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Abstract. An interface crack in anisotropic dissimilar materials is considered for
the general case where all three fracture modes may be coupled. Analytic solutions
are obtained for two commonly used models of interface cracks: (1) the fully open
crack; and (2) the Comninou model where, even under farfieid tension normal to the
crack face, the existence of very small contact zones near the crack tips is permitted.
Conditions under which nonoscillatory singular solutions may exist, are discussed.

1. Introduction. In a recent paper, Ni and Nemat-Nasser [4] presented analytic
solutions for interface cracks in anisotropic half-spaces consisting of dissimilar ma-
terials, assuming a special arrangement of the anisotropy axes of the two materials,
so that only Modes I and II are activated under in-plane farfieid tractions: a plane
problem with zero antiplane displacement component. Two models were considered:
one with a fully-open crack, the other allowing contact zones near the crack tips, i.e.,
the Comninou model (Comninou [1]). Relations between the solutions were dis-
cussed, and the results were compared with those for the isotropic case (Gautesen
and Dundurs [2, 3]), as well as the anisotropic case (Qu and Bassani [5]).

In the present paper we consider the general case of two anisotropic half-spaces
joining on the plane x2 = 0, and containing an interface crack on the (Xj, x3)-
plane, with crack edges being parallel to the x3-axis. No special arrangement of the
anisotropy axes is assumed. Thus, all three fracture modes are present and coupled.
It is shown that the basic singular integral equations governing the general solution
involve a total of nine dimensionless parameters, denoted by a, to a9. The nature
of the singularity at the crack tips is discussed in relation to these parameters, and
conditions under which nonoscillatory singular solutions can exist are examined.

Again, two commonly used models of interface cracks are considered: a fully-open
crack model and the Comninou model, where the existence of contact zones near the
crack tips is permitted. For the fully-open crack model, the complete analytic solution
for this general case is obtained. In general, oscillatory square-root singularities are
involved in the solutions at the crack tips. A necessary and sufficient condition under
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which nonoscillatory solutions exist for any combination of the farfield tractions is
that three of the nine parameters, i.e., a4 , a6 , a8 , are zero, which is equivalent to
the vanishing of the antisymmetric matrix W (Ting [7], and Qu and Bassani [5]).
Its physical meaning is also discussed. For the Comninou model, it is interesting to
note that, unlike the case discussed in our previous paper [4], for the general case
the oscillatory singularities at the crack tips cannot be removed by the introduction
of contact zones without additional special assumptions. The necessary and sufficient
condition under which nonoscillatory singularities exist for any combination of the
farfield tractions is that the dimensionless parameter a6 be zero. The closed-form
solution for this nonoscillatory generalized Comninou model is given.

2. Formulation. The formulation of the basic problem follows Willis [10], and Ni
and Nemat-Nasser [4], A composite of two anisotropic elastic half-spaces joining
along the x2 — 0 plane is considered. The elasticity tensors are c*kl and c~kl, for
x2 > 0 and x, < 0, respectively. All field variables are functions of x{ and x2 only,
with the x(-axis on the interface. Equilibrium requires

°jfi,/? = Cj/ikaUk,aP ~ 0 X2^0, (2.1)
with j, k = 1, 2, 3 , and a, /? = 1 , 2 ; a comma followed by an index denotes partial
differentiation with respect to the corresponding coordinate variable; and repeated
indices are summed. Here, u and a denote the displacement and stress fields,
respectively. The boundary conditions are

aj2 = C]2kliUk,^X\ ' 0+) = Cj2kfiuk,fi(x 1 ' °~) = ' (2-2a)
with the crack opening given by

u(x,, 0+) - u(x,, 0") EE b(x,) = - f B(£) d£, (2.2b)
J — oo

where B(x,) is the dislocation density vector. In addition, we require that

u(X[, x2) -> 0 as |x2| —► oo. (2.2c)

From [4], the displacement and stress fields for the above-stated problem are given
by

u(x,, x2) = { Im[M0L 1 ]± * r t({) d^ - f°° t(f) d£
^ J— oo J X,

(2.3a)

Ti(*i' x2) = ^^(I - r){Im[NM0L-,]± * t(Xj)}, (2.3b)

x2(xl, x2) = -sgn^2\i _ r){Im[M0L ']± * t(x,)}, (2.3c)

T3(x,, X2) = -5^2 Im[(ur + VTN)M0L"1]± * t(x,), (2.3d)

where * denotes the convolution integral. The quantities in these equations are
defined as follows: r. with components (rf)■, i,j = 1,2,3, defines the stress
field, and N is a real 6 by 6 matrix given by

