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Abstract. A stability analysis is performed for a mathematical model with negative
feedback, diffusion, and time delays. The model of a cell includes three biochemical
species that interact to control the transport of an extracellular nutrient. This study
examines the effects of diffusion, cell size, and extracellular nutrient concentration
on the model. With certain assumptions the symmetry, a linearized version of the
model is studied in detail. The characteristic equation is shown to have no solutions
with positive real part when extracellular nutrient concentration or the diffusivities
are sufficiently small or the radius of the cell is sufficiently large. These results are
compared to an earlier study that showed that biochemical oscillations could occur
for certain parameter values. A discussion is provided for how the bifurcations from
regions of stability to regions of instability could affect the biological response of the
cell.

1. Introduction. For survival a cell must extract essential nutrients from its exter-
nal environment. The cell uses an active transport mechanism to raise its intracellular
concentration of certain nutrients. The cell invests a great deal of energy to produce
the enzymes required to transport important nutrients, so many of these transport
systems are regulated by repressing the expression of the gene, a negative feedback
system. An example of this type of regulatory system can be found in the uptake of
iron (Fe+++) by bacteria [5,10,11]. This work examines the stability of a mathe-
matical model that includes repression as a control for a protein mediated transport
across a cell membrane of some substance, possibly a critical nutrient for the cell.
A two compartment model is formed for three interacting biochemical species. The
mathematical model is composed of reaction diffusion equations and includes time
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delays for the processes of transcription and translation. The dynamics of the reacting
biochemical species in the first compartment are governed by differential equations
that have no spatial dependence. The second compartment represents the cytoplasm
of the cell in which reactions and diffusion are considered. For a discussion of the
biological details and development of the model see Mahaffy, Jorgensen, and Van-
derheyden [8].

The three biochemical species examined are mRNA (w;), permease (v2), and the
repressor nutrient (wt). The subscripts, ; = 1,2, denote the two compartments in
the mathematical model. The mRNA is formed in the first compartment and diffuses
throughout the cytoplasm where it is translated to form the permease. The permease
is restricted to the second compartment. The permease is necessary for transport
of the nutrient across the cell wall. The nutrient comes from an external source,
diffuses freely in the cell, and acts as a repressor or inactivates a gene activator for
the production of its permease.

The development of the model is similar to a simpler repression model of Mahaffy
and Pao [9]. The cell is assumed to be spherical with a radius, R , and with an inner
radius, oR, for the first compartment. With this symmetry assumption, the model
is given by the following system of equations:

ux{t) = f(w{(t - T)) - ux(t) + yx[u2{Ro, t) - «,(*)],

wx(t) = -b3wx(t) + yz[w2{Ra, t) - wx(t)].
du~, 7
-qJ- = DXV u2 - u2, (1.1)

= D1V~v2 - b2v2 + cQu2,
dv, i 2 _ n v7
dt

dWi 2
- Z)3V w2 - b-iw2,dt

for t > 0 and Ra < r < R and with the boundary conditions:

duJRo,t) nr , ,, du-,(R,t)
2dr ' =fil[u2(Ra,t)-ul(t)], = 0,

dv2(Ro, t) dv2(R, t)
3r ' dr

dwJRo,t) n dwJR,t)
— = Py[w2(Ro ,t)-wx(t)], —  = k v2(R , t),

(j y or A

where = and f{wx) is a positive decreasing function of wx reflecting
the negative feedback of repression. The kinetic constants bt are decay rates and yj
are transfer rates. The Df are coefficients of diffusivity and related to the transfer
across compartmental boundaries. The constant k is a parameter depending on the
rate of transfer across the exterior membrane and the extracellular concentration
of the nutrient. The delay, T, represents the time required for some biochemical
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processes, such as transcription and translation. The constant c0 represents the rate
of translation of the mRNA to produce the permease.

Stability results are demonstrated for a cell with a large radius or one with very
small diffusivities. Physically, one would expect that if the radius of the cell is too
large, then the decay of the biochemical species would dominate the behavior of the
system and lead to stability of the system. Similarly, if the diffusivity constants are
too small, then the slow diffusion of the biochemical species would be equivalent to
increased cell size, which again results in stability. The analysis of the mathematical
model parallels the work on a related model by Busenberg and Mahaffy [1,2].

Of particular interest is a result that demonstrates that there is a region of stability
for k sufficiently small. Since k depends on the external concentration of the
nutrient and since it was shown that there are parameter values where (1.1) is locally
unstable [8], it follows that for certain parameter values as the concentration of the
external nutrient increases (k increases), (1.1) has a Hopf bifurcation from a region
of stability for a low nutrient concentration to a region of instability. If the nutrient
is a morphogen then this instability could represent a trigger for the cell to change
its behavior, i.e., undergo morphogenesis.

The proofs of the theorems rely on a technique of reducing the system of partial
differential equations with delays to an equivalent system of delay differential equa-
tions and Volterra equations that depend only on the state variables at the boundary.
The method uses the variation of parameters formula with the semigroup operator
coming from the linear part of the partial differential equations after the change
of variables that makes the boundary conditions homogeneous. The resulting system
has its spatial component occurring only in an exponentially damped term depending
on the initial conditions. Next a related system is formed by linearizing the previous
system and examining the limiting Volterra equations. The stability of this linear
system is studied by analysis of its characteristic equation.

