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Abstract. Presented here is a new method for constructing solutions to dynamically
accelerating, semi-infinite crack problems. The problem of a semi-infinite, anti-plane
shear (mode III) crack accelerating dynamically in an infinite, linear, homogeneous,
and isotropic elastic body has been solved previously by Freund and Kostrov. How-
ever, their methods are based upon the construction of a certain Green's function for
the ordinary two-dimensional wave equation and do not generalize to either the open-
ing mode problem in elastic material or viscoelastic material. What is presented here
is a new approach based upon integral transforms and complex variable techniques
that does, in principle, generalize to both the opening modes of deformation and vis-
coelastic material. Moreover, the method presented here produces directly, for the
mode III crack, a simple closed form expression for the crack-face profile for arbi-
trary applied crack-face tractions. Generalizations to opening modes of deformation
and viscoelastic material produce integral equations for the crack-face displacement
profile that in some cases admit closed form solutions and otherwise can be solved
numerically. In contrast, the method of Freund and Kostrov yields, in mode III, an
expression for the stress in front of the crack, but for opening modes provides only
the stress intensity factor.

1. Introduction. Dynamic crack growth has been an important topic in fracture me-
chanics for more than thirty years. Many researchers have made tremendous efforts
to construct analytical solutions to a variety of canonical boundary value problems
serving as idealized mathematical models of dynamically propagating cracks. The
excellent book by Freund [2] gives an up-to-date account of the development of the
subject. One of the milestones in this effort was the solution presented by Kostrov
[4] for a dynamically accelerating, semi-infinite, anti-plane shear crack in an infinite,
homogeneous, isotopic elastic body. Kostrov's method depended upon the construc-
tion of a Green's function for the wave equation in a half-plane satisfying certain
mixed boundary conditions. As shown by Freund [2], one can in a rather straightfor-
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ward fashion apply the Green's function method to construct both the stress ahead
of the moving crack and the crack-face displacement. Freund first considers the case
of a point load applied to the crack-faces and then shows how the solution for more
general loadings follows by a superposition argument.

For all intents and purposes, this appears to solve the problem completely and
further consideration would hardly seem warranted. However, the Green's function
method has somewhat limited applicability. In particular, it does not seem to gen-
eralize to viscoelastic material. With the exception of one approximate analysis by
Goleniewski [3], there exist no solutions for dynamically accelerating cracks in vis-
coelastic material. The purpose of this paper is to present a new derivation of the
solution to the elastic problem described in the first paragraph. The method utilizes
integral transform and complex variable techniques that are directly generalizable
to viscoelastic material and to opening modes of deformation. It is interesting to
note that it has been widely believed that these techniques could not be applied to
accelerating crack problems since when formulated in terms of a coordinate system
moving with the crack-tip, the governing wave equations have time-dependent coef-
ficients whereas when formulated in a fixed coordinate system in which the crack-tip
is moving, one has incomplete time histories for the boundary values at all points
in front of the initial crack-tip position (c.f. [2], pg. 368]). It is shown here how
these apparent impediments can be surmounted. In contrast to Kostrov's method
for elastic material, the method presented here produces directly an elegant closed
form expression for the crack-face displacement for general crack-face loading. Point
loads then become a trivial special case. The generalizations to viscoelastic material
and opening modes of deformation will be addressed in future papers.

After submitting this paper for publication, the authors became aware of two other
alternative approaches to deriving elastodynamic crack solutions due to Burridge [1]
and Willis [5]. Through clever utilization of results concerning homogeneous solu-
tions for the elastic wave equations, Burridge treats the corresponding opening mode
problem while Willis considers both the opening mode and anti-plane shear prob-
lems. However, their methods, like those of Freund and Kostrov, do not seem to
generalize to the viscoelastic wave equations. It is interesting to note that both here
and in Burridge's paper, which present very different approaches to solving accelerat-
ing crack problems, certain similar fractional integral and differential operators play
crucial roles in the analysis.