N = - t'rT T"1
rt 'rt-q rt_1 (2.4a)
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where
Q = [C,l*l]> R = [<W' T=[C;2fc2]; (2.4b)

the eigenvalues of the real matrix N are all complex. We denote the first three
eigenvalues with positive imaginary parts by pa (a — 1,2,3), and the corresponding
eigenvectors by

a.b] , b= 1,2,3, (2.4c)
L lb J

where afc, \b are three-dimensional vectors. The matrices U and V are defined by

U = [cakl], V=[cm2], (2.4d)
and r is a projection operator, which selects the first three components of its argu-
ment. The 6 by 3 matrix M0 is defined by

M0 = E
a= 1

I x2(N-pal) +x22(N-pal)2 K (2.4e)
X1 +Pax2 (x,+/?flx2)2 (x,+/?ax2)3

Finally, the quantities Ab, Lb, and L in (2.3) and (2.4e) are defined by

A-b — , a2<52i , a3^3i], (2.4f)

h = Mb.h W3*]> (2-4g)
L = [Ii,I2,I3], (2.4h)

The displacement and stress fields may also be expressed in terms of the dislocation
density vector B(Xj) by

1u(x,, X,) = —r
1 z n

Re(M0L_1A)± * [ ' B(£)rf£
J —oo

(2.5a)

T,(x1,jc2) = ~(I-r)[Re(NM0L 1A)±*B(x,)], (2.5b)

t2(Xi , x2) = i(I - r)[Re(M0L_1A)± * B(x,)], (2.5c)

T3(x,, x2) = ~ Re[(Ur + \TN)M0L"1A]± * B(x,), (2.5d)

where the positive-definite matrix A is defined by

A = -Z[A+L~' - A_L~']~', (2.6a)
with

A = [a,, a2, a3], (2.6b)

and A_ = A, A+ = A.
The relation between the dislocation density B(Xj) and the interface tractions

t(Xj) is (Willis [10])
1

t(x,) = — Re x, - 0i
*.B(x,). (2.7)

n
This relation is basic to our discussion. We combine (2.7) with proper boundary
conditions over the crack surfaces, to obtain the dislocation density B(x,), from
which the displacement and stress fields are obtained.
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3. Interface crack models. In [4] special cases are considered where the in-plane
and anti-plane deformations are decoupled. In the present work, we consider the
general case where all three fracture modes are coupled. The dislocation density
B(Xj) = (5j(X[), B2(xj) , 53(x,))t then has three nontrivial components.

Here, again, we examine two interface crack models: (i) the fully-open model and
(ii) the Comninou model.

3.1. The fully-open crack model. Let an interface crack on the (Xj, x3)-plane ex-
tend from Xj = -a to x, = b , with crack edges being parallel to the x3-axis. Normal
tractions T(xx), in-plane shear tractions 5(x,), and anti-plane shear tractions J(x,)
are applied far from the interface crack in the x2-, x,-, and x3-direction, respectively.

Since all field variables are functions of x, and x2 only, in the sequel we consider
the (X[, x2)-plane at x2 = 0. When the crack is fully open, the total tractions on
the crack surface [-a, b] are zero. From these boundary conditions and relations
(2.7), it follows that

^ * B(Xj) + t(x,) = 0, for - a < x, < b, (3.1)-Re
71 X[ - 0i

where r(xt) = (S(x,), r(x,), /(x,))T.
The remaining boundary conditions follow from the fact that outside the crack

zone, the gap, the tangential shift along the x(-axis, and the anti-plane shift along
the x3-axis are all zero. We therefore have

i:
B(£)d£, = 0, and B(x,) = 0 for x, < -a, x. > b. (3.2a, b)

Employing a method similar to that used in [4], subject to conditions (3.2a,b),
the system of singular integral equations (3.1) is solved analytically for the three
components of the dislocation density vector B(x(), as discussed in Sec. 4.

For the fully-open crack model, the solutions for B(x,) and t(x,) are, in general,
oscillatorily singular, as x{ —> -a or b.

3.2. The Comninou model. Let the interface crack on the x,-axis extend from
-L to L (L > 0), and uniform tractions t = (S, T, J) be applied far from the
interface crack. Assume that the crack is open and traction-free over the interval
(-a, b). Over the contact zones (-L, -a) and (b , L), the crack is closed. Let the
contact be frictionless. Then, the tangential tractions in the x,- and x3-directions
vanish over the interval (-L, L). Therefore, we have the following equation for
B(x.):

1 0 0
0 //[(xt + a)(b - x,)] 0
0 0 1 uRe x, - 0; * B(x.) + r > = 0, (3.3)

for |x, | < L, where
fi^x,) = #3(x,) = 0, for|x,|>L, (3.4a, b)
fi2(x,) = 0, for x, < -a or x, > b, (3.4c)