In the next section the main results are stated, and the background material is
presented for stability analysis of the model. This includes some notation necessary
for the understanding and development of the characteristic equation. Section 3 gives
the details of the proofs of the theorems. The last section provides a discussion of
the work performed on this model.

2. Main results and background information. The main results presented here
demonstrate conditions on certain parameters in system (1.1) that result in asymp-
totic stability of the system. To show these results there are several conditions that
are used in the proofs of the theorems. The nonlinear negative feedback function /
can be shown via biochemical kinetics to satisfy the hypothesis below.

(HI) Hypothesis. Assume the function / representing the negative feedback of
repression has the form f(w) = 1/(1 + kwp), where A" is a kinetic constant and
p > 1 is the Hill coefficient.

In fact, the proofs of the theorems only require that / is negative, decreasing,
continuously differentiable with /'(0) = 0.

Another assumption in the mathematical model is that the rate of transfer across
the boundary of the first compartment per unit area is a constant times the gradient
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of the concentration of the biochemical species. Creating a model where the second
compartment is also well mixed, we find that the active transfer of nutrient across the
outer membrane per unit area is proportional to the concentration of the permease
v2 in the second compartment. Let k be this constant of proportionality with k
depending on the external nutrient concentration, which is assumed to be constant.
From the mass balance relations for the cell as detailed in [8], we find that

_ 3Z)3/?3 3D^k
Ra ' ~ Ra > and K~ R{i_a*y

where y, and y3 are fixed transfer rates across the boundary in the well-mixed first
compartment. From the divergence theorem, we see that our assumption implies that
PXDX, /?3£>3, and kD3 are fixed constants.

The first theorem examines the case when the diffusivities, D{, in the model be-
come small. In order to compare this model to a corresponding well-mixed model,
(2.1) show that the transfer rates /?, , , and k must become proportionately larger
as diffusivities decrease. With this information the following stability result supports
the intuitive concept that the restricted motion of the biochemical species allow decay
rates to dominate reaction rates.

Theorem 2.1. Assume (HI), suppose that ^|/)1, , and ArZ)3 have fixed finite
values, and suppose that the diffusivities Dj, i = 1,2,3, tend to zero. Then there
exists a d > 0 such that if 0 < Z)< d , all solutions A that satisfy the characteristic
equation of the model (1.1) satisfy Re(A) < -e < 0.

The second stability result examines (1.1) for an increasing radius, R. The in-
creased distance for diffusion of biochemical species does not allow oscillatory be-
havior as in the previous theorem.

Theorem 2.2. Assume (HI), suppose that the transfer rates between compartments
remain fixed, and suppose that the radius of the cell, R , increases. Then there exists
a constant M > 0 such that if R > M , all solutions X that satisfy the characteristic
equation of the model (1.1) satisfy Re(A) < -e < 0.

The last result for (1.1) shows that as k decreases with all other parameter values
fixed there is a region of locally stability. This result demonstrates that if the nutrient
concentration is sufficiently small, then (1.1) does not have oscillatory solutions.

Theorem 2.3. Assume (HI) and suppose that the parameter k, which reflects the
rate of transfer across the exterior membrane and the extracellular concentration of
the nutrient, decreases while all other parameters in (1.1) are fixed. Then there
exists a constant k0 > 0 such that if 0 < k < k{), all solutions I that satisfy the
characteristic equation of the model (1.1) satisfy Re(A) < -e < 0.

The first step in proving these theorems is to make a change of variables that
transforms (1.1) to an equivalent system of equations with the equilibrium solution
translated to the origin and homogeneous boundary conditions. If we let variables
with an 5 superscript represent the unique steady state solution of (1.1), then the
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following change of variables is used:

Ul(t) = ul(t)-u\,
^(0 = wi

S ,U2{r, t) = u2{r, t) - u2(r) - U{(t),

V2(r, t) = v2(r, t)-v2(r),

W2(r, t) = w2{r, t) - w2(r) - Wx(t) - kh(r)V2{R, t),

where h must satisfy h'(Ro) = fi3h{Ra) and h'(R) — 1 to make the last two
boundary conditions homogeneous. The resulting mathematical model can be written
as follows:

Ul (t) = /(Wt (t - T)) - Ux (t) + 7, U2(Rg , t),
Wx{t) = -hjV^ + yJV^Ro, t),

r\ f J

—1=D,V2U2-U2- f{W. (t-T))-y, UJRo , t), (2.2)
dV ->
_i = Dyv2-b2v2 + c0{u2 + ux{t))._

dW,
dt = D3V W2- b3W2 + {b3- b3)Wl - y3W2(R<7, t)

+ k VJR, t) - hVJr, t)

for t > 0 and Ra < r < R and with the boundary conditions:

0 evjR.t) =0

25^.0.

where f{W\) = /(+u;i) + ^im2(-^(T)_(^i+an<^ h{r) - (r-Ro)2/{2R(l-a)).
The next step is the reduction of the system of equations (2.2) by the method

of variation of parameters to a system of delay differential equations with linear
Volterra equations that depend only on the state variables at the boundary. The
spatial component occurs only in an exponentially damped term depending on the
initial conditions. Subsequently, this system is linearized about the zero solution, and
the limiting linear Volterra equations are formed. Standard techniques are applied to
this system to find the characteristic equation. The characteristic equation is analyzed
to determine local stability properties of the mathematical model. This technique is
developed in [1,2] and used on this particular model in [8],
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Before the system of delay differential equations and limiting Volterra equations
is presented with its characteristic equation as formulated in [8], several quantities
must be defined that are used in the proofs of the theorems. From the homogeneous
parts of the partial differential equations for U2, V2, and W2 in (2.2) along with
their boundary conditions, separation of variables is used to find the eigenvalue and
eigenfunction equations. This leads to the eigenvalue equations:

""["d = m-o + ew (2'3)
2 , 1

r , . V O ~T \ . _ . .coti^d -o-'] = -^jrr^y (2 4>

oj2 a + 1 + B.Ro
"""°(i-g)] = M[(i -g) + ^r (25)

for U2, V2, and W,, respectively, and their corresponding normalized eigenfunc-
tions </>n(r), y/n{r), and {JR).