2. Problem formulation and reduction to a Riemann-Hilbert problem. The problem
to be considered is that of an infinite, linear, homogeneous, isotropic, elastic body
containing a semi-infinite mode III crack, initially lying along x, < 0, x2 = 0, that
begins to propagate to the right at t — 0 due to the application of time-dependent
crack-face tractions. For t > 0, the crack-tip is located at the point a(t) where a(t)
is a nonnegative, nondecreasing function of time subject to the restriction a(t) < c
where c denotes the shear wave speed of the material. Due to anti-plane symmetry
one need only consider a single wave equation for the out-of-plane displacement,



DYNAMICALLY ACCELERATING CRACK PROBLEMS 375

w3(xj, x2 , t) in the half-space x2 > 0 ,

2ii3 = c Au3 , (2.1)

where A denotes the two-dimensional Laplacian. The revelant constitutive equation
is

du3

h.
a23(xl,x2, t) = n^ (2.2)

with p being the shear modulus.
The relevant initial-boundary value problem for the wave equations (2.1) that must

be solved has initial conditions

w3(x,, x2, 0) = w3(xj, x2, 0) = 0

and boundary conditions

w3(xj ,0,0 = 0 for Xj > a{t),
<723(x1 , 0, t) = crp(Xj, t) for x, < a(t), (2.3)

w3(x,, x2, t) —> 0 as x2 —> oo.

For much of the ensuing analysis it will prove convenient to switch from the reference
coordinate system (Xj, x2) to a coordinate system (x, y) moving with the crack-tip.
To this end, the following notation is adopted:

x = Xj - a{t), y = x2,

w(x, y, t) = w{X\ - a(t), x2, t) — m3(x, , x2, t), (2.4)
ct(x , y, t) = cr(x, - a(t), x2 , t) - cr23(x{ , x2, t).

The initial-boundary value problem (2.1)—(2.3) will be solved by applying the
Fourier transform in Xj defined by

/OO
e'pX[f(xx, x2, t)dx{,

-OO

and then by applying the Laplace transform in t given by
roo

f{p, x2, s) = / e~tsf{p ,x2,t)dt.
Jo

Transforming (2.1) and (2.2), one obtains

2^_ 2
5 u3(p, x2, s) = c

d2 2

d?2~p
u3(p,x2,s), (2.5)

d
a23(p,x2,s) = n—u3(p,x2,s), (2.6)

2where c denotes the shear wave speed defined by c = p./p.
The general solution of the ordinary differential equation (2.5) satisfying (2.33) is

u3{p, x2 , s) = A(p, s)e~^(p'sS>Xl (2.7)



376 J. R. WALTON and J. M. HERRMANN

with A(p, s) = uJp ,0,5) as yet unknown and P(p, s) given by

P(p,s) = ^/p2+s2/c2. (2.8)

In (2.7) the square root must be chosen so that Re(/?(/>, 5)) > 0. Combining (2.6)-
(2.8) and letting x2 —> 0 result in the basic boundary relation

Wn(p, 0 ,s) = -nP{p, s)t3(p, 0 ,s). (2.9)

It now proves convenient to reformulate (2.9) in the moving coordinate system
(2.4). In particular, it is easily seen that (2.9) becomes

r\{p,s) = -nP{p,s)C{P,s), (2.10)

where rj(p, s) and £~(p, s) are defined by

ri(p, s) — f e~tseipa{l)d{p, 0, t)dt,

,00 (2-11)
£{p,s)= e ,sewa(,)w{p, 0, t)dt.

Jo
The boundary relation can now be viewed as the linear jump condition of a Riemann-
Hilbert (hereafter abbreviated R-H) boundary value problem. More specifically, if
cr±(x, 0, t) = a(x, 0, t) for x $ 0, respectively, then (2.10) may be rearranged as

r]+(p,s) = -nPip, s)C (P, s) - rf{p,s) (2.12)

in which ^(p, s) are given by
roo

t1+{p,s)= / e~'se'pa nd+(p, 0, t)dt
Jo

roo roo

= / e~ts dt f e'pxa+(x - a(t), 0, t) dx (2.13)
Jo J a(t)

roo ra{t)
rj~(p,s)= / e~'sdt eipxa~(x - a(t), 0, t)dx. (2.14)

J 0 J—00

Thus, in particular, t]~ (p, s) is calculated from the known crack-face traction
o~(x, t). If rj+(p, s) and £~(p, s) had natural analytic extensions for Im(z) g 0,
respectively, with algebraic asymptotic behavior as Im(|z|) —► 00, then (2.12) could
be viewed as a regular R-H boundary value problem and solved by standard meth-
ods. However, such is obviously not the case here since, in particular, the natural
analytic extension of £~{p, s) to the lower complex half-plane, Im(z) < 0, grows
exponentially as Im(z) —► -00.

