M)+ T, byja, Mj(t = 1), '

fort>0and 1=1,...,n.
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To specify a solution of the model equation (2.5), we assume that the distribution
of the mature population over the initial period —7 <t < 0 is given as follows

M,(0) = 9,(6), -1<6<0, i=1,2,...,n, (2.6)
and the immature population at ¢ = 0 is given as follows
1,0) =1, i=1,2,...,n, (2.7)

where ¢,(6) is a nonnegative continuous function on [-7, 0] and I, is a given
nonnegative constant, i =1,...,n.

3. Persistence and global convergence in the case of symmetric dispersal. In this

section, we consider the global dynamics of our model equation (2.5) under the
following assumption concerning the dispersion between different patches.

(H7): The dispersion matrices D = (D, 1) and A = (6 ), where J,, = D, =0,

i=1,...,n are irreducible.
We begin by considering the subsystem for the mature populations
d
EMi()——,BM z;D JIM;(t ]+Zbu M- 1) (3.1)
J#i
where t >0, i=1,...,n. Let C, = C([-7,0]; R") and Cn ={peC,0=
(0y5...,9,),9,(0)>0for i=1,...,n and 6 € [~7, 0]}. Define F = (F, ...,
F):C,— R" by
F(p) = -B,0;(0)+ > D;lp,(0) - 9,(0)] + Zb,, 0,0,(-1), i=1,..,n,
J#i

where ¢ € C,. It is easy to verify the followmg quasimonotonicity condition: for
any ¢ € C: , if ¢,(0) = 0, then F;(¢) > 0. Therefore, by Corollary 2.1 of Smith
[36], C, is positively invariant, i.e., for any ¢ € C;, M,(t, ) > 0 for ¢t >0 and
i=1,...,n,where M(t, ¢) = (M(t,9),..., M, (t, p)) is the unique solution of
(3.1) satisfying M, (0, ¢) = ¢,(6) for 6 €[-7,0] and i=1,...,n.

The following result indicates that all solutions of system (3.1) are bounded.

LemMa 3.1. For any ¢ € C,, we have

0<M(t,9)<L(p), t20,i=1,...,n,
where Zn ,
= j=17j%
L((ﬂ)—max{ _max max 9.(6), max_ 7 +1}‘
Proof. Let

S boa,
ViR = j=12ij% .
(1) max{_rtnégi“ max M(0 0), rlnaxn 5 +1
For any given ¢ > 0, if max,_, , M(t, ) < V(1), then clearly D"V (1) = 0,
where v v
D*V(¢) = lim sup va+h -V
h—0* h
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If max,  M(t,9) =V(), then for any j ¢ J := {k : M (¢, 9) = V(1)},
M, (t+h (p) < M, (t+h, ¢) forany k € J and sufficiently small # > 0. Select a
sequence h, — 0" such that
V -V
D*V() = fim L) =V

m—oo h,,

Then two cases may occur:
Caske 1. There are infinitely many 4, ’s such that V(t+h, ) < V(2).
In this case, it is clear that DYV (1) < 0.
CasE 2. There are only finitely many 4, ’s such that V(t+h,) < V().
In this case, there exist a k € J and a sequence {A,} with 0 < A, < h,_ such

that V(t+h,) = (t+hm,(p) Therefore
DY) = lim Mty 9) = Mt ) (3.2)
m—oo hm
Note that
lim M (t+h,, ¢*)—Mk(l,¢)
m—oc hm
d
= EMk(t, 9)
n
= — B M1, 0)+ Y DM, 0) - M(t, )]+ b 0,M(t~1, 9) .
j#k j=1
< - B ML, 9) +Zbkj a,M(t-1,9)
Jj=1
E'; b, .«
< %—Mku,w B M (¢, ¢) < 0.
k

Therefore, M, (t+ h, , ) < M, (t, p) for sufficiently large m, from which result

together with (3.2) it follows that D"V (1) < 0.
Therefore for any ¢ > 0, D"V (¢) < 0 holds. By the well-known result of differ-

ential inequalities (see, e.g., [28]), we obtain V(¢) < V'(0) for ¢ > 0, from which
our conclusion follows. This completes the proof.
The following result shows a dissipative property of system (3.1).

LEMMA 3.2. There exists a constant B > 0 such that for any ¢ € C: , we have

limsup[M,(t, p)+---+ M, (1, 9)] < B.
—oC

Proof. Let p > 1 be a given constant and

2
M- n“(pmax,_, ,max,_,  b.o,+max_, 5 max, D)
min,_, B
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Define M(t) = M(t, ) and W(t) = S, M.(1). Then

Z )+ DM Zbu o Mj(t —

i=1 J#
< —( min M n( max maxD )W(¢
_<1/3; )+ n(_max max D)W (1)
+n max max b, o W(t—1)
i=1,..,nj=1,..,n
mm” 2B 2
< - — LW 4 (max maxD) (1)
n i=1,..,n j#i
+n max max b, oWt -1).
i=1,..,nj=1,..,n

Therefore, if W(t—1) < pW(t) and W(t) > M, then

2
W) < n (maxi=lw’nmax D ; + pmax =1’m’nmaxj=],m’nb,.jaj) )
- mml - ﬂ
min B,
x W(t)—"n———’ <0.

Therefore by the classical Liapunov-Razumikhin theorem for uniformly ultimate
boundedness (see, e.g., [21]), there exists a constant B > 0 uniformly for all ¢ € C;
such that lim,_ _sup E;’zl M(t, ¢) < B. This completes the proof.