For notational convenience the following quantities are defined:

*; = <!.*„>= fRl-<t>n(r)r2dr, 6? = (I, Z„),
J Ra

2 n 2n 2nll D, v D~. a> D-,^1+V' B^b2 + ^T' and +

Direct calculations show that

s«j. ^ 2/?1/?cr2(l +ju2)l = XMT' (2'6)

and

2P,R«\l+o>l)

where the factor in the denominator that results from normalization of the eigen-
function is given by

Gnor(* ' p) = 0 - a)x2(1 + ° + °2 + X°2) + PRa{X2{2 - a) - a)

+ p2R2a2{x2{\ - a)-a).

The system of linearized delay differential equations and limiting Volterra equa-
tions is found from the system of differential equations (2.2) in accordance with the
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procedure shown in [8] and is given by the following:

Ui(0 =f\wsl)Wl(t-T)-Ul(t) + y, U2{Ro , t),

Wx{t) = -bJV^t) + y3W2(Ra, t),

pOO
U2(Ro , t) = - Ku(t - s, Ra)[f\ws.)WAs -T) + y. UJRo , 5)] ds,

Jo

poo poo 00

V2(R, t) = c0 / e^("s)Ux(s)ds + c0 / J2e Vn(R)
Jo Jo „=0

00

' m f (w\)Wx{x-T) + yxU2{Ro, x)

ds,

(2.8)

^2

rS w

/ ECJ° m= 1

X (K' Vn)dT

p OO
(Ra, t) = / Kw(t - 5, Ro)[(b3 - b3)Wx(s) - yiW^(Ro, 5)]ds

Jo

pOO 00

+ k / J2ttDyh~b^>ZnK(R°)e~Cni'~S)V2(R,s)ds
J° n=1

P OO 00

~k "{"S)V2(R,S)dS,
J° n=\

where Ku(s, r) = , S"{r)e'A"(s) and r) = , Sl^n{r)e~C"s.
Using standard techniques, Mahaffy, Jorgensen, and Vanderheyden [8] show that

the characteristic equation for (2.8) is given by

P{k) - Q{k)e~XT = 0, (2.9)

with

P{k) = (A+ 1)(A + 62)(1 + ylIl)(k + b3 + (k + b3)y3I3) (2.10)

and

Q(X) = kyic0f'(wsi)I4[l-{k+l)(k + b2)I2], (2.11)

where the integrals I -, j = \, 4 are appropriately defined below. To de-
termine the stability of the system it suffices to consider the eigenvalues X with
Re(A) > max{-1, -b2, -b3} . With this restriction, the Lebesgue dominated conver-
gence theorem can be applied to the integrals below and the order of integration and
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summation can be interchanged to yield the following:

7i = / 2^S„<KR°)e K ds = 2^ ' " ,
J° n= 1 »=1 X +

/»00 ^ /*5

I2= Ze-^VniR) / E*>e-{*+AJr(<t>m^n)Ji
Jo Jo71=0

OC OO

m=l
fife

-m-cj. j-
A + C„

/•OO ^ ^

h= j:sX(Ro)e-W'ds = £
J» n

-OO 00

/4=/ E«D3V
„=1

/•OO 00-J £<*•
"lAT""p A

ds

= E ^ [<D3V^ > U - (* + W
rt= 1 "

It is the careful analysis of (2.9) that demonstrates the conclusions of the theorems.

3. Proofs of the theorems. In this section the details are given for analysis of
the characteristic equation for (2.8). The technique follows similar stability results
given by Busenberg and Mahaffy [2], The stability results are established by showing
that if Re(A) > —e, where e = \ min{l , b2, b3}, then (2.9) has no solutions. This
is accomplished by showing that under the hypotheses of the theorems, |P(A)| is
bounded away from zero, while |(?(A)| —> 0.

Lemma 3.1. Suppose that PXDX and /?3D3 have fixed finite values. If the diffusivities
D■ —+ 0, i — 1,3, and Re(A) > —e, then |P(A)| is bounded away from zero.
Similarly, if the radius R —> oo, while the transfer rates between compartments
remain fixed, and if Re(A) > -e, then |P(A)| is bounded away from zero.

Proof. To demonstrate this result we examine (2.10) more closely. For Re(A) >
—e , the formulae for /, and /3 following (2.9) can be applied to give

PW = (-1 + 1)(A + b2) ̂1 + y, f;

— (A + 1)(A -|- ̂ >2)(1 + y15'1)(A + i>3 + (A + b3)y3S2).

Since 5, is analogous to S2 , it suffices to show that 5", —► 0 as Dx —* 0 or R —> oo .
Note that the relations in (2.1) show that as D{ , D} —> 0, the parameters , /?3 —>
oo . The proof closely parallels the work of Busenberg and Mahaffy [2],
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10

Fig. 3.1. Graphs of cotx and (1 —a)/x show how the curves inter-
sect for the first eigenvalue fil = x/(\ - a) . In this figure, a = 0.3 .