[L B{ ((J) = [L Btf) d£ = 0, fb B2{Z) d£ = 0. (3.4d-f)
J —L J-L J-a
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4. Complete solution for the fully-open crack model. We now solve the system of
singular integral equations (3.1), under conditions (3.2a,b). Set

A = [au], i,j = 1,2,3, (4.1)
and, since A is positive-definite, introduce the additional simplifying notation:

a. = a.j > 0, a2 = a22 >0, a9 = a33 > 0, (4.2a-c)

a 12 = a21 = c*3 + m4, a13 = a31 = c*5 + /a6, a23 = a32 — a7 + iag-
(4.2d-f)

Then, setting

A! -- Re A =

we have

Q1 q3 a5
a3 a2 a7 A2 = — Im A :

0 -a4 -a6
a4 0 — ag
a6 ag 0

(4.3a, b)

A = Aj-/A2, (4.3c)
where Al ± i\2 and A, are positive-definite matrices. A can also be expressed as

A = (D + /W)"', (4.3d)

where D and W are real matrices introduced by Ting [7],
Using (3.2a,b) and (4.3), we write Eq. (3.1) as

<■» B({)-a, r
n 1 y_

d£ + A2B(x.) + t(x.) = 0. (4.4)
ax i - < * z * 1

Since A, is positive-definite, we can apply -/A^1 to both sides of (4.4) to obtain

- ^ ^?^ + (-/A71A2)B(x1)-/A"1t(x1) = 0, (4.5)
m J —a C

for -a < x, < b .
One way to solve (4.5) is to diagonalize the coefficient matrix -z'A~lA2 and de-

couple the system of integral equations to three independent integral equations.
Since A, is real and symmetric, and A2 is real and anti-symmetric, the charac-

teristic polynomial of -/A"1 A, can be written as

| - /A~'a2 - nl\ = —|A~' I IMi + 'A2|
= -|A-1|[^3|A1| + /z(|A|-|A1|)]. (4.6a)

Therefore, the three eigenvalues of -z'A~'a2 are /i, = A, [i2 = -A, and ^3 = 0,
with

A = (1 - |A|/|Aj|)1/2. (4.6b)

It can be shown that all the eigenvalues of -z'A^1 A2 are greater than -1. Therefore,
A is real and |A(| > |A|. Since A, is real and positive-definite, it follows that
|Aj| = |A| if and only if A2 = 0. In other words, //, = n2 = /i3 = 0 if and only if
| A21 = 0, i.e., when a4 — a6 = a8 = 0. As is seen later, the vanishing of these three
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dimensionless parameters guarantees the existence of a nonoscillatory square-root
singular stress field at the crack tip for the fully-open model.

Before solving Eq. (4.5), we shall briefly discuss the relations between matrices
A, , A2 and W, D. Because X < 1 , the inverse (I± zA^'A2)_1 exists. Then from
(4.3d) and

(I + i\. 'a2)(I - /A, V) = I + (A. 'a,)2 , (4.7)

it follows that

D + iW = (A. - /A,) ' = (I - /A. 'A,) 'A, 1~ 2' '*-1

.-1A2)tI + (A71A2)2r,A;

Therefore,

= (I + /a:'A2)[I + (A7V)2r V. (4.8)

D = [I + (A, ' A2)2] 'A,', W = A, 1 A2[I + (A, 1A2)2] 'A,1, (4.9a, b)

and
A7'a2 = WD"', A, = (D + WD^'W)"' ; (4.9c, d)

see also Wu [11]. Equation (4.5) may also be expressed as

rb
— f i^ + (-;WD ')B(x.) - z(D + WD 'w)t(jc.) = 0,
in J-a -Q

for -a < x. < b. Furthermore, X, as defined in (4.6b), coincides with

2

which is given by Ting [7], We can express X as

A

For monoclinic materials,

K^2 + »6^3 + »g^3l 11/2

lal-^ll + Q3^12 + Q5^13 ~ Q8 ^23!

I a4 W\ 2 I
\ot\Dx 1 + a^D 12 = a4 j \f<

(4.10a)

M-itrfWD"')2]"2, (4.10b)

(4.10c)

X = \ -.—„ , n 1 = a, / Ja.a7 - av (4.10d)

Now, unless A2 = 0 , there are three distinct eigenvalues for -/A, 1A2. Therefore,
-^"^2 can be diagonalized by a nonsingular matrix

E = [v, , v2, v3], (4.11a)

where v. are the eigenvectors of -/A^'Aj corresponding to the eigenvalues Xj (j—
1,2,3), such that "A 0 0