By the general dissipative dynamical systems theory (see, e.g., [22]) system (3.1)
has a globally compact attractor. We want to show that this attractor contains at least
one positive equilibrium point. To provide a tool for the study of the existence and
stability problem of equilibria, we briefly describe a result due to Smith [36].

Suppose f: C, — R" is continuously differentiable such that for any ¢ € C,
there exists one and only one solution of the following initial value problem

{ %x(t) =flx), 120, (3.3)
Xo=.

Let x(¢, ¢) be the unique solution. We obtain a semiflow {7'(¢)},, defined on C,
as follows B
T(t)¢p=x,(4) fort>0andgeC,.

Denote by df(w) the Frechlet derivative of f at y . Then by the Riesz repre-
sentation theorem we have the following standard representation

)¢ = Z (6)dn;(v ., 6),

where for each v € C,, n(w,): R — R satisfies n(v,0) = n;(v,0) for
6>0, (¥, 0)=0 for 0 <-t,n(ws ) is of bounded variation on [-7, 0] and
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is continuous from the left on [-7,0], i,j=1,...,n. Wesay f is cooperative
and irreducible in C;“ , if for any w € C: the following conditions are satisfied.

(1) gor any ¢ € C: with ¢,(0) = 0, it follows that E;;l fft ¢j(9)d’lij('/’> 0) >
(ii) The matrix (df(w)é,, ..., df(w)é,) is irreducible, where {e, ..., e,} de-
notes the standard basis in R” and ~ denotes the inclusion R" — C, by
x—X,x(0)=x; for 6 €[-7,0] and i =1,
(ii1) For every j there exists i such that for all y € C;“ and all small positive
e, Ny, —-1+¢€)>0.
In Smith [36] the following result is proved.

LEMMA 3.3. Let f be cooperative and irreducible in C;“ . Then the semiflow
{T(t)},5, defined on C: is monotone and eventually strongly monotone. That
is,
(i) if w —¢ € C,, then x,(v) — x,(¢) € C, for 1> 0;
(i) if y —¢ € C; \ {0}, then x,(y) - x,(¢) € IntC, for t > (n+1)t.
As an application of the above result, we obtain the following result concerning
the persistence of system (3.1).

THEOREM 3.1. For any ¢ € C,; \ {0}, we have liminf_,__ M,(t, ¢) > 0 for i =
1,...,n.

Proof. Itisclear that F : C, — R" is continuously differentiable. For any v € C:
and ¢ € C,, we have

('//)¢— "2ﬂ ‘// +ZDJI[¢ 1(0)]+Zb,‘jaj¢j(_7),
J# j=1
where i =1,...,n and dF(y) = (dF(y), ..., dF,(y)). Therefore we have the

following observations.

(i) dF(w)p >0 if ¢ € C;' and ¢,(0)=0
(i1) The matrix

(dF(y)é,, (W)é
—2/3,://1(0) Z, +b“al D,, + by, D, +b,,a,
2+ by =2B,w,(0) = 32, 2 Djy + by D, + by,
Dln+bnlal D2n+bn2a2 —zﬂny/n(o)_zj;én Djn+bnnan

is irreducible, since by assumption (H7), the diffusion matrix D is irreducible
and the matrix e”" = (b;) is positive.

Therefore, F is cooperative and irreducible in C: . By Lemma 3.3, we know

that if ¢ € C, \ {0}, then M,(t,¢) > 0 for t > nt and i = 1,...,n. To
prove the theorem, it suffices to verify that if ¢ > 0 is sufficiently small, then the
set Cr(e)={peC,;9,(0)>¢ for § €[-7,0] and i =1,...,n} is positively

1nvar1ant le,if p € C:(e) then M (t,¢9)>¢ fort>0and i=1,...,n. Thisis
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true for any ¢ with 0 < ¢ < min,_, (Z;’ 1 bij J)//}, , since for any ¢ € C+( ) if
9;(0) = ¢ for some i, then

F(¢)= - e’ +3 D, lp;(0) - ¢ ]+Zb,, a,;0,(~1)

J#

—/3,.82+ZDJ.,.[¢]. —s]+ZbU a;

J#i

(/>’s+2:bU 1)

(see, e.g. [30]). The proof is then completed.

We will show that the persistence implies the existence, uniqueness, and global
asymptotic stability of a positive equilibrium state. To show this, we need the fol-
lowing result due to Hirsch [24].

