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Abstract. The linear gravity waves created by a moving oscillatory source are con-
sidered in a fluid of finite uniform depth bounded on one side by a vertical cliff. The
unsteady asymptotic waves are determined by Bliestien's asymptotic expansion to the
exact Fourier transform solution. Several physically interesting results are obtained.
The fronts of each of the waves generated by the source are determined for all times
and for all values of the parameters. The physical cause of the singularity of solution
for certain values of the parameters is explained.

1. Introduction. We study the linear two-dimensional gravity wave problem gen-
erated by a source which moves with a constant velocity V and oscillates with a
frequency a>. The fluid is incompressible inviscid and of finite uniform depth h
and is bounded on one side by a vertical cliff.

This problem without the cliff has been considered by Debnath and Rosenblat [3]
and there are similar problems considered by many other authors. The problem with
surface tension has been investigated by Pramanik and Majumdar [4], The linear
case and also some nonlinear considerations have been studied by Akylas [1], A
similar problem on a sloping beach has been considered by Sarkar [5]. Generally the
long time behaviour of the resulting far field waves are determined by the asymptotic
estimate of the integrals in the Fourier transform solution and the asymptotic method
in most cases has been the method of stationary phase. However, this method fails
when a stationary point of certain integral coincides with its pole. Methods are
available to overcome this difficulty. The method of Bliestien [2] is particularly
suitable for the present case.

Mathematically the coincidence of a stationary point with the pole represents some
functional relationship between three parameters a, b , and c, where a represents
the dimensionless velocity V, b the dimensionless frequency co, and c the dimen-
sionless ratio between the distance and the time. Treating these relations as some
surfaces in the (a, b, c) space, these surfaces are determined for all possible values
of the parameters. Then it is ultimately shown that these surfaces physically repre-
sent the positions of the wave fronts for various values of the parameters V , co,
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and h and each front moves with the group velocity of the corresponding wave. As
found by Debnath and Rosenblat, it is also found here that four progressive waves
are generated by the source. Referring to a fixed set of axes, three waves and their
fronts move in the direction of motion of the source. Among them one front remains
in the upstream side and two in the downstream side. The remaining wave and its
front move in the opposite direction of motion of the source and on reaching the cliff
are reflected back and this reflection occurs for all possible values of the parameters,
though for large values of a> the front of the reflected wave remains very near to
the cliff. The physical reason for the occurrence of the singularity of solution for
certain values of the parameters is explained. It is observed that for those values of
the parameters the two wave fronts, one in the upstream side and the other in the
downstream side, coincide at the source. As a result the energy created by the source
cannot come out of it.

2. Formulation. We consider the two-dimensional problem of wave generation on
the surface of incompressible inviscid fluid of finite uniform depth bounded on one
side by a vertical cliff. The wave generating mechanism is the applied free surface
pressure distribution p(x, t) which is switched on at the initial moment t = 0 and
at the same time moves with a uniform velocity V away from the cliff, where the
x-axis is along the undisturbed free surface and the y-axis is vertically upwards.
Then in the fixed coordinate system with the origin at the cliff we have the following
initial-boundary value problem:

(pxx + <Pyy = ° in 0 < x < oo, -h<y<0, ?>0, (1)

<pt + gri+ ^p{x, t) = 0
1, = <Py

at v = 0.
(3)

If we suppose that the pressure distribution initially occupies the interval (0, /) in
Eq. (2), then p(x, t) is nonzero only over the interval (V t, I + V t).

<px — 0 at x = 0, <py = 0 at y = -h, (4)
cp(x, y, 0) = 0, rj(x,0) — 0, (5)

where <p(x , y, t) is the velocity potential, t](x, t) is the free surface elevation, and
h is the depth of the fluid. The functions here are assumed defined as generalized
functions as was done in [3].

To solve the problem we write (p and p in the following integral form:

[2 r°°(p = \ — / A(k, t) cosh k(y + h) cos kxdk, (6a)
71 0

* ^0

Substitution of (6) into (2) and (3) gives

p(x,t) = \l— I p{k , t) cos kxdk . (6b)

+ a2.4 — sech kh°i-,
dt2 P dt

2where a" = gk tanh kh .
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A solution of this equation using the initial conditions (4) gives

A — — — sech kh
P

1 / p(k, r) cos a{t - x)dr.
Jo

Then by Eq. (2) we obtain

[2 1 f°° ['_rj = \ / crcoskxdk p{k , t) sin o(t - r) dx. (7)
V n gp Jo Jo

Now, since p(x, t) is nonzero only over the interval (Vt, I + Vt), the inversion of
(6b) gives

/~2~ rl+Vt
p(k, t) — \l — J p(x , t) cos kx dx

n _ r

2 /'' p(x + Vt, t)cosk(x + Vt)dx.
n Jo

Again we suppose that p(x, t) = f(x)e'w and that the value of the function f(x)
depends only on the distance from the end point of the pressure region. Substitution
of all these into (7) finally gives