E~'(-'A71A2)E = 0-/10
0 0 0

(4.11b)
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where A = A, = -A2. The vectors v., j — 1, 2, 3, in E are given by

r A2(a5a7 — a^a9) — i/l(a6a7 — a5ag — a4a9) +
■2, 2, 2
A (aj«9 - a5) - a6

A2(a3a5 — a(a7) + /A(a:3a6 — 0:40:5 — a^Og) + a4a6

vi =

= A|A|
AD12 - /Wj2

W22
AZ>32 + i ̂ 23

+ a(l — A2)v, , (4.1 lc)

V, = V, , V3

ag
-Q6

Q 4 -I

-|A|Z>
W23

_ u/^13
M/KK12 J

(4.lid, e)

Applying E 1 to both sides of (4.5), we obtain

1 r
in J-a x. -£

A 0 0
0 -A 0
0 0 0

M(x,) = z'E 1A1'r(x1), (4.12a)

where
M(x,) = E 'b(jc,). (4.12b)

Assuming t(x,) is Holder continuous, M(Xj) is obtained from (4.12a). Combin-
ing the solution for M(Xj) with (4.12b), we obtain the solution for B(x,) ,

B(x1) = -5^-EI0E-1A7it(J:1)
A — 1

1
+

(A2 - \)iiyj(a + x,)(b - xj

6 y/ia + ZXb-Z)r y/(a + Z)(b 0EO(Xi^)E 1 A~'t(^) d£
J-a S x\

for - a < x, < b, (4.13a)

with

lo
1 0 0
0-10
0 0 0

0(x,,Z)

where

and

r d0 0 0
0 d0 0

L0 0 (1-A2)J

(4.13d)

(4.13b)

(4.13c)

Vl&-Xii; \\a + £\

'» = s;ln (Bi)' (4.13e)
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Similarly, the interfacial traction vector is given as

-sgn(Xj)
t(*i) =

71 v 1 - l?yj{xx - b){xx + a)

fJ —a

b y/(Z + a)(b-$) . _
X,

A,EO,(x,, {)E A, t({) d£ + t(x,)

for x. < -a or x. > b, (4.14a)

with

O, (*,,£) =
dQ 0 0
0 d0 0
o o vi-J

(4.14b)

From (4.13) and (4.14), it is seen that B(x,) and t(x,) have oscillatory singular-
ities, as x, —» -a, b. The necessary and sufficient condition for the vanishing of
these oscillatory singularities for any combination of the farfield tractions in the open
crack model, is A = 0, i.e., |Aj | = |A|, which is equivalent to a4 = a6 = ag = 0 or
A2 = 0 . The fact that the condition is necessary can be seen by observing the special
case of the uniform in-plane farfield tractions, where the existence of nonoscillatory
solutions requires A = 0, except for the trivial case: all farfield tractions are zero.
From (4.3d), A2 = 0 is equivalent to W = 0, which is the condition for the existence
of nonoscillatory solutions given by Ting [7], and Qu and Bassani [5].

From (4.14a), it is concluded that E~lAj~1t(x1), a linear combination of the trac-
tion vector t(x,), always has a nonoscillatory third component at the crack tip. That
linear combination corresponds to a linear transformation by E A, of the local bases
at the crack tip. Then in the transformed local coordinates, the traction along the
third coordinate direction has no oscillatory singularity. However, unless is diag-
onal, the transformed bases AjVj , Av2, A,v3 do not necessarily form an orthogonal
system.

In the special case of uniform applied farfield stresses, the solutions simplify to

d{xx)

B(x.) =
yj{a + xx)(b - xx)

yr^T2 0 0

Vl -k 2

and

\   sgn(x^) 
( |j ^(a + x^x.-b) 1

0 Xj +

d{xx) _0 0
0 d(xx) 0
0 0 x. + —

E 'Aj't, (4.15a)

with

d(x,) = a
X, + —r (a + b)iy0

a + X[

E 'A. 't, (4.15b)

b - xx
'Vn

(4.15c)
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4.1. An example. Consider a special case for which A satisfies a5 = a6 = a1 =
ag = 0, such as a monoclinic material with the (x3 = 0)-plane as the symmetry
plane. Let the farfield tractions r = (S, T, J) be uniform. We then have

A,
al a3 0
a3 c*2 0
0 0 a9

a2
0 —a4 0

a4 0 0
0 0 0

(4.16a, b)

and

^ = a4 / \la\a2 ~ a3> (4.16C)

E =

4 / V 12 3 :

-a3 + /ag —a3 — z'a0 0
Q[ Q[ 0
0 0 a.