I\

LEMMA 3.4. Suppose F = (F s eens ﬁn) isa C' vector field in R" satisfying the
following conditions.
(i) The off-diagonal elements of the Jacobian DF (x) of F (x) are nonnegative
foaany xeR, ={xeR" :x=(x,,...,x),x,20, i=1,...,n}.
(ii) DF(x) is irreducible for any x € R’ .
(iii) DF(y) - DF(x) e R." forany x,y € R, with x — yER.
(iv) All solutions in R of the system x = F(x) are bounded.

Then either trajectories in R” . tend to the origin, or else there is a unique equi-
librium p € IntR’ and all trajectories in R’ \ {0} tend to p.

THEOREM 3.2. System (3.1) has one and only one positive equilibrium. This positive
equilibrium is globally asymptotically stable over C, *\ {0}.

Proof. According to the proof of Theorem 3.1, the set C+ (e) = {p € C+ :
p,(6) > ¢ for 6 € [-1, 0] i=1,...,n} is positively mvarlant for any ¢ w1th
0<eée<min_ {(EJ 1 b0 /ﬂ} Lemma 3.2 shows that system (3.1) is point
dissipative. Therefore by Theorem 4.1.2 of [23], there is a global attractor G, in
C: (¢). Since for a strongly monotone dynamical system, the global attractor con-
tains at least one equilibrium point (see, e.g., Theorem 3.1 of [24]), G, contains at
least one equilibrium. Therefore, system (3.1) has at least one positive equilibrium
state.

We now consider the ordinary differential equations

X; —Zbu ax, ~Bx;+3 D(x;~x), i=1,..,n. (3.4)
J#i
Letf:(Fl,...,f"):R — R" be defined by

n
2 .
=Zbijajxj—,8ix,.+ZDji(xj—xi), I,...,n.
j=1

J#
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~

Obviously, g (xl, ey X)) = buaj +D; 20 for i # j, DF(x) is irreducible for

X € R , since the dispersal matrix (D, j) is irreducible. Moreover, it is easy to verify
that Dﬁ(y) —~ DF(x) € R if x,y € R’ and x -y € R’ . Employing the same
argument as that for Lemma 3.1, we can prove that all nonnegative solutions of (3.4)
are bounded. Therefore by Lemma 3.4, either there is no positive equilibrium and
the origin is globally asymptotically stable, or there is a unique positive equilibrium
which is globally asymptotically stable over R: \ {0}.

On the other hand, we have shown that system (3.1) has at least one positive
equilibrium. Clearly, any equilibrium of system (3.1) is also an equilibrium for
system (3.4) and conversely. Therefore, (3.4), and hence (3.1), has one and only one
positive equilibrium.

This unique positive equilibrium, denoted by P of system (3.1) must be in

C:(s) for any ¢ with 0 < ¢ < min_, (ZI 1 b3 ,)/ﬂ By Theorem 3.3 of
[25], lim,_,__ M/(¢) = P forany ¢ € C:( ) This implies that lim,___ M (¢) = P
for any ¢ € C\ {0} since, by Theorem 3.1, for any ¢ € C, \ {0} there exists & >0
such that M (¢) € C: (e) for sufficiently large ¢. The proof is then completed.

We now consider the subsystem for the immature population

d
(0 = ;5 M )]+ o, M,(t Zb,jajM(t
J#l
i=1,...,n. (3.5)

We have the following global convergence theorem.

THEOREM 3.3. Suppose that the initial mature population (¢, ..., ¢,) € C;’ and
1,(0) . a,0,(s)
: 2/ e : ds.
o) @, ,(s)
Then I(t) > 0 for t > 0 and { = 1,...,n. If, in addition, (¢ ,...,9,) €
C\ {0}, then
1,(1) a, M/
lim =4 " -0 ,
[—o0 : : "
1,(1) a,M,
where (M, ..., n) is the unique positive equilibrium of system (3.1).
Proof. Equation (3.5) can be rewritten in the following vector form
1,(1) 1,(1) o, M, (1) a M(t-1)
i . _ A . + . _ eAT .
d1 : = : : :
I.(1) 1,(1) a,M (1) a,M,(t—1)
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Therefore,

1,(2) r L) 1.(0)

d o g _ o d g _4 '
dt : - dt| - :
1,(1) L 1,(t) 1,()
[ a,M,(t) (alMl(t—‘t)
—At . At .
=e : —e :
[\ o, M, (1) o, M,(t - 1)
i a, M (s)
= —/ e : ds,
dt J,_. )
a,M, ()
from which it follows that
1,(1) 1 o, M, (s) 1,(0) . o, M,(s)
oA _ oA ds = _/ P ds.
1(1) o a, M, (s) 1,(0) - a, M, (s)
That is,
1,(1) 1,(0) . o,0,(s) ] o, M,(t - 6)
col =Ml ] - / et ds |+ / e : de.
. 0
I(t) 1,(0) o,9,(s) o, M, (t - )