To circumvent this difficulty it proves convenient to decompose £~(p, s) as
roo r"(t)

C(p,s)= e~'s dt e'pxw{x - a{t), 0, t)dx
Jo J-00 (2.15)

= dL(p, s) + dR(p, s)
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with

dL(x ,0 = |

dR{x, 0 = |

and

w(x - a(t), 0, 0 if — oo < * < 0,
0 if 0 < x,
0 if - oo < x < 0, a(t) < x,
w(x - a(t), 0, 0 if 0 < x < a(t)

/*oo r 0
dL{p,s)= / e'sdt eipxw(x - a(t), t) dx, (2.17)

J 0 J — oo
roo

dR(p,s) = / e~'s dt e'pxw(x - a(t), t)dx. (2.18)
./o ./o

From (2.16) one sees immediately that dL(x, t) is the current crack-face dis-
placement, but only up to the initial location of the crack-tip, whereas dR(x, t) is
the current crack-face displacement from the initial location of the crack-tip up to
its current position. Moreover, from (2.17) it is clear that dL(p, s) has a natural
analytic extension to the lower half of the complex plane that vanishes at infinity.
Consequently, one can pose the following regular R-H problem: Find F±(z, s) an-
alytic for Im(z) 5 0, respectively, and such that

(2.16)

F {p,s) = -nP{p,s)F (p,s) + g(p,s),

Im(z)-»±oo
lim F±(z,s) = 0, (2'19)

where
F+{p, s) = rj+{p, s), F {p, s) = dL{p, s),

(2.20)
g{p,s) = -ri {p,s)-n0{p,s)dR(p,s).

Since both dR(x, t) and dL(x, t) are unknown, the inhomogeneous term g(p, s)
as well as F+(p, s) and F~(p, s) in the R-H problem (2.19) are all unknown. Con-
sequently, (2.19) cannot be solved directly for F+(p, s) and F~(p, s). However,
by formally solving (2.19), an integral relation expressing dL(x, t) as an integral
operator of dR(x, t) and a separate integral equation from which dR(x, t) can be
determined will both be derived. In this way, the displacement along the entire crack
will be constructed. It will then be straightforward to derive expressions for the stress
ahead of the crack and the Stress Intensity Factor (SIF).

3. Derivation of the governing integral equations. The R-H problem (2.19) and
(2.20) can be formally solved by first considering the corresponding homogeneous
R-H problem

X+{p, s) = -nP{p, s)X~{p, s). (3.1)
For most of the following, 5 will be assumed to be real and positive. When necessary
the generalization of specific formulas to complex s will follow by analytic contin-
uation arguments. From (2.8) one can easily solve (3.1) by inspection. Convenient
forms for X±(z, s) are given by

X+{z, s) = + is/c, X~(z, s) = — 1 (3.2)
(Xy/Z - IS/C
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r+in which the branch cuts for X (z, s) and X~(z, s) lie along the negative and
positive imaginary axes, respectively. The unique solution to the inhomogeneous
R-H problem (2.19) is then given by

g(r,s) dxF±(2,s) = X%,s)±,J

= -X±(z,

X+(T,s)(t-z)

. 1 f°° dx
S)2ni J_00X+(x,s)(x-z) (3J)

+ X± 1 f°° dR(x,s) dx
Z,S 2ni J_00 x~{x ,s) (t -z)'

Applying the Plemelj formula to (3.3) along with (2.20) and (3.2) yields

dL{p, s) = F~(p, s)

= d0(p,s) (3_4)

- ^'{p■s)+
sjp - is/c 2ni 7_00 R ' (t - p)

in which
-7 , v -if(p,s) 1 1 f°° tj~(x,s) dx

° ' 2n^p2 + s2/c2 '^-oo VtTTsTcC^-^) '

and
t1+{p,s) = F+{p, s)

(3.5)

(3.6)