(4.16d)

with aQ = yj'a{a2 — a3 .
The dislocation density vector and the interfacial traction vector now become

D, > T/^a^-al-a]
y/(a + x{)(b - xj

( a -b\ (a, cost \ , ,/a3sin t
r h+—)(^+sm'j-r«<"+'')(^-cos'

S/~~ ' " 2

i ; - - - '4
yj(a + x,(Z> -Xj)

Ttyjaiai-a\-a\
2^1 ' — y/(a + xx)(b-xx)

( a — b\ a-, cos t , , , a, sin/

/ a - b\ a. cost , a, sin/
(x'+—

(4.17a)

2 2Q:2 — CK3 — Ot 4

^/(a +Xj)(i -x,)

x, + a-—^ ( Q3 - sin /J + y0(a + £)(cos t +

J ( a - b
9

a — b\ /a, cos t . \ , ,w a, sin A
  I I  J cm / I _L_ 11/ > _1_ An \ / pac i _l_  J. (4.17b)

^3(-*i) = — l*i + —Y~ ) ' (4.17c)

for -a < xx <b\ and

M*i) sgn(xt) f,
,)(•*! ~b) V\/{a + x,)(x
+ (&*3 - 7a,)

<,(*,)- sgl"X|)

v/(a + x1)(x1 -6)
(Sa2 — Toiy)

Q0

x, + ~2~^j cost + + b) sin1

x, + ~y—l sin? _ 7o(a + b)cost

x, + -~2~^j cos 1 + s^n 1

^x, + —2~^ sin^ - 7o(a + b)cost

}'
(4.18a)

(4.18b)
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1*1 + S~T~\J
l*^}- y/ia + xx)(xx-byh^x\) = /, ' (4-18c)

for xx< -a or xx > b, where

' = Vnjf^?{. = (4-l8d'e)
Equations (4.17a, b) and (4.18a, b) are the same as Eqs. (6.5a) and (6.8) in [4],

Furthermore, when S = T = 0, and J / 0, (4.18c) gives the solution of the interface
tractions for pure anti-plane deformation.

4.2. Comments on dimensionless parameters aA, a6, and a8. We now comment
on the dimensionless parameters a4, a6, and ag. In what follows, we let the half-
spaces be monoclinic. From Sec. 5 of [4], for two dissimilar monoclinic materials,
both with the (x3 = 0 )-p!ane as their common plane of symmetry (in which case, sj4
and si5, i = 1,2,6, vanish for both materials), we have

-iAL 1
ru irn 0

-irn r22 0
0 0 '3U

and

where

A =
bx/e id/e 0

-id/e b2/e 0
0 0 /

(4.19a)

(4.19b)

b\ = r22+ + r22- ' ^2 = '*11+ + ri 1-' (4.19C, d)

d = rl2+ - rn_ , e = bxb2-d2, (4.19e, f)

f=[r33+ + r33_]~\ (4.19g)

As discussed in Sec. 5 of [4], under rotations S2± from the -coordinates into
the (rectangular Cartesian) x*-coordinates, we have

A = -z[ft^A*Lr'n, -n[AlLr'"_]_I, (4.20a)
where

cos0± sin0± 0"
(4.20b)n± =

cos 6± sin 9± 0
- sin 9± cos 9± 0

0 0 1
Provided that -iA* L* 1 have the form of (4.19a), we obtain the following ex-rb =fc

pression for A
bx/e id/e 0

-id/e b2/e 0
0 0 / J

(4.21a)

where

h = [/■*, sin" 6 + r*22 cos" 6 + Im(rj"2) sin 20]+

+ [r*, sin" 9 + r*2 cos2 9 + Im(r*2) sin 29]_ , (4.21b)
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b2 = cos2 6 + r*22 sin2 6 - Im(r*2) sin 26]+

+ [r*j cos2 8 + r*22 sin2 6 - Im(r*2) sin 26]_ , (4.21c)

d = [Re(r*2)+ - Re(r*2)_] + |{[(r*, - r22)sin20 - 2Im(r*2)cos20]+

+ [(rn - ^22) - 2Im(r*2)cos20]_}, (4.21d)

e = b{b2 - |^|2, (4.21e)

/= (r33+ + r33-) '• (4"21f)'33+ ^'33

Therefore, it can be seen that

q4 = Re(r*2)+ - Re(r*2)_ , (4.22a)

? = 0, (4.22b)6

which are invariant under the rotations i2± . In other words, if two monoclinic
materials are matched such that Re(r12 ) = Re(r|2_), then q4 = a6 — ag = 0,
provided that they have the common symmetry plane x} = 0.