Therefore our conclusion follows from the fact that e’ is a positive matrix for

t>0,eAl—>0 as t — oo,
o, M, (1) 0
: 2(5) fort > -1,

a,M,(1)) \0
o, M (1) a, M}
: — ast — oo,
a,M, (1) anM;
and the following relation
. alMl* . alM; alM]*
/ ‘I d¢9=/ A";—ee"" c =47l -]
0 anM; 0 anM* anM;

REMARK 3.1. To conclude this section, we remark that in the case of symmetric
dispersal, i.e., DU =0 iff (Sij =0 and Dij =0 iff Dji =0 for i # j, the assump-
tion (H7) can be dropped, since if D or A is reducible, then the subsystem for the
mature population in Eq. (2.5) decouples into two or more smaller irreducible subsys-
tems, and consequently our results in this section can be applied to these irreducible
subsystems.
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4. Convergence in the case of nonsymmetric dispersion: a two-patch environment.
We have considered a single-species population with two life stages which disperses
in a multi-patch environment. In the case of symmetric dispersion between different
patches, we showed that the subsystem for the mature population can be decoupled
into smaller subsystems which are described by cooperative and irreducible retarded
functional differential equations, with the time delay representing the time from
birth to maturity. By using the monotone dynamical systems theory due to Hirsch
and Smith, we proved that there exists one and only one positive equilibrium point
which is globally asymptotically stable.

However, the nonsymmetric case is much more complicated even for the model
describing a single-species population dispersing in a two-patch environment with

521 =D, =0.
—y 0
1= (50 )
d, —7—9p

In this case,
and
ol = e ! 0
e_(/2+6|2)t fot e_(/2+6'2)(t_s)5|2€—/'s ds .

Therefore,

.
(b,) = e 0
ij/ = e—(y2+6,2)1 fOT €_(y2+6'2)(t_s)612€—y'5 ds )

In particular, b, = 0. Hence the model equation (2.5) becomes

di},(t) = = 1(t) + oM (1) - e "o M (t-1),

% = —,0,(0) + 6,1 (1) =L (D] + ay M, (1) — by o, M| (t—T) — byya, My(t-7),
dﬁg'z(t) = —BM{W)+e o M (1= 1),

dAZZt(Z) = — B,ME(t) + D, [M,(t) — My(D)] + by M, (¢ = T) + byyay My(t = 7).

(4.1)

Because of the nonsymmetric dispersion among different patches, the vector field
for the subsystem of the mature population is no longer cooperative and irreducible
in the sense of Smith [36]. However, we can employ a similar argument to that of
Sec. 3 to prove that for any ¢, € C([-7, 0], [0, 0)), if ¢, # O, then the solution
M, (1) of the following initial value problem

%Ml(z) =a M (-1 " - ﬂle(z)

M(0)=9,(0), Oe[-1,0]

(4.2)

satisfies lim,___ M, (1) = (a,e” "")/B, .
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Applying this result to the fourth equation in system (4.1) we obtain an au-
tonomous system

d ae ht
—m,(t) = — B,m +D -D.m
7;M ) Bymy(t) + Dy, 2 12MM,(1)
ae N’
+ by, a, 1/}_ + by,a,m,(t — 1) (4.3)
1

as a limiting equation of
2
—Mz(t) = - BzMz (1) + Dlel(t) - D12M2(t)
+ by a, M\ (t = 1) + byya, My (1 — 7). (4.4)

It is easy to show that there exists one and only one positive value MZ* such that
=T -t
a e * a,e
*e
3 — D, M, + by 0 —— B,
Evidently, M, is an equilibrium of (4.3). By using a similar argument to that in
Sec. 3, we can prove that m,(t) — Mz* as t — oo if m,(6) >0 for 6 € [-7, 0]. To
prove that lim,_  M,(t) = M; for any solution of (4.4) with M, € C;’ , we need
the following global convergence theorem via limiting equations, as an extension of
a result in [3] to retarded equations.
We consider a nonautonomous retarded equation

x(0)=f(t, x,) (4.6)
where f : [0, o) x C([-7, 0], R") — R" is continuous. Suppose that U C
C([-7, 0], R") is a given closed set such that for any ¢ € U and ty > 0, the
solution of (4.6) with X, =9 exists uniquely for all ¢ > ¢, and x,f (ty, ) € U,

M+ DR + by, M =0, (4.5)

where xtf (ty» @) denotes the solution of (4.6) with x,ﬁ (ty, 9) = 9. Wesay f is
positively precompact with respect to U if, for any sequence ¢ ; — oo there exists
a subsequence L and a continuous functional g : [0, o) x U — R" such that
f(l/'k +t,9)— g(t, p) as k — oc uniformly for (¢, ¢) € [0, o0) x U. Let

H(f)={g:[0, x) x U — R": g is continuous

and there exists a sequence 7, — oo such that

f(t, +1,9)— g(t, p) uniformly for(z, ¢) € [0, 0c0) x U}.
We say that [ is regular if, for any g € H(f) and (t,, ¢) € [0, o0) x U, the initial
value problem x(¢) = g(¢, X,), X, =9 has a unique solution, denoted by xtg (ty> @),
defined for all 7>, and xf(1,, 9) € U forall t>1,.
THEOREM 4.1. Suppose that f is positively precompact and regular with respect to
U, and that