(3.7)

= i0(p,s) - ^\jp2 + s2/c2dR{p,s)

1 r°° dx
- „Vp + is/cm J_xdR(t, i)v/T -

with
-/ x 1 -/ \ / 7—/— 1 Z-00 1 {?, s) dx

= (P,S)-VFTTirC^-J_x7TrWcW^ry
The right-hand sides of (3.5) and (3.7) are identical in form to the expressions

for the double Fourier and Laplace transforms of the crack-face displacement and
corresponding stress (in front of the crack) that one would obtain for a stationary
crack subject to a loading that, in general, is a function of a{t). An interesting
special case is that for which the crack-face loading is stationary relative to the initial
crack-tip position. More specifically, for crack-face loads oe{x{, t) of the form

ae(xl, t) = H(-xl)f(xi, t), (3.8)

one has from (2.4) and (2.14) that
r OO r 0

V~(P > s) = / e~'sdt
Jo J-oc

ipx f(x,t)dx. (3.9)

Substitution of (3.9) into (3.5) followed by Fourier and Laplace inversion yields a
function dQ(x, t) that is identical to the crack-face displacement for a stationary
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crack (ignoring the fact that x is in actuality a Galilean variable) subjected to the
loading form (3.8) with x substituted for xx.

The desired equations for dR(x, t) and dL(x, t) are obtained by applying both
the inverse Fourier and Laplace transforms to (3.4)-(3.7). It is convenient to first
calculate \Jp - is/cdR(p, s). To this end, it is shown in the appendix that if

— 1/2    
SL {p, s) = \/s + ipcdR(p, s) (3.10)

then

S^l/2(x, t) = d__ d_
dt C dx

i rmm{t, t+x/c) j
-7= dR(x + c(t-q),q)~y=, (3.11)

Jma\{0 ,b^ (t+x/c)} Q

where bl l{q) denotes the inverse function to

b{{q) = q + a(q)/c. (3.12)
We will also use, below, the function b0(q) defined by

b0{q) = q - a{q)/c, (3.13)
which by virtue of the restriction a(t) < c, is invertible on 0 < q < oo. An

 j 12
interesting observation from (3.11) is that SR ' (r, t) is a fractional derivative of
dR(r, t) of order \ along the left propagating characteristic direction.

Substitution of (3.10) into (3.4) yields

dL(p, s) = d0(p, s)
2 y/s + ipc

— 1/2 1 f°° —1/2 dx
SL (*.*) (t-P) • (3.14)

It is useful now to recall the well-known formula relating the Fourier and Hilbert
transforms,

t /*oo J ^

= - / /WtA , (3.15)
in which & and 5? 1 denote the Fourier transform and its inverse, respectively.
Applying (3.15) to the Hilbert transform in (3.14), one has

' (?,{sgn{r)SL '/2(r ,5)}

r1/2,„ , , [°° jxrsrm,

— r
ni

> r 00  . n
= -8, {p, s) + 2 e'XPdL (x,s)dx (3.16)

Jo
'L

= SLi/2{p,s)-2 j eixp8Ll/2(x, s)dx. (3.17)
J — 00

Substitution of (3.17) into (3.14) yields

dL(p, s) — d0(p, s)—. [ e'xpSL[,2(x, s) dx. (3.18)
\/S + ICP J-oo

In a manner similar to the derivation of (3.11) in the appendix, it can be shown that
r0

L=[ eixpd,l/2{x,s)dx (3.19)
f IPC J-oc

r 00 rO 1 rt
= e~ts dt e,xpdx~ 8

JO J—oo V K Jmax{0, t+x/c}

-1/2, ,. - , dr
If

max{0, t+x/c]
L (x + c(t-r),r)-^=
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Substitution of (3.19) into (3.18) followed by double Fourier and Laplace inversions
yields for x < 0

dL{x, t) = d0{x, t) - -)= [ d~l,2{x + c(t-r),r)-^=. (3.20)
Jma\{0, t+x/c} V' ?

Further substitution of (3.11) into (3.20) yields finally the desired equation relating
dL(x, t) and dR{x, t) for x < 0

dL{x, t) = d0(x, t)
If' dr d [t+x'c dq

 / , 7T I dR{x+ c{t - q), q)-7=.
ft i max{0, t+x/c} TOY j maxfO,^, x (t+x/c)} V Q

(3.21)
An integral equation will now be derived from which dR(x, t) can be determined.