The evaluation of r. • for monoclinic materials is given by Suo [6] and Ting [9],
which may also be obtained by the method described in Sec. 5 of [4], Specifically,
we have

Re(r*2) = S*2 - S*t Re(p,/?2), (4.23a)

where p{ and p2 are the roots of the equation

P4S*U - 2p's;6 + p2(2s;2 + S6*6) - 2ps*26 + s*22 = 0, (4.23b)

with lmpi > 0, i — 1,2, and Smn , m,w = 1,2,4,5,6, defined in terms of the
elastic compliance matrix [skj], k, j = 1 , 2, ... , 6 , by Smn = smn - sm}sn}/s33.
For plane problems, the matrix [Sm J is the inverse of the elastic stiffness matrix
[cm„]> w,n=l,2,4,5,6.

As a special case, let both materials be orthotropic. Then we can evaluate rij as
follows, providing that the symmetry directions of both materials coincide with the
coordinate directions,

1
rn = (c12 + cQ)

1/2

'22 (2c0 ~ c)
C66^C0 C12)

1/2
(4.24a)

22

C\ \ \ ' - . _ x-lr22= hr" ril' ri2 = (C12 + Co) ' (4.24b, c)

with
C0 = (cuc22)l/2, c = cQ - cl2 - 2c66 , (4.24d, e)

as given in Sec. 5 of [4],
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So, if two monoclinic materials are matched such that

[512 - 5, j Re(p,/J2)]+ = [512 - 5, , Re(p,p2)L > (4.25a)

or two orthotropic materials are matched such that

(co ^12^+ (co ^12^— ' (4.25b)

then a4 — a6 — as = 0, provided that they have the common symmetry plane
x3 = 0, or the symmetry directions of both materials coincide with the coordinates,
respectively. The validity of Eqs. (4.25a, b) is invariant under the rotation of each
material about the x3-axis. The above conclusions are direct consequences of the
discussion in Sec. 5 of [4] and are consistent with the results in Ting [8, 9],

5. The Comninou model. We follow Gautesen and Dundurs [3] to symmetrize the
interval of the integration in (3.3) as follows:

•X, = Lj—— , £, — Lj-—— , (5.1a, b)
1 1 - ys 1-3"/

'j\~ ~~j

where

£,(x,) = (l-y5)V(5), 7 = 1,2,3, (5.1c)

y = L{a~b) (5.Id)
L2 - ab + \J(L2 - a2){L2 - b

Equation (3.3) is now transformed to
"1 0 0

0 H(c2 — s2) 0
0 0 1

-Re
71 0 i **(s) + - -j =0, for |5| < 1. (5.2)

(1-75) I

Conditions (3.4a-f) then become

0,(j) = 03(5) = 0, for |5| > 1 , 02(5) = 0, for|5|>c, (5.3a-c)

J Q>l(s)ds = J <t>i(s)ds = 0, J <3>.,(s)ds = 0, (5.3d-f)

where
a\/L2 - b2 + b\/L2 - a2

c= 7 2 2 / 2 7 • (5"3g)
L[vL - b + v L — a ]

Equation (5.2) can be reduced to

1 0 0
0 H{c2 - s2) 0
0 0 1

di + A20>(5) + T—1 1=0,5 (1 - 75) J

for |5| < 1, (5.4)
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which, in component form becomes

1 «>,(£)
a,%(s)H(c2 - s2) + a6%(s) + ^ J ^ -1±51

+ ^3 f + fl p^ld^ = for |5| < 1, (5.5a)
n J_c Z-S 71 J_l Z-S (1 -ys)2

a„ r' (£)
- a4Oj(s) + ag03(5) 4- — j ^

s
d£

rc *2 r _J£ld£ = Z_; for \s\<c, (5.5b)
n J-c Z-s n J_i Z-s {l-ys)2

i -> a f <t> (c)
-a6^l(s)-a^2(s)H(c2-s2) + ^ J ^ d£

+ ^7 fc + fl p^ld£ = J—2, for |s| < 1. (5.5c)
n J-c Z-s 71 J-\ Z-s (1 -ys)2

As discussed in [4], we seek the solution 4>,(s) in the class of functions, which is
Holder continuous on [—c, c]. Then the Poincare-Bertrand commutation formula
applies. From (5.5a, c), we solve for <J>,(s) and 03(j) in terms of 02(s) and
/I Oz(^)/(^ - s)d£. Then, substituting these solutions into Eq. (5.5b), we obtain a
single equation for 02(s). After lengthy calculation, we arrive at

d>.(5)
a5a7 4- QgQg — a^a9

+

+

a4a9 + a5ag — a6a7

<D 2(s)