(i) there exists a vector K € R" such that the constant functional K : [-1, 0] —
R" defined by K(O) K for 6 € [-7, 0] belongs to U and x, ( ,0)— K
for (¢,, ¢) €[0,oc) x U and forevery g € H(f) as t — oc;
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(ii) K is eventually uniformly stable with respect to system (4.6) and U , namely,
for any & > O there exists d(¢) > 0 and 7T'(¢) > 0 such that for any (7,, ¢) €
[0, 00) x U, if there exists ¢ > 1, + T(e) such that Ix%(ty, 9) — K| < 6
then ||x/(t,, 9) — K| < e for t > 1*.

Then for any (z,, ¢) € [0, oo) x U such that {x,f(to, @) :t > t,} has compact
closure, it follows that lim,_, xtf (ty, 0) = K.

Proof. By way of contradiction, if the conclusion is not true, then there exist
(ty> ) €10, 00) x U, € > 0 and an increasing and unbounded sequence f, — oo as

k — oo such that ||x,{(lo, 9)—K|| > ¢ for k > 1. By assumption (ii), ||x,f(lo, 0) —
K| > d(e) forall t>t,+T(e). Let v (1) =xf(tk+z; ty,9), k=1,2,.... Then
y*(£) solves the following initial value problem

{y"‘(t)=f(tk+t,y,"),
Lty 9).

k
Yo —xtk

Because of the relative compactness of {xtf (ty> #); t > 1y} and the precompactness

of f with respect to U, without loss of generality, we may assume that xt{ (ty, 0) —
w eUand f(t, +1,&) — g(t,¢) as k — oo for (¢,&) € [0, 00) x U, where
g:[0, 00) x U = R" is continuous. Therefore, by the regularity of f and the well-
known continuous dependence of a solution on its initial data and the right-hand side
functional of the equation, we obtain that lim,_, yk(t) = x%(¢; 0, ) uniformly

on any compact set in [0, oo). Let k be sufficiently large such that 7, > T'(e).
Then [ly¥ — K| = ||Ix/,,(z,, #) = K|l > &(e) for ¢ > 0 from which it follows that

lk+!

I1x8(0, w) — K|l > 8(¢) for t € [0, oc), contradicting the assumption (i).

Therefore lim,_, xtf (ty, 9) = K . This completes the proof.

We now apply Theorem 4.1 to system (4.4) and obtain
THEOREM 4.2. For any solution of (4.4) with M,(6) > 0 for 6 € [-7, 0], we have
lim,_  M,(t) =M, .

Proof. For any solution M, (t) of system (4.2),let f:[0, o0)xC([-7, 0], R) = R
be defined by

ft, W) = =By’ (0) + byya,w(=7) = Dpyw(0) + Dy M, (8) + by, M, (¢ = 7)

for (¢, w) € [0, o) x C([-7, 0], R). It is easy to prove, in a similar way to the
proof of Theorem 3.1, that for any ¢ € C1+ and ¢, > 0, the solution of (4.4)
with M,, = ¢ (denoted by sz(to, ¢)) and the solution of (4.3) with m,; = ¢
(denoted by M5 (t,, p)) satisfy that sz,(to, 0), M3(t,, ¢) € C] for t >1,, where
g:C([-7,0], R) — R is defined by

ey‘ral

g(‘//) = _ﬂzwz(o) + bzzazu/("‘[) - D]gV’(O) + (Dlz + b2lal)—ﬂ_
1

for w € C([-71,0], R).
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Evidently, f is positively precompact and regular with respect to C1+ ,and H(f) =
{g} . Using a similar argument to that in Sec. 3, we can prove that for any (¢, ¢) €

[0, 00) x C}, li ,_,ooMg(tO, 0)=M,.

We now prove that M2 is eventually uniformly stable with respect to system
(4.4) and C;r . Since M\; is globally uniformly asymptotically stable with respect
to system (4.3), by the well-known inverse theorem of Liapunov direct method (see,
e.g., [43]), there exist a constant J, > 0 and a continuous functional V(¢) defined
for ¢ € C;" with |9 — M;|| < J,, a constant L > 0 and increasing continuous
functions a, f, y: [0, oo) — [0, co) with a(0) = #(0) = y(0) = 0 such that

allle - My 1) < V(p) < Bllle - My ),
[V(p)=V(w) <Ll -y,

Ly 31y, 0)) < - 2(IME(Ly, 0) - E)

dt
forall ¢,y e C, with ||p - M,|| <, and |y — M, || < 8,. Therefore

4

dt
For any & > 0, there exists o(¢) > 0 and T(¢) > 0 such that S(d(¢)) < a(e) and
L(D,, + b21a1)|]M R //3 | < y(d(e)) for t > t, + T(e). If at an instant
> ty+7T(e), |{M2, (tO, ) M2 || < d(g), then we claim that ||M2f,(t0, (/))—}TJ\;H <e
for t > " . Otherwise, there exists ¢, > ¢, > " such that ||M2f,l(t0 , )= M| =d(e),
1M, (1, 9)~M;|| = & and d(e) < |[My(ty, §)— M| <& for t ¢, 1,]. Therefore
on [z, t,], we have