The next step in the proof of the lemma is the analysis of 5"cj)x(Ro) using (2.3)
and (2.6). For either /?, —> oo or R -+ oo, we find cot[/z,(l - a)] ~ 1 /fi] . Let
x = //, (1 - a) and consider cotx = (1 - a)/x. For a > 1 - f , it is clear that the
graphs cotx and (1 - a)fx intersect with | < x < f . (See Fig. 3.1.) Thus,

2 7i2 - 16cr( 1 - a) 7t2 - 4
11 16(1 — g> >wr^)>0-

which is a bounded, positive value for fixed 1 - f < a < 1 . This argument can be
extended to smaller values of a with some work.

To show a similar result for a small, er > 0, we examine the Laurent series for
cotx:

1 3j %
cotx = --77  , 0 < IjcI < 7T.

x 3 45 11
2Thus, cotx ~ (3 - x )/(3x) for small x . This implies that

3 - x2 1 - a
cotx 3x x

or //j(1 —a) = x ~ \/3cr, which is readily borne out by numerical calculations. Thus,

2/i \ 3erfi. (1 - a) - a ~ -—— - a > 0
1 1 — o

is again a bounded positive number for fixed a .
To obtain a bound on 5"(f>x(Ro), we omit the terms in the denominator

(Gnor(/^i , /?,)) that have powers of /?, or R less than two. Combining this in-
formation with the previous results, we see that for 0 < a < 1 fixed there exists a
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constant M{ 1) > 0, such that for /?, or R sufficiently large

2pxRo\\ +n\) M( 1)
8{<px(Ro) < 1 2 -  : <

p2xR2o2[n]{\-o)-o] W

For n > 2, Sl^<f>n(Ra) can be bounded using (2.6) with the fact that (n - \)n <
Hn(\ - a) < nn . From (2.6),

U 2(1 +^) 2( 1 + n1 n2/(1 - tr)2)( 1 — a) =

pxR[Li2n{\-o)-o\ p,R[(n- l)V-a(l -a)] P,R '

An easy calculation shows that M'(n) < 0 for n >2, which implies that

su j. I u~\ „ ^(2)

with

M(2) = .
PXR(\ - o)[n2 - o{\ - o)]

Next we consider the denominator of the term in the infinite sum.

1^ + An\ ~ a+i + "2M,D,
R2

> Re(A) + I + ')2"2r,«^
'1

as nn{ \ - a) > {n - \)n and D{ = yRol(7>P{). If we let
2-> V.T

C

3/?,fl2(l -rr)2

,2  er

(Re(A) + 1)3(1 - a)2

and M = max{M(l), M(2)}, then from (3.1) we have

IS, I < M E 1
(Re(A) + 1 )PXR^{ 1 + C2(n - 1 )2/(PxR)

Make the change of variables tan# = C(n - 1)/>//?,/? and apply the integral test to
the infinite sum. Then

Y - 1 " ""2
^ 1 +C2(n-\)2/(p]R

^ \fP\R [2 sec2 6d6 _ 7isjPxRLC Jo 1 + tan2 d 2C

This implies that
, y.Mny. 5, < ! ; .

1 " _ 2| Re(A) + \\Cy/P^R
Since y, = 3Dx/{Ro) with D,/?, finite, it follows that yJSJ = 0( l/y/P^) for low
diffusivities and yJS,! = 0(1/R) for large R. Thus, yJSJ —> 0 as either Z), —> 0
or R —* oo. A similar argument shows that yjIS^I —► 0 as either D} —> 0 or R —► oo .
The conclusion of the lemma follows immediately.
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The next part of the proof is to demonstrate that \Q{k)\ —> 0. The idea behind
the proof is similar to Busenberg and Mahaffy [2] though the details are substantially
more complex. For Re(A) > —£, the integrals following the characteristic equation
are applied to (2.11). With this information the equation for Q(X) is written

e<A) = Vo/'«)E^!^
n= 1

OO OO CM ,

where

<i2)

^ 73cor'(^^)^3(l - (A+ l)(A + ^2)^4),

en = (Dyh,Zn(r))-(A + b3)(h,Zn(r)).

We divide our analysis into examining the factor y3c0/'(u>|), the infinite sum
containing sn , and the factor containing the double infinite sum. Numerical studies
show that each of the factors in Q(X) tends to zero as either Z).( > 0 or R —+ oo.
Unfortunately, proving these facts is much harder. The analysis is divided into a
close examination of each of the three factors.

The assumption on the function / given by (HI) implies that

/ pKwp~x
f (w) -

(1 + Kwp)

The next lemma demonstrates that f'{w\) —> 0 as either D —> 0 or R —> oo .

Lemma 3.2. Assume / satisfies (HI) and that ws. is the equilibrium solution for
w{ in (1.1). Then f\w\) —> 0 as Z)(. —» 0 or R —> oo.