1 —m / i * \ m

n(a.a19
Re Lt^{TT7j (T^j dt

2a^a^a-j + — aga5 — a3a6a9

^aoo(Q:iQ!9 — a5 — q6)

x Im

+

r ®2«;) /i+<n'~"7i-£\m JeLt7{—*) {~s) di
a^S — a5/

j\Jala9-a 2 25 a6J
Re I-| dy

l + y\l~m (\-y\m 1

-—=Im It2 dy\Za,a9 - Qj -

1+5/ \ 1 — s / I-57

l—mfitiY- fl-y)m 1
\ 1 + 5 / \ 1 - 5 / 1-57

, (5.6a)
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O3(s) =
a4a6 a3Q:5 ~~

+

02(s)

1 —m / 1 z \ m

Re2 2
71(0^0^ — q5 — a6)

2a,a40!9 — c*4a5 — aja6a7 +

^aoo(a\a9 ~~ a5 ~ a6^

Lmm (&) «
x Im

+
ot^J — a^S

La00V^ia9 Q5 a6
Re -

\dy

+ ' " Im\Ty

where aQ0 = yja{aQ — a25, and

\ 1 + s / \ 1 ~ s J 1 - sy

 >v-m(i-y\m 1
\l+s) v 1 — 5 y l-sy (5.6b)

1 i ,
m = - + — In

2 2k

The single equation for 02(s) then is

Q00 + Q6
(5.6c)

1 - a2 Re

a^y

(l-Z
\l+s) \l-s

y

T J+ a. Im < —

1 - 75

dy

+ a4 Re | 4-[rfy

i-s Q
, , \ 1 — w / , \ m ,1 + 7 \ / 1 - y \ 1

/l + yy-"1 (l-y  
\ 1 + s J V 1 - s J l-sy

1+sy \ 1 - s / l-sy

, for |s| < c, (5.7a)

with
1 2 2 2 2

^2 = | ^00^4^5 _ ^3^5) (^00^4 — 0i\®L6OL7 ~+" J ' (5.7b)

7L0c 2
a3 = 7x~^^aia9 — ~ (q3q9 — a$oty)S — (QjCCy — a3a5)/], (5.7c)

l-^i I
— 7ia. a™

a4 = — [(QiQ8 + a4a5 - a3a6)J - (a4a9 + a5a8 - a6a7)S], (5.7d)
l

na
5 - ~a, = L

|A.
.la

| {[al(Q4Q:9 — a6a7^ a5(a3a6 ~ a4a5)]'^
11

- [a9(a3a6 - a,ag) + a5(a5a8 - a6a7)]S}. (5.7e)

From (5.6c), it is clear that if a6 = 0, then m = \ . Therefore, the solutions
cDy(s), j = 1,2,3, have no oscillatory singularities as s —> ±1 . Conversely, we
prove that if a6 ± 0, then for certain combinations of the farfield tractions S,
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T, and J, the functions Oj(s) or 03(j), or both have oscillatory singularities.
Therefore, a6 = 0 is the necessary and sufficient condition under which oscillatory
singularities do not exist for any combinations of the farfield tractions.

Assume S = J = 0, T ^ 0. Then as s —> ±1, we can express 0,(s) and 03(j)
as

<D,(s) « du Re
/ _c - s V 1 + s J

02tf) /l-{ d£

+ dn Im
*2(0 /l+n1_m/l-^7) (irll « (5.8a)

03(s) w d3. Re
J-cZ-®2({) di

1+5/ \ 1 - 5

+ d}2 Im (5.8b)

where dn , dX2, d3l , dJ2 denote the corresponding coefficients in (5.6a, b). We
write

L (\+zy-m (i-t
L,l^j{ ~s) {—) « = + <5-9»>

where hx(s) and h2(s) are real functions with singularities as s -> ±1. Then

<D,(s) « dn Re[(l +s)m~'(l -5)"m(/2,(5) + ih2(s))]

+ dn Im[(l + s)m_1(l - s)~m(hl(s) + ih2(s))]. (5.9b)

As s —> ±1 , nonoscillatory solutions of 0,(i) require

dnh{ + dnh2 = 0, dl2hl - duh2 = 0. (5.9c)

Since 07(s) is not identically zero, h{(s) and /?,($) are not identically zero. It
follows that constants dn , dn must be zero. The same comments apply to <&3(s).
Therefore, if dn , d[2, d3l, dn are not all zero, then, from (5.6a, b), S = J - 0,
and T ^ 0, either 0,(5) or 03(s) will have oscillatory singularities, as 5 —► ±1 .
Otherwise, if du , dl2, d3l ,dv are all zero, it is easy to see from (5.6a, b) with
/ = 0 or S = 0, that either 0,(5) or <t>3(.s) will have oscillatory singularities as
s —> ±1 .