Subsequent substitution into (3.21) gives dL(x, t), thereby completing the calcula-
tion of the crack-face displacement. To this end, the double Fourier-Laplace inver-
sion of (3.6) must be carried out in a manner similar to the derivation of (3.21).
Substituting (3.10) into (3.6) and making use of (3.16), one has

7R(p,s) = t0(p,s) - -\A - ipc [ e'rpdLl/2(r, s)dr (3.22)
c Jo

with
f 0 if 0 < x < ait),

Ux,t) = \ , (3.23)1 a (x-a(t),0,t) if a(t) < x.
Analogous to (3.19), it can be shown that

\/s - ipc [ e'rpdLl,1{r, s)dr
Jo

r oo roo

= \/s — ipc / e'sdt e'PXdL ix > t)dx
Jo Jo

r j, r 1 \d ^ 91= L ° d'h e dx7s La7 + C^.
X f 6-L"\x-c(t-r),r)-£L= (3.24)

^max{0,/—x/c) V ' ?

Substitution of (3.24) into (3.22) followed by double Laplace-Fourier inversion
produces for x > 0

-i/2, , > , drfR(x, t) = t0(x, t)
c^/n

d d
d~t+cdX f SL''*{x-c(t-r),r)-

J max{0, t-x/c}'max{0, t—x/c} \ft — r
(3.25)

Appealing to (3.23), one arrives finally at the desired integral equation for dRix, t)
by restricting x and t to the set {(x, t): 0 < x < ait)}

t0(x,t)- M
d d
dt +cdxCs/h

with S7^2(x,t) given by (3.11).

fJ t~
d-l/2(x-c(t-r),r)-^= (3.26)

x/c V* ^
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4. Solution of the governing integral equations. Equation (3.26) can be solved by
recognizing that the right-hand side is a fractional derivative of dR(x, t) along each
of the two characteristic directions. More specifically, we first make the change of
variables £ = t - x/c, ij = t + x/c and note that since 0 < x < a(t), tj and £ must
satisfy

£< (4.1)
or equivalently,

2b^l{r]) - rj < £ < rj, (4.2)

where b^l(^) and b^\t]) denote the inverse functions to b0(q) and bx(q) given by
(3.12) and (3.13). Making this change of variable in (3.26) one concludes that

'c(ri-Z) t] + £\ n [2 d [i s-1/2 (c(r-Z) r + £\ dr
= cnejls'- [—2—'— (4-3)'o i 2 '2

For fixed £ (i.e., along a fixed characteristic), equation (4.3) is an Abel integral

oequation on the interval ^ < t] < 2b0 '(£) - £, which is easily inverted to yield

^ x-1/2 (c(l - 0 1 + c f\ fc(q-Z) q + Z\ dq°L ^ 2 • 2 » I 2 ' 2 J ^1'
(4.4)

Substitution of (3.11) into (4.4) followed by restriction to the constant rj — t+x/c
characteristic yields an Abel integral equation on the £, interval, 2< £ < tj,
whose solution is

dr(x , t) — dR ^
c(rj-Z) rj + £,

2 ' 2
■= dr f (c(q - r) q + r\ dqc p dr l~n f fc(q - r) q +

~ 2nn L-i, )_ ^/tTTrJr ?0 \ 2 2 ) (4.5)

c

2b'\r,)-i VZ-rJr °V 2 '2 J y/rf^q
[' dr f,+x'c / . xx dq

- ** Tr^r I '• («« c) + x/c — q'
(4.6)

The functions d0(x, t) and t0(x, t) in (3.5) and (3.7) can be calculated by meth-
ods similar to those employed above to derive the integral equations (3.21) and (3.25).
In particular, one can show that for x < 0, d0(x, t) is given by

= = [ cr~(x+c(-2q+t+b0(r)), 0, r)-^L= (4.7)
Jmax{0,t+x/c} V' - <7 Jo V <7 ~ r

whereas for x > 0, tQ(x, t) is given by

t0{x, t) = A JL
dt + C dx H ~'max{0,(

dq
{0,t-x/c} Vt-q

Lmin {q,b0\t-x/c)} _
o (x - ct + cbQ(r), 0, r)