Proof. To demonstrate this result an estimate on i«j is needed. To find w*, the
time derivatives in (1.1) are set equal to zero. The result is a system of two algebraic
equations and three boundary value problems. A summary of the details required to
compute uij is given in the appendix of Mahaffy, Jorgensen, and Vanderheyden [8].
The equilibrium value ws{ is determined by the nonlinear equation

f( S = /(I +?! ~ yxq{q2)^~ ~ + ^R{qi - qi)]\ s
1 V ^2(^3^6 + - a2Rc>6)(Pl -P5) / ' '

= Mw J, (3.3)

2where a( - bj/Dj, /' = 1, 2, 3 (b = 1), and the constants qt, i = \,1, p5,
and p1 are defined below. The unique positive solution to this equation is readily
found using Newton's method. The constants qjf i = \,... ,1, ps, and p1 are
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given by the following formulae:

qi = -j^ ^cosh[Q,/?( 1 - a)] - ——sinh[alR(l - a)}) ,

PlR3o2al
®'2 ax cosh[a,i?(l - er)] + a2sinh[a]i?(l - er)] '

(sinh[a.,,R( 1 - er)] + a^Rcr cosh[a1/?( 1 - er)])
C,i (cosh[a2/?( 1 - er)] + a^Ro sinh[a7i?( 1 - er)]) '

c / rR(\—o) / j \
q. = — 0 / —- sinhfa, u) - coshfa, u) sinh(a.,w) du

D2a2 \Jo \a\R J
rR(\-o) / 1 \ \

J ^cosh(a,w) — sinh^wjj cosh(a2w) dw I ,+ a~,R

((1 + fi^Ro) sinh[a3/?( 1 - er)] + a^Ro cosh[a3^( 1 - a)])
((1 + fi^Ro) cosh[a3/?(l - a)] + a^Ro sinh[a3JR( 1 - er)]) '

= P,R2o2 
((1 + P^Ro) cosh[a3/?( 1 - a)] + aiRo sinh[a3i?( 1 - er)]) '
c k r^C-'7) / i \

q6 = —^— / I R cosh(o:1 u) sin^a, u) ) sinh(a2w)] du,
2Q2 J0 V ai /

Pi =
sinh[a3^( 1 - er)]
cosh[a3/?( 1 - er)] '

= /?cr(y3 + b3)
y3 cosh[a37?( 1 - er)] '

where a, = J?a,(l + P{Ro - a) and a-, = R2aal - 1 - fi{Ro .
To obtain an estimate of f'{w\), the value of w\ needs to be approximated. This

is done by examining the coefficient M in (3.3) as Dt. —► 0 or R —> oo . Considering
the first factor (1 + 7, - 'n ^ > we see

1 + yx - y{q{q2 Ax coshfa, R( 1 - er)] + A2 sinh[a,7?(l - er)]

<?2 ~ Rio2ax

where

A{ = Raj(1 + Ro - er) + ylRal( 1 - o),

A-, = (R aax — \ Ra) + yx{R~oa, - 1).
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As Dj —> 0, recall DXPX is finite and ax = s/\/Dx . Thus, the largest terms in
both the numerator and the denominator have alfil , which is 0(fi3/2). With this
information we obtain the approximation that as D{ —> 0,

1 + 7i — 7\Q\QZ _ coshfa, j?(l - a)]
q2 ~ Ra

In a similar manner by considering the highest-order terms in R and recalling the
mass balance information that shows y, is 0(1/R), we obtain that as R—> oo,

l+?i-7iQi<i2 ^,cosh[a,/?(l-CT)] + sinh[a,/?(l-cr)]
q2 ~ pxRo * ( ■ '

The next part of the analysis requires a closer examination of the factor q3q6 +
kRq^qA - a^Rq6 in the denominator. In order to expand the integrals we consider
the case where ax > a2. The reader can verify that the other cases are similar. From
the expressions for q4 and q6, it follows that

q}q6 + kRq3q4 - a2Rq6
rR(l-a)

/ (a.7?cosh(a.M)cosh(a2«) - sinh(a, w)cosh(a2w)) du
Jo

cQkR
D2a\

rR( 1 —a)
- / cosh(a,w) sinh(a2«) - sinh(a,w) sinh(a2w)) du

J o
/ /sinh[(Qj + a2)R( 1 - a)] sinh[(a2 — a,)/?(l — a)]

a' \ 3 V 2(a,+a2) + 2(a2-Qj)
cQkR
£>2a,

cosh[(a, + a2)R(l - a)] ^ cosh[(a2 - a,)/?(l - cr)] a2
2 2

W
2 -f- a2) 2(^2 a2 — Qi[

cosh[(a, + a2)R( 1 — a)] cosh[(a, - a2)R{ 1 - cr)] a(
2(a,+a2) 2(a, — a2) a] - a\

/sinh[(a, + a2)R( 1 - cr)] sinh[(a2 - aj)^(l - cr)]
\ 2 (Qj + a2) 2(a2 — a,)

(3.6)
From the definition of q3 and since sinh[a-,/?( 1 - <?)] —> cosh[a.,i?(l - <7)] as

D2 —> 0 or equivalently a2 —> 00, it is clear that lirnt <?3 = 1 , very rapidly.
As a, —> 00 with > a2 , the first two lines in (3.6) contribute the most to the
expression. However, sinh[(aj + a2),R(l - a)] —► cosh[(a, +a2)/?(l - cr)] rapidly,
leaving only the sinh[(aj - a2)/?(l - cr)] and cosh[(aj - a2)/?(l - cr)] terms. The
latter is approximately equal to sinh[(aj -a2)i?(l - cr)]; hence we obtain the estimate

c0kR2 sinh[(a, - a2)/i( 1 — cr)]
h%+k    . (3.7)
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Next we consider the last factor in (3.3). From the definitions of these quantities,
a straightforward calculation shows that the last factor is given by