VIML(ty, ) < (1ML (t,, 0) = M1|) + L(Dy, + by, cx,)

-

d
- V(ML(t,, €) = —7(8()) + L(D,, + by, ;) HM” -

from which it follows that
a(e) = allM, (15, 9) = M3 1) < V(M (15, 9))
< V(M (15, 9)) < BUIMS, (15, 9) = M3 1l) < B(3(e))

which is contrary to f(d(¢)) < a(e).

Therefore by Theorem 4.1, lim, __ MJ(¢,, 9) = M} forall 1,>0 and ¢ € C;".
This proves the theorem.

Hence, we have shown the global asymptotic stability of the positive equilibrium
for mature populations. It is easy to establish the global convergence of immature
populations.

5. Convergence in the case of nonsymmetric dispersal: a general multi-patch en-
vironment. In this section, we briefly indicate how the approaches employed in the
previous sections can be effectively combined to study the global asymptotic sta-
bility of a positive equilibrium state in a more general nonsymmetric dispersion
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situation where the environment is assumed to consist of several groups (denoted
by G,,G,, ..., G,) of patches such that in each group the patches are connected
by dispersal and there further exists dispersal from patches in the group G, to the
patches in groups Gp , k < p < m, but there exists no dispersal from the patches in
groups Gp, k < p < m, to the patches in group G, , where k=1, ..., m.

To derive a model equation, we suppose that the group G, , 1 < k < m, consists
of patches P, ..., Pknk. The following notations will be used throughout this
section.

Vi)t the death rate of the immature population in the patch P, B

ot the birth rate into the immature population in the patch P, i

By Ix the death rate of the mature population in the patch P, I

I, it the immature population in the patch P >

M, IE the mature population in the patch P, s

Xy j(s, t — 7): the growth rate at the instant s,¢— 1 < s < ¢, of the immature
population in the patch P, i born at the instant ¢t — 7, where 1 < k < m and
1<j< n,;

O n the dispersal coefficient of immature population from the patch P,, to P, IE

D, n the dispersal coefficient of mature population from the patch P, to P D
where 1<k <m,1<j#h<n;

(5,‘(’;: the dispersal coefficient of the immature population from the patch Pq, to
the patch P i

DZ; : the dispersal coefficient of the mature population from the patch P, to the
patch ij,where 2<k<m,1<j<n,,1<q<k, 1<r<n,.

Then based on the same argument as in Sec. 2, we have the following model
equation

d

Elkj(t) = = Vil () + o My (1) — x, (8, 1 = )
+ 5l = L 01+ > S (0 = I (1],
" ¢

d
TM (1) = = B M () + (1 1= 1)

+ hZijh[Mkhm — M, (1)) + Zk D{'[M,(t) - My;(1)],
#£J : q<

1<r<n,

aykj(s, 1=1)=Xx,(s,t-1), X (=1, 1 -1)=0a M, (t-1),

0

ggykj(s, t—1)= - ykjykj(s, t—1) +h25kjh[ykh(s, t—1) ~ykj(s, t—1)]

#J
+ ) 05, L= 1) = yls, 1= )], (5.1)
g<k
1<r<n,

where t —7<s<t,1<k<m,1<j<n.
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To simplify the above model, we introduce the following notations:
L(1) = (L (D), .. s Dy ()T
M(0) = (M (1), ..., My, ()",
X (s, 1=1)=(x,(5,t—7),..., xknk(s, t— r))T,
V($, t=1)= (Y, (s, t=1),..., yknk(s, t— r))T,
M, (t) = (o, My, (1), ..., a,mkMknk(t))T,
M () = (B M (1), -, By Miy (),
A= (5kjh)lSj,hSnk with (Skjj =0,1<j<n,
D, = (ijh)ISJ,hsnk withD, . =0,1<j<n,,

kjj

. qr
h#j g<k

<r<
1<r<n, 1<j<n,

= diag Zijh"' Z DZ; ,

h#j q<k
1<r<n,

1<j<n,

qr
Ay = (k) 1<j<n, >
1<r<n,

qr
Dy, = (Dy;)1<i<n, »
lSran
where 1 < k < m. Then the model equation can be rewritten in the following vector

form
d

1) = “TL () + o My (1) = x (1, 0 = 1) + A L (0 + ZkAquq(z) ,
g<
d
M (1) = —B M (1) + X, (t, t = 1) + DM (1) — LM, (1) + 3 D, M, (1),
g<k
X (t=1,t=1)=a, M, (t—1), (5.2)
o
6sy"(s t—tn=x(s,1-1), t—-1<s<t,
d
5§yk(s’ t_T)_—'_rkyk(Sa )+Akyk +2Aquq -1).
q<k
Let
-T, +4, 0 0
4= A, -I,+4, - 0
Aml Am2 _rm +Am
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By the assumption that patches in the same group are connected by dispersion,
A, and D, are irreducible matrix for 1 < k < m. This implies that ~I', + 4, is
an irreducible matrix for 1 < k < m, and thus B, = e TAIT g g positive matrix
for 1<k<m.