(4.8)

Vo~
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From (4.7) one readily sees that d0(x, t) is the crack-face displacement one would
obtain for a stationary crack subjected to the crack-face loading

ae(x, t) = o (x - a(t), t) for x < 0. (4.9)

Substituting (4.8) into (4.6), it is shown in the appendix that for 0 < x < a{t)

d^X,t) = ^i . 7fe / M* + c("2<7 + z +Vr))> 0» (4-l°)
Jbl (1+x/c) V ' Q JO VI r

Finally appealing to (2.16), one obtains for the crack-face displacement on the inter-
val -a{t) < x < 0

w(x, 0, t)
m J b;

dq
'(b^o+x/c) y/t-q ^411^

J a~(x + c(-2q + b{{t) + b0(r)), 0, r)-j==.

As for dL{x, t) on the interval -oo < x < 0, integrating (3.21) by parts shows
that for t + x/c > 0

dL{x, t) = dQ(x, t) + dR ^0+ +

1 [• dr f,+x/c d , . , , , dq (4-12)
 / , I -j-dR(x + c{t - q), q) .

71 Jt+x/c y/t ~ r jb^\t+x/c) dq y/r ~ q

Since ^0(0-, t) = 0 and the integral in (4.12) also vanishes as x —► 0- , one sees
immediately from (4.12) that dL(0-, t) = c/R(0+, t). It is shown in the appendix
that if (4.7) and (4.10) are substituted into (3.21) that for x < 0

dL(x,t) = —[ ~4== f ° (x+ c{-2q - t +b0{r)), 0, r)-
Jmaxt0,b, '((+x!c)} V* JO

dr
y/Q - r'

(4.13)
Thus, it is seen that (4.13) extends (4.11) to the case x < -a(t). Furthermore, it
should be noted in (4.13) that for t + x/c < 0 , dL(x , t) = dQ(x , t). Thus it is seen
that the crack-face displacement is simply that for a "stationary" crack until sufficient
time has elapsed for the disturbance due to the moving crack-tip to reach the location
x < 0.

For completeness, it will now be shown how to construct an expression for the
stress, a+(x, t), in front of the crack-tip, and in particular how to extract the stress
intensity factor from the formulas generated above. To this end, one sees from (3.23)
that for x > 0,

ct+(x, t) = fR{x + a(t), t) (4.14)

with fR{x, t) given by (3.25). Evaluating (3.25) requires the consideration of two
cases: (i) ^ = t - x/c < 0 and (ii) £ = t — x/c > 0. The calculations are similar
in both cases, and since our primary interest is in constructing the stress intensity
factor, only case (ii) will be presented. Therefore, in (3.25) it will be assumed that
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a(t) < x < ct. Since t0(x, t) is given by (4.8), it remains only to calculate the
second term in (3.25)

(4-15)

in which use is again made of the characteristic coordinates rj and £. It is easily
 j 12

verified that in (4.15), one need only evaluate SL ' (x, t) for t > 0 and 0 < x <
a(t). Under these restrictions, substitution of (4.10) into (3.11) followed by an
interchange in the order of integration yields

"2{X = {CW (4.16)

A crucial observation from (3.11) is that SL ̂ 2(x, t) = 0 if x > a{t) from which it
follows that S~[^2(c(r-£), r) = 0 for r > bQl (£) ■ Substitution of (4.16) into (4.15)
now gives for the second term in (3.25)

2 d fb° ® dr f ~ , s dq ..
nS~Js TT^ri" (4-17)

Combining (3.25), (4.8), and (4.17) one has for a(t) < x < ct

rV'K)rDo
fR(x,t)= a (c(b0(q)-£),0,q)h(Z,t,q)dq (4.18)

J o
in which

h(Z, t, q) = 2^ (t-r) V2(r-q) [/2dr. (4.19)

Finally, substitution of (4.18) into (4.14) yields for x > 0

I Cbo (V')-*/c) _ / x \
a (x,t) = J a (c(b0(q) - b0(t)) + x, 0, q)h (bQ(t) - t, qj dq.