Ptfs- PsQt + - 4$)
Pi-Pi

((7, + b,){alR2a - 1) - b.fl.Ro)
- v  —  — sinh[a3/?( 1 - a)] (3.8)

a ^3

a3^ fe + ̂ )( 1 _ CT) + biP)Ra)
 ^ — cosh[o,/?(l - a)].

a3^3

Recall that as £>3 —> 0, /?3 —> oo and a3 = 0(fi^2). Thus, the highest-order term in
the numerator of (3.8) is a cosh[a3/?( 1 - a)]. This implies that

^ _ fi&Rra cos , _
Pi ~P5 ^3

Recall that y3 = 0(\/R). Using this information, one can easily verify that

PnQ5 ~ P517 + a)R{q7 ~ Qs) _ _M^( inh[ ^ _(7)] + y83cosh[«37?(l - a)])
Pi ~ P5 ^3

(3.10)
for large i?.

Combining the results in (3.4), (3.7), and (3.9) for small diffusivities, we find the
quantity M in (3.3) is approximated by

Xj . D2a2^a\ ~ a2)P3bcosh[aiR(l - a)] cosh[«3Jft( 1 - o)]
sinh[(a, - a2)R(l - a)]

From the information that DJJi and D^k are fixed finite numbers and q( are
0{/3^2) for i = 1,2,3, the asymptotic behavior of (3.11) as Dt —> 0 depends
on the behavior of the hyperbolic trigonometric functions. Thus, it is clear that
limD ^0M = oo .

From the results in (3.5), (3.7), and (3.10) for large radii, R, the following ap-
proximation is found for M :

M ~ D2a2(al -a2)bi(Pl cosh[a]/?(l — cr)] + sinhfri,/?(1 - a)])
/cc0}'3/?i sinh[(a, - a2).R(l - a)]

x (a3 sinh[«37?(l - a)] + /?3 cosh[a3^( 1 - a)]). (3.12)

Again it is the behavior of the hyperbolic trigonometric function that determines the
behavior of M as R —► oo . Thus, we find that lim„ M = oo .K—►oo



STABILITY RESULTS FOR A MODEL OF REPRESSION 429

1.2

Fig. 3.2. The intersection of the curve f(w) with the line Mx de-
termines . This graph shows that ws{ —> 0 as Mx —> oo .

By definition M is the slope of the line on the right-hand side of (3.3). The
nonlinear function on the left-hand side is fixed, so the intersection of these two
curves occurs at lower values ws{ with increasing M. From Fig. 3.2, it is clear that
as M —> oo the equilibrium value ws{ —► 0. In fact for large values of M it can
be shown that a doubling of M results in almost a halving of w\. For p > 1 the
formula for f'{w\) shows that lim^*^ f\w[) —> 0. This completes the proof of
Lemma 3.2.

The next step in the analysis is to examine the factor S3 in (3.2). The following
lemma shows that this quantity is bounded for either small diffusivities or large R .

Lemma 3.3. Consider the first infinite sum, S3, in (3.2). S3 is bounded as either
Dt~* 0 or R —> oo .

Proof. To establish this result a complete expansion of the terms in S3 is needed.
From Mahaffy, Jorgensen, and Vanderheyden [8], we have

kWR°K = _2Rk( ^ + 1)(2-w (3.13)
A + C" Wl-^norK>/y

+ (A + b3)[(a)2n{l -a)- 2a) - ID^a^o / R2]H(n)

tt + Cn)(o2n(l ~a)GnJcon, fi3)

where

H[n) = (-I)"" V(w^ + \){o?y + 1 + 2 p^Ro + P;R2<t2).
2By paralleling the work in the proof of Lemma 3.1, which shows that //, (1 — a) — a

is bounded away from zero, we can show that <u,(l - a) - a is similarly bounded
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away from zero. Define

M, - + '
1 co2( 1 - a) - a

2 2It is clear that for n >2, Mx > (a>n + l)/(a>n( \ - a) - a). Assume that either £>3
is sufficiently small or R is sufficiently large so that piRo > 2; then the following
bound on the first term in (3.13) is obtained:

2Rko{to2n + l)(2-P3R<j)

tfi1 -^norK' ^3)

2ka2 M.
<—7.: (3-14)

<u„(l -cr)^3

The degree of in the numerator of the next term in (3.13) is higher than it is in
the first term; thus, a different approach is required in the analysis. A straightforward
computation shows that

\H(n)\
da>„ CnorK'M

< 0, 10 > 0.

It is clear that H{\)/Gn0T(a>x, /?3) is 0{l/(fi3R)). The remaining factor

(A + -a)- 2a) - 2D,aila/R2\HM
W + 1

which has magnitude less than one, can be divided into real and imaginary parts.
In this expression, |A 4- fe3|/|A + Cn| is clearly decreasing as increases, and the
quantity (1 - a - 2D3a/R2)/(l - a) ~ 1 for Z)3 small or large. It follows that
the absolute values of the real and imaginary parts of the second term in (3.13) are
monotonically decreasing as n increases. However, H(n) alternates in sign, which
implies by the alternating series test that

^ (A + b3)[(co2n{ 1 -a)- 2a) - 2 D,oi2na / R2]H{n)
<JTr- <3'15)

where M2/(fi3R) bounds the magnitude of the first term of the series.
With the estimates given in (3.14) and (3.15), the magnitude of the infinite sum,

5"3, in (3.2) can be analyzed. The following inequality follows from these estimates:
OO kZn(RaK

n= 1 n

<J2 lk°2Mx +^. (3.16)
^ oj2n( \-a)p, P3

2As con(\ - a) > (n - \)n and since <y,(l - <7) is bounded away from zero, the
comparison test can be used to show that the infinite sum on the right-hand side
of (3.16) converges absolutely. The mass balance relationships seen in Mahaffy,
Jorgensen, and Vanderheyden [8] show that k is proportional to p3 and that each
of these quantities varies inversely with D3. This shows that S3 is bounded, which
completes the proof of Lemma 3.3. In fact, the above estimate is very conservative.
Numerical studies show S3 tends rapidly to zero as either Z?3 —> 0 or R —> 00.