Using the same approach as in Sec. 2, we obtain the following formula

xX,(t, t=1) B, 0 - 0 a, M, (t - 1)
. By By 0 . (5.3)
X, (t,t—1) B, B, - B, a, M, (t—-1)
where
B, o - 0
By, By, -+ - _ AT
Bml Bm2 Bmm

Because the off diagonal elements of 4 are nonnegative, each B,., 1 < j<i<m,
is nonnegative.
Substituting formula (5.3) into system (5.2), we get the following simplified model

equation

ij?

dI, (1)
;t = =L L () + oy M (1) + AT ( +ZAkq ,
g<k
- Zqu q Z—T)a
= (5.4)
M
d dkt(l) - _B Mz(t) +BkkakMk(t—‘t) ~ L, M, (1) + D, M,(t)

+ Zqu . 1)+ Y D M, (1),

q<k g<k

where 1 <k <m.
The first equation for the mature population turns out to be
dM, (1)
dt
Since B|, is a positive matrix and D, is irreducible, we can use the approach in
Sec. 3 to prove that there exists a unique positive vector MI* in R™ such that

= —B,M(t)— L,M,(1) + B, a,M,(t — 1) + D,M,(1). (5.5)

lim,_ M (1) =M] if M (6) >0 for § €[-7,0] and M, #0 on [-7,0].
Therefore, the system
dm,(t 2
a’zt( ) _ B,m5 (1) + By,a,my(t — T) — Lymy(t) + Dymy(t) (5.6)
21a]M + D, M

is a limiting equation of the second equation for the mature population

dM.,(t 2

—azt—l = — B, M, (1) + Byyo, M, (1) — LyM, (1) + D, M, (1) (5.7)

+ By M, (1 — T) + D, M, (1).
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Using the same argument used in Sec. 3, we can prove that there exists a positive
vector M, in R" such that lim,_, __ m,(t) = M, if my(8) > 0 for 6 € [-7, 0].
Therefore, employing the argument of Sec. 4, we can prove that lim,_ M, (f) = Mz*
provided M,(6) >0 for 6 € [-1, 0].

Repeating the above argument for a finite number of steps (m), we obtain that
there exists a positive vector (M|, ..., M )€ R"""" such that

lim (M, (1), ..., M,,(1) = (M], ..., M)

if M(6)>0 for 6€[-y,0] and i=1,...,m and M, #0 on [-7, 0].

Finally, using the same argument as for Theorem 3.3, we obtain the following
global convergence theorem.

THEOREM 5.1. There exists a positive vector (M|, ..., M, )€ R"""™ such that
if
(i) M (0)>0 for 6 €[~-7,0] and k=1,...,m, M, #0 on [-7, 0],
1,(0) o, M,(0)
Q) | ¢ |zl : do,
I,(0) a, M _(6)
then
Hm (M(1), ..., M (1) = (M[, ..., M),
o M
lim(1,(0), ..., L) =47 " =D |
a, M,

REMARK 5.1. The above model can be thought of as describing stage structured
population dispersal in a patchy environment where each patch is subdivided into

subpatches.

REMARK 5.2. It would be interesting to consider the competition of the mature
and immature individuals for resources. We wish to investigate such a competition
in a further paper.

REFERENCES

[1] W. G. Atello and H. 1. Freedman, A4 time-delay model of single-species growth with stage structure,
Math. Biosci. 101, 139-153 (1990)

[2] F. S. Anderson, Competition in populations of one age group, Biometrica 16, 19-27 (1960)

[3] Z. Artstein, Uniform asymptotic stability via the limiting equations, J. Differential Equations 27,
172-189 (1978)

[4] H. J. Barclay and P. Van den Driessche, A model for a species with two life history stages and
added mortality, Ecol. Model 11, 157-166 (1980)

[5] E. Beretta, F. Solimano, and Y. Takeuchi, Global stability and periodic orbits for two-patch predator-
prey diffusion-delay models, Math. Biosci. 85, 153-183 (1987)

[6] E. Beretta and Y. Takeuchi, Global stability of single-species diffusion models with continuous time
delays, Bull. Math. Biol. 49, 431-448 (1987)

[7] G. J. Butler, H. I. Freedman, and P. Waltman, Uniformly persistent systems, Proc. Amer. Math.
Soc. 96, 425-430 (1986)



370

H. I. FREEDMAN anp J. H. WU

[8] G. J. Butler and P. Waltman, Persistence in dynamical systems, J. Differential Equations 63, 255-
263 (1986)
[9] H. L. Freedman, Single species migration in two habitats: persistence and extinction, Math. Model

8, 778-780 (1987)