(4.20)
The stress intensity factor is easily extracted from (4.20) by rewriting h(£, t, q)

in (4.19) as
h(£,t,q) = -= ~l/7l = + h^,t,q) (4.21)

yJt-b-\Z)y/bo\Z)-q
with hyiZ, t, q) given by

V£> t>Q) = JZ [ . (t - r)~1,2(r - q)~V2 dr..
2n At'«)

It is easily seen that /*,(£, t, q) produces no contribution to the crack-tip stress
singularity. Thus, near the crack-tip a+(x, t) is asymptotically represented by

o+{x, t) ~ 1 X(x, t) (4.22)
\Jt- ^'(^(0 ~ x/c)
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with
_l rb~'(b0(t)-x/c) _

X(x,t) = —J a \c[bQ{q) -b0(t) + -) , 0, q)

dq
x /

\Jb0l{b0(t)-x/c)-q

Using the formula b0(t) = 1 - a(t)/c one easily computes the limit

(4.23)

lim / j—— = lim \/bJbn \bJt) - x/c)) - \Jc - a(t)*-°+Y t-b~\b0(t)-x/c) x-.o+Vovovov/

from which it follows that
N Kit)a(x, t) ~ —j=r as x —> 0+,

\ X

where the stress intensity factor, K(t), is given by

K{t) = -y/F=Wj±- f o~(c{bQ{q)-bQ(t)),0, q)-j==. (4.24)
n Jo V 1 ~ Q

5. Conclusion. Two noteworthy features of the above analysis are the remarkably
simple form for the crack-face displacement even for general loadings given by (4.11)
and the fact that transform and complex variable methods can be adapted to handle
accelerating crack problems. This latter fact suggests that the methods employed here
can be applied to opening mode problems for which no expressions for the crack-
face displacement are available in the literature and viscoelastic material models for
which no solutions have yet been obtained. These latter problems are the subject of
future papers.
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Appendix. The following illustrates the techniques needed to derive several of the
results appearing in the preceding text.

-"1/2 -
First the derivation of (3.11) will be shown. If 5L (p, s) = %/s + ipcdR{p , s)

then
1/2   f°° f°°

SL (p, s) = \A + ipc / e~'sdt e'px dR(x, t) dx. (A.l)
J 0 J—oo

Making the change of variables 5, = s + ipc, x{ = x + ct in (A.l) it is found that
1/2 c f°° r°°

8, (p,s)-—^~ e~'Stdt eipX]d Jx. - ct, t)dx..
\A7 Jo J-oo

Recalling the formula = \fn/y/s, one easily sees that

(A.2)

rL"\p,s)=s,f~ d,f° dR

Jo J—oo \/n Jo

dq
{X> ~ Cq > q)-VT^

dR(x.-cq,q) dq
(A.3)

\/t~q'
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Note that the partial with respect to t in (A. 3) is made assuming a constant xx value.
Furthermore, from the definition of dR(x, t) in (2.16) it can be seen that

dR(xx - cq, q) — 0 if q > xx/c or q < b^\xx/c).

Thus
rl/2 {<*> d 1 rmm{t,xjc} ,
SL (p,s)= e dt / e ></* / dR{xx-cq,q)-==.

J 0 J—oo Ol y 7E j max{0, (x,/c)} *7
(A.4)

Equation (3.11) follows from changing and Sj in (A.4) back to x and 5.
We shall now consider the derivation of (4.10). If (4.8) is rewritten in the char-

acteristic coordinates rj = t + x/c and £ = t - x/c, then it is found that for
< rj < 2b~l(£) i.e., 0 < x < a(t)

c(>?_£) >? + £\ -2d f^+iV2 dqt, _ -2d_ r
n drj Jt0 V 2 ' 2 ) n dr,Ji ^ + rj)/2 -q

X io +cfco(r)» °» (A-5)

Substituting (A.5) into (4.5), one obtains

dR(c(r,-0/2, Of+ 0/2)
-c dr f dq d j'^+r'>/2 dv

/un2 J2b;\n)->] -r Jr y/l - Q Jr \/{q + r)/2 - v
/>y clll

x / a~(-cr + cb0(u), 0, u) . (A.6)
J0 v" — u

In (A.6) let

and

/*%) i
F(v,r)= / cr_(-cr + c£>0(w), 0, w) M

./o

G(r

sjv - U

(9+r)/2 _ dv
/(Q+ni^ F(v, r)