The final step in the analysis is the examination of the last factor in (3.2),
(1 - (A + 1 )(A + b2)S4), which contains the double sum. The following lemma shows
that this quantity is bounded for either small diffusivities or large R .
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Lemma 3.4. Consider the term (1 - (A + 1)(A + b2)S4) in (3.2). With Re(A) > -e,
this term is bounded as either 0 or R —> oo .

Proof. As {4>m , i//0)iy0(R) = 3S„/(R3(l - er3)), S4 can be written

, y 3 (S:f ™~8um(<t>m,vn)vn{R)

For /?, and R sufficiently large, Lemma 3.1 provides the estimates ju{ ~ %/3ct and
Hn > {m - l)7r/(1 - a). With this information, the following bounds can be found:

P]R\ l+fa) < ^ \+n\
GnoMm>P\) GnoMl ' PO Cr2(/zf(l - 0") - a)

(1 + 3(T)(1 -a)
<t3(2 + a)

m = 1,2,....

Thus, for and R sufficiently large and Re(A) > -e, the first infinite sum in
(3.17) satisfies

o2 y m
^ R\l-a')(X + AJ(X + b2)

6 a4

(1 -a3) ^fitfX + AJiX + bJ
6cr2(l + /j2.) 1

(3.18)

< (1 — cr3)(//7( 1 - o) - o)\k + A \ \\X + b2\ ̂  n2m
which is bounded.

The remaining double sum in (3.17) requires special treatment. A direct compu-
tation shows that

£

, + !)(-! )V<".2 + 1 >(»„v + 1)
tm(<t>m' Vn)Vn(R) =  "2 2^— \ 7^ 7 ^ ■ (3"19)

- Vn)°noMm ' ^1 )Gnor("» ' 0)
When m = n , /um and v are separated by less than tc/(2( 1 - a)). When m / n ,
the separation of and un is approximately an integer multiple of n/{\ - a).

Begin with the analysis of the terms where n — m. Let fim = vm + em . By
applying (2.4) to (2.3) with the above substitution, we obtain the following implicit
expression for em :

cos(^m0 -er)) [{vmPxRo + ew(l - a + pxRo)) cos(ew(l -a))

-("1+ 1 +P\R(J + 2em +£m)sin(£m(1 ~ CT))

= sin(i/m(l - a)) [{Vm + em)( 1 - a + pxRo) sin(em(l - cr))

+{P\Ra + 2em + e^) cos(em(l - a))

For vm ~ (w - 1)tt/(1 - cr) > pxRo > em , (3.20) yields

PXR°
£m {\-o)[ym + fi.Ra]-

(3.20)
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For vm » PxRo (or large m), this estimate gives

_ /?, Ra
m (m — \)n '

2 2which implies that —> 2fixRo/(\-a) as m —> oo . For small m , the estimate
in (3.20) cannot be used to determine the difference between jim and vm . However,

2 2for /?, bounded away from zero, it is easy to see that /um - vm remains bounded
2 2away from zero for all m > 1 . In fact, fim - v increases with increasing m .

The analysis of equation (3.19) continues by separating the factors that depend on
un and those that depend on nm and /?, . For vn, we examine

\f (Un + + *) \J("n + + 0
2s (3.2i:

^norn ' (I — (j)(l + <7 + <7^ + V^O

which tends to 1 /(cr(1 — cr)) as n -* oc . The factor given by

Jl2*2(flm+0 < /foV,+ 0 n
^no >„./»,) [^(l-a)-a](^+^2)' ^ '

clearly decreases to zero as /n —► oo. By differentiating this quantity with respect to
, one can easily show that it is monotonically decreasing to zero.

From the above information with m = n and Re(A) > —e, the alternating series
test can be applied to the series

^ \k + Am\\k + Bm\

to show convergence. In fact, from the monotonicity of the terms, this sum must be
less than the first term in the sum. For /?, and R bounded away from zero, one can
easily find a bound on this first term.

Next we examine the terms where m = n + k for k a nonzero integer and
m , n > 1 . For sake of definiteness, consider the case when k > 1 and n = 1,2,....
The other case where k < -1 and m = 1,2,... is handled similarly. Assume that
k is fixed and use (3.19) to examine

V^ ^n+k^n+k '

h \* + An+k\\* + Bn\ ' ( ' }
As stated before the eigenvalues nn+k and vn are separated by approximately
kjc/( 1 - cr) and vn ~ nn/(l - a), which implies that {/J^+k ~ vl) — + k)k7t2/
(l - a) . The information on the factors given in (3.21) and (3.22) still applies in
these cases, so again we can apply the alternating series test along the sums for each
k.