[10] H. I. Freedman, Persistence and extinction in models of two-habitat migration, Math. Comput.
Modelling 12 105-112 (1989)

[11] H. I. Freedman, B. Rai, and P. Waltman, Mathematical models of population interactions with
dispersal 11: differential survival in a change of habitat, J. Math. Anal. Appl. 115, 140-154 (1986)

[12] H. 1. Freedman, J. B. Shukla, and Y. Takeuchi, Population diffusion in a two-patch environment,
Math. Biosci. 95, 111-123 (1989)

[13] H. 1. Freedman and Y. Takeuchi, Global stability and predator dynamics in a model of prey
dispersal in a patchy environment, Nonlinear Anal. 13, 993-1002 (1989)

[14] H. 1. Freedman and Y. Takeuchi, Predator survival versus extinction as a function of dispersal in
a predator-prey model with patchy environment, Appl. Anal. 31, 247-266 (1989)

[15] H. I. Freedman and P. Waltman, Mathematical models of population interaction with dispersal 1.
Stability of two habitats with and without a predator, SIAM J. Appl. Math. 32, 631-648 (1977)

[16] H. 1. Freedman and J. H. Wu, Steady state analysis in a model for population diffusion in a
multi-patch environment, preprint

[17] W. S. C. Gurney and R. M. Nisbet, Fluctuating periodicity, generation separation, and the expres-
sion of larval competition, Theor. Pop. Biol. 28, 150-180 (1985)

[18] W. S. C. Gurney, R. M. Nisbet, and J. H. Lawton, The systematic formulation of tractable single
species population models incorporating age structure, J. Animal Ecol. 52, 479-495 (1983)

[19] J. R. Haddock, T. Krisztin, and J. H. Wu, Asymptotic equivalence of neutral equations and retarded
equations with infinite delay, Nonlinear Anal. 14, 369-377 (1990)

[20] J. R. Haddock and J. Terjeki, Liapunov-Razumikhin functions and invariance principle for func-
tional differential equations, J. Differential Equations 48, 95-122 (1983)

[21] J. K. Hale, Theory of functional Differential Equations, Springer-Verlag, New York, 1979

[22] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs,
Vol. 25, Amer. Math. Soc., Providence, 1988

[23] H. Hastings, Dynamics of a single species in a spatially varying environment: the stabilizing role
of high dispersal rates, J. Math. Biol. 16, 49-55 (1982)

[24] M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc.
11, 1-64 (1984)

[25] R. D. Holt, Population dynamics in two patch environment: some anomalous consequences of
optional habitat selection, Theor. Pop. Biol. 28, 181-208 (1985)

[26] Yu. S. Koslesov, Properties of solutions of a class of equations with lag which describe the dynamics
of change in the population of a species with the age structure taken into account, Math. USSR Sb.
45, 91-100 (1983)

[27] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 2, Academic Press,
New York, 1969

[28] H. D. Landahl and B. D. Hanson, A4 three stage population model with cannibalism, Bull. Math.
Biol. 37, 11-17 (1975)

[29] S. A. Levin, Dispersion and population interactions, Am. Nat. 108, 207-228 (1974)

[30] R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: monotonicity invari-
ance, comparison and convergence, preprint

[31] S. W. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition, Theor. Pop.
Biol. 21, 92-113 (1982)

[32] G. R. Sell, Nonautonomous differential equations and topological dynamics, 1. The basic theory,
Trans. Amer. Math. Soc. 127, 241-262 (1967)

[33] G. R. Sell, Nonautonomous differential equations and topological dynamics, 1. Limiting equations,
Trans. Amer. Math. Soc. 127, 263-283 (1967)

[34] N. Shigesada and J. Roughgarden, The role of rapid dispersal in the population dynamics of com-
petition, Theor. Pop. Biol. 21, 353-372 (1982)

[35] J. G. Skellam, Random dispersal in theoretical populations, Biometrika 38, 196-218 (1951)

[36] H. L. Smith, Monotone semiflows generated by functional differential equations, J. Differential
Equations 66, 420-442 (1987)

[37] Y. Takeuchi, Global stability in generalized Lotka-Volterra diffusion systems, J. Math. Anal. Appl.
116, 209-221 (1986)



PERSISTENCE AND GLOBAL ASYMPTOTIC STABILITY 371

[38] Y. Takeuchi, Diffusion effect on stability of Lotka-Volterra models, Bull. Math. Biol. 48, 585-601
(1986)

[39] R. R. Vance, The effect of dispersal on population stability in one-species, discrete-space population
growth models, Am. Nat. 123, 230-254 (1984)

[40] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York,
1985

[41] S. N. Wood, S. P. Blythe, S. C. Gurney, and R. M. Nisbet, Instability in mortality estimation
schemes related to stage-structure population models, IMA J. Math. Appl. Med. Biol. 6, 47-68
(1989)

[42] T. Yoshizawa, Stability Theory by Liapunov’s Second Method, Publications of the Mathematical
Society of Japan, No. 9, The Mathematical Society of Japan, Tokyo, 1966