^{q + r)/2-v
From the observation that

d f S(r) , g(a) , [' g'(r)f [ -t^Ldr=-^L+[ -p^dr,
dt Ja y/t ~ r \Jt- a Ja \Jt-r

it is found that
dq G{r, r) d f . dqr d r>, ^ d1 G(r>r) d f r, \

Jr dq sjr\-q~ ^t]-r + drj Jr T' ^ yjl~<l'

(A.7)

(A.8)

If the prescribed stress on the crack-faces, o~ (x, 0, /), is assumed bounded then
G(r, r) = 0. The term frn G(r, q)-j=L= in (A.8) may be simplified by reversing the
variables of integration to obtain

n r. . dq [(n+r)l\( w f n/2 dq/ G^r'q)~7^=^= F(v,r)dv     (A.9)
Jr y/n-Q Jr J2v-r sjr\ - qyjq - (2v - r)
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The integral, fZ dX is recognized to be the beta function, B(z,w),
zv r sjri-qsjq-(lv-r)

for z = w = \ where B{\ , \) — n . Thus

«}w^' ^*hs'r"2F(v'r)dv =^ • <A-io)
Substituting (A. 10) into (A.6), it is found that

d (c(*l-Z) 1 + t\_ ~c fS trftl + r drr f(a+i.,) * (A.11)
J2b, (ti)-n V 2 / \Jt — rRK 2 ' 2 J finVl J2b;\r,)-^ V 2 " J v/|"

which after the change of variable u = (tj + r)/2 becomes (4.10) when the charac-
teristic coordinates £ and rj are switched back to x and t.

Finally, we shall present the derivation of (4.13) for t + x/c >0. If (4.10) is
substituted into (3.21) and the result and (4.7) are rewritten using the characteristic
coordinates g and rj, it is found that

^ (c(ti-£) + ^ (c(ri-Z) t] + £
L{ 2 ' 2 )~°\ 2 '2

c ^+r,y2 dr d f J(n dq
+/U712 Jr, \/(£ + l)/2 -rdr Jb-\n) q,TI \/r-q

(A. 12)
c(t] — £) ti + £\_-c f^+^12 rj, dq

=^/ ^ /tp -l \ n ' (A"13)v 2 2 ) nn Jn v(<? + *7)/2 - q
where H(v,rj) = /0" a (-2 cv + crj + cbQ(u), 0, «)^== and I{q,rj) =

, . H(v , w) fv . Note thatJb\ (rj) v ' u VQ~v

f\ 7^'")7==r, (a-14)(17) ^ .//), (f/) Vr Q J r, V Q
In a manner similar to the derivation of (A. 10), it can be shown that

,A'15)

(A. 16)

Employing (A.7), (A. 15) becomes
d f r/ , dq tJ/ , I{n,Vi) f d dqTrA,=^-J, r,L<"•

It can then be shown that
{i+")/2 dr d [i T/ . dqrv+w* dr d [ 1

7, y/m + m-rdrj^ {9' n)y/f=q

71 /Jr\

(Z+l)/2 dr
H{r,n)-

y/{Z + r])/2-r
f(i+n)/2

1(1, n)  ,Jr, ^/r-t]^{^ + rj)/2-r
r(i+',)/2 dr f d dq

Jr, y/($ + rj)/2 - r Jr, dq ^^ JF=q'
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If the variables of integration q and r are reversed in the last integral of (A. 17) and
the resulting beta integral is replaced by n , then (A. 17) becomes

r((+l)/2 dr q m dq

1 >/(t + ri)/2-rdrJbAn) ^
2 dr t(£ + V

Substituting (A. 18) and (A. 13) into (A. 12), it is found that

(cjij-j) ij + Z\ _ -c f
L\ 2 ' 2 ) finjb

which becomes (4.13) when written as a function of x and t.

,ri). (A. 18)

c(ti — £) 77 + £\ — c drcw i) r/ + c\_ ci H{rr]) ar ^ (AJ9)
-'(i) y/(i + r,)/2-r
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