Thus, for k fixed, each of the infinite sums in (3.23) is bounded by the first term.
A total bound can be found by summing over k the first terms, i.e.,

y ^l+k^l+k > V|)^i W
h \l + Ax+k\\X + Bx\ ■ ( * j
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Since {n\+k - ^,2) ~ (2 + k)kn2/(1 - a)2 and since the factor (3.22) with m = k + 1
decreases with increasing k , (3.24) is absolutely covergent with a bound independent
of £>. and R.

As stated before, the remaining terms of the double sum can be handled in a
similar fashion; that is, the double sum,

vk+l)vk+l{R)\g g Vn)VnW
m=1n>m + Am \ \k + BJ

oo

<

k=\ |A + At \ |A + ^+1|

converges absolutely. Thus, S4 has a bound independent of Dj and R, and the
lemma is established. In fact, the computer studies indicate that the double sum
converges to zero.

Now Lemma 3.1 shows that |.P(A)| is bounded, while Lemmas 3.2-3.4 taken to-
gether show that |(2(A)| —> 0 as R —> oo or Dj. —> 0, i = 1,2,3 for Re(A) > -e .
Thus, there are no solutions to (2.9) with Re(A) > —e under the conditions of either
Theorem 2.1 or Theorem 2.2. This proves the stability results of these theorems.
Note that as k —> 0, (2.11) shows that \Q(X)\ —> 0. The proof of Theorem 2.3
follows immediately by a similar argument.

4. Discussion. This study furthers the analysis of the model developed by Mahaffy,
Jorgensen, and Vanderheyden [8], The two-compartment model represents a cell
that uses negative feedback or repression to control the production of a protein or
permease that mediates transport of some nutrient or other substance across the cell
membrane. At sufficiently high concentrations, the nutrient (perhaps with another
protein) binds to the operator region of the gene used to produce the permease and
represses the transcription process. This lowers the concentration of the permease,
which in turn lowers the concentration of the nutrient. Related repression models
have been shown to exhibit oscillatory behavior. (See [1, 2, 4, 6, 12, 13, 14].)

Mathematically, this study shows how some reaction diffusion models with time
delays can be reduced to an analysis of a system of delay differential equations and
linear Volterra equations that have only exponentially damped spatial dependence.
Thus, the structure of certain models that may include diffusion have their behavior
controlled by the time varying part of the equations. This allows analysis by classical
techniques for time varying systems of equations, i.e., analysis of a characteristic
equation. From our analysis we have in effect shown how the diffusion operator can
act as a time delay, though it is significantly more complicated than adding a simple
time delay to the original system of equations.

When compared to the work of Busenberg and Mahaffy [2] on a repression model
with diffusion and time delays, the stability results presented here required substan-
tially more effort. The principal difference in the models in these studies is the
mixed boundary condition for transport of the nutrient across the cell membrane.
This added complexity does not make the numerical studies or the comparison to
a well-mixed model at high diffusivities substantially harder, as seen in [8]. The
increased difficulty in obtaining the stability results suggests that the analysis done
for this model may not extend to related models with additional complexities. Since
Theorems 2.1 and 2.2 can be interpreted physically as having the decay processes
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dominate the diffusion, one might expect that some other approach may give a more
general stability result.

From an extension of the method described in Mahaffy [7], the characteristic
equation (2.9) can be studied numerically to determine where a supercritical Hopf
bifurcation occurs as the time delay, T, is varied. Mahaffy, Jorgensen, and Vander-
heyden [8] have generated a series of bifurcation curves that show how the region
of stability changes as the parameters D/,, R , or k vary. Their study shows that
for high diffusivities, D , the region of stability matches that of a corresponding
well-mixed model. As the diffusivities decrease, the critical delay, T, necessary for a
Hopf bifurcation decreases. This supports the heuristic notion that diffusion acts like
a delay, at least for intermediate values of the diffusivities. For very small diffusiv-
ities, the numerical studies support Theorem 2.1 showing the critical delay tending
to infinity. The physical interpretation of this result is that the molecular motion
through the cell is slowed to where the delay processes predominate. One open prob-
lem suggested by the numerical studies that has not been answered analytically is how
one can determine which values of the diffusivities are most destabilizing.

The numerical study of Mahaffy, Jorgensen, and Vanderheyden [8] shows that the
critical delay at the Hopf bifurcation increases as the cell radius increases. Theorem
2.2 shows that there is some finite cell that guarantees that (1.1) is locally stable.
Physically, this implies that when the cell gets too large the biochemical species must
diffuse too far to react, so the decay processes once again predominate. The numer-
ical studies for this model have only shown this bifurcation curve to be monotonic;
however, Busenberg and Mahaffy [3] produced parameter values where a related re-
pression model becomes less stable as the cell size increases for small cell radii. In
a result that our Theorem 2.2 parallels, they proved that when the cell is sufficiently
large, the repression model is locally stable.

Perhaps the most interesting result from this model is the observation that (1.1)
becomes more unstable as the external concentration of the nutrient is increased or,
equivalently, k increases. Theorem 2.3 shows that (1.1) is always locally stable when
this external concentration is sufficiently low; however, the numerical studies show
that the critical delay for a Hopf bifurcation decreases as k increases. If this external
nutrient was a morphogen, then our results show that for very low concentrations the
model is locally stable. As the concentration in the environment increases, the model
undergoes a Hopf bifurcation (as the critical delay is fixed for biological reasons).
With the Hopf bifurcation the intracellular concentration of the morphogen begins
to oscillate, which could signal to the cell that it should alter its response to the
environment. This is one aspect of morphogenesis.
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