When a6 — 0, Eq. (5.7a) becomes

/:

1/2'

d£

a^Ty 1 -
d+ U*Ty

2 \ 1/2
i - y  

i -s2) i -ys
for |5| < c, (5.10)

where a2 > 0. It is interesting to note that (5.10) is in exactly the same form as
(7.9) of [4] or (2.18) in Gautesen and Dundurs [3], which have been thoroughly
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discussed by these authors. Therefore, for a6 = 0, the desired solutions follow
readily. Furthermore, from (4.1 le), it is easy to see that a6 can be expressed in the
elements of matrices D and W, as

a6=D22Wl3-D21W23~D23Wl2> t5"11)

where D and W are defined by Ting [7],
However, when a6 ± 0, it appears difficult to obtain an analytical solution for

(5.7a).
In order to eliminate possible oscillatory singularities when a6 / 0, we may con-

sider a modification of the Comninou model, by assuming that the crack has no
sliding in the x2- and x3-directions over a small contact zone near its ends. In this
modified model, a single equation for 0-,(s) is obtained, which has a rather com-
plicated form with no transparent solutions; see Appendix. We note, however, that
there seems to be little physical justification for requiring no sliding over a small
region close to the crack tips, unless the contact is frictional.

Appendix. In this appendix, we give a modified Comninou model, which elimi-
nates possible oscillatory singularities, when a6 / 0.

As in Sec. 3.2, let the interface crack on the (Xj, x3)-plane extend from -L
to L, with the frictionless contact zones (-L, a) and (b, L). Assume that the
crack is open and traction-free over the interval (-a, b). Unlike in the Comninou
model, which we considered in Sec. 5, where sliding in the x,- and x3-directions is
allowed over the whole interval (-L, L), we now assume that over the contact zones
(-L, -a) and (b, L) there is no sliding in the x3-direction. Then, under uniform
applied farfield tractions r = (S, T, J), the tangential tractions in the x,-direction
vanish over the interval (-L, L), and the normal tractions in the x2-direction and
the tangential tractions in the x3-direction vanish over the interval {-a, b).

Therefore, after using transformation (5.1), the following equation for <J>(s) is
obtained,

1 0 0
0 H(c2 - s2) 0
0 0 H{c2-s2) J

*(i)   f —- d£ + AjO(^) 4 2 ^ — 0 ,n J-iZ-s 2 (1 -ys)2 J

for |s| < 1, (A. 1)

subject to conditions

0,(j) = 0, for |s| > 1, (A.2a)
02(s) = 03(s) = 0, for|s|>c, (A.2b, c)

and

JC<t>l(s)ds = 0, (A.2d)

I ^ <$>2(s)ds = L 03(s)ds = 0, (A.2e, f)

where c is defined by (5.3g).
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Under certain smoothness assumptions for 0;(s), i = 1,2,3, similar to those
discussed in Sec. 5, from (A.l), Oj(s) and 07(j) may be obtained as follows:

(i) ®2(S) = !,•,(,) + k (£±£)' £ (£a) + fn(s),

where

/j = (ad, + bd2)/{a2 + 62), l2 = (ad2 - bdx)/{a + 62),
1 fc aJM) + aJJQ

(A.3)

/l2<S)" x(a2 + b2)J-n{a2 + b2)J-c Z-s
■d£,

with

a = a4(al a8 + a4a5 — ct3a6),
2

= a6(a,a2 — a3) + Q4(a3a5 — a^a-j),
2

= -aa6/a4 , = a4(a,a9 - a5) + e*6(a3a5 - axa-,),

f\ CO — a5(1 _ y^)2 Q>(i_75)2 a^dy \A - y2
l - 75

, 5 T dfi{s) - + ^7—- °«s3? yW
1 - 7 j

and

p = 6/n, tgd — b/a\

(ii) ®,(s) = - ^%(s) - ^4>,M + 
«1 "1 rv. 7T \/ 1 — ̂  -c s •>

yJi-Y
a, n\J\ — s~
c2.1/2,, r ,*■

a. 7t\/l - s2 ■'-c a, dy 1 - 75

(A-4)

(iii) 0,(5) satisfies the single equation

rc o,(<?) o, r v/l -<^2+*L {^t 1,4+TrbL di

+ ,?s t f j(i)> f { r£—IV </{rfil + 96 = 0,y/iZ^J-c\c + vJ 3W;7-C (t-s)(ri-z) \c-z) 1 ^ '
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where
a , / / 2 2\

Q\ — . "t" '2'*^1*^2 Q3 *^4' 'a4

Q2 = n[(ala2 ~ **3X^1 7) (Qla7 ~ a3as)] >

2 , ^3) a4^2
<73 = -(a4 + a4a6), tf4 = <75 = ^

2 L «■
The solution for Eq. (A.5) is not available yet. But, it can be seen that the solutions

of <I>-(.s), i = 1, 2, 3 , do not have an oscillatory singularity as s —> ±1 .
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