2
f1 =

2 f°° f^
— / acoskxdk / sin<r(/ - x)ewn dx / f(a) cos k(a + Vt) da.
nSP Jo Jo JonSP Jo Jo Jo

After completing the integration over x, the integral for t] can be broken up into
a number of integrals, each containing one or two poles. The existence of these
integrals is assured by the assumption of generalized function. Thus, we get

4 npgrt=J2J2Imn> (8)
m= 1 n= 1

where
rOO r OO

/,, = / Fl(k)emx+Vt)+Wl] dk, /12= /
io Jo

r oo roo
7,3 = ~ / dk, /14 = — I Fx(k)ei(-kx+a,) dk ,

Jo Jo
/,,=-/ F,(k)e^' dk, /„ = - / F,(k)e'[-k(x-V,)+wt] dk.

rOO /• oo

/ F2(fc)e/['t(jc+K')+°"1 dfc, I22 = - F^)e'[
Jo Jo

n QQ /» OC

7,3 = / F2(k)ei{kx~an dk, /24 = I FJk)e~i(kx+at) dk,
Jo Jo

r OO rOO

I = _ f f dk 5 7 = _ f F^k)emx-vt)+m dk
Jo Jo

rOO rOO

733 = - / F}(k)e x+a,) dk, IM= F}(k)e'{~ +al) dk,
J 0 ./o

/'OO /*oo

/4] = / F4(/c}e'[_ dk, /42 = / F4(A-)e'["(A'-,7,+w'1 dk,
Jo Jo

rOO roo
hi = - I FA(k)el(kx-°'] dk , /44 = - / FA{k)e~,{kx+at) dk ,

./o io
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and

ofAk)
F^k) kV-a + co' Fl(/c) kV + a + co'

(k _ af2{k) _ af2(k)
kV + a-u' 4( kV -a-co

fx(k) = f f{x)e'kxdx, f2(k) = f f(x)e ,kx dx,
J 0 Jo

a — [g/ctanh/r/z]'^ .

3. Asymptotic unsteady waves. We are interested in the asymptotic waves for large
values of t and x such that x/t remains finite. The dominant contributions to this
asymptotic value come from the stationary point and the poles of the integrals. We
note the poles are the roots of the following equations:

o = kV + co,
a = —kV + co, (9)
a — kV - co.

While the second and the third equations each always have one root, say a3 and a4 ,
respectively, the first may have two roots, say a{ and a2 (a, < a2). For certain
values of the parameters V , co, and h the two roots may coincide, thereby forming
the double pole. We shall elaborate on this point below. Meanwhile we denote this
case by writing V = V* and note that for V < V* both a, and a2 exist, and for
V > V* none exist. There may be one stationary point to various integrals. This
stationary point k = a0 is the solution of the equation

a' — x/t. (10)

We note that a0 exists only when \fgh > x/t. The asymptotic value of an integral
containing either a pole or a stationary point can be obtained by well-known standard
methods. For an integral containing both a stationary point and a pole, Bliestien's
method may be conveniently applied. We consider the integral /,4 . For V* > V
and (gh){/2 > x/t, we break it up as follows:

1
(ai - a2Y

where

,, = / q(k) k — ax

/14 = ——— (Jt-Jj, (n:

'i

and
fJo

Jo2 Jo <7(k) k - a2
here

„a'(a ) - V
Q(an) = (—1)  , n= 1.2.
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To evaluate 7, the following transformation is made:

o- - jk - (crj - j«i) = - Qw2 + , (12)

where we introduce the notation

an = CT(Qn)> « = 0, 1,2,3,4. (13)

Then it follows that the pole k = a, and the stationary point k — a0 correspond
respectively to u = 0 and u - -a, . Also we get the relations

= (ffQ-ff,)- y(a0-ai)» (14)

sgna, = sgn(a, - aQ). (15)

These two relations determine the unknown parameter a,. Then, using Bliestien's
expansion, Jx is approximately reduced to

J = e'W(Ti-ai/2)-aix] 2/-, f00 ■, 2/i' itu jlA r ^±_e-»-'2du+B r
J-oo u-a{ '7-

/i . ^ / 1 , 2 \ /(CT.<-a,x)= — 7r( 1 + i)A\ sgn ajcis I -tal J e ' '

+ B, (y) "2 (1 - ,

— IIU 1

e du

where

1/2oJx{ax) go/iK) I !_1 ,
1 *'(«,)-^' ' K-a0F-co)\ a"(a0) /

cis(x) = c(x) + is(x),
1 fx

[c(x), s(x)] = —j= / [cosx, sinx]—= dx .
v2n Jo \fx

The integral J2 can be similarly evaluated. The complete asymptotic values of the
integral /14 are as follows:

2
r 1/2/, r'a ■ (i i(a„,~"„x)/14= -n (i + i)2^ 71 ^„sgna„cis [ 2a"t)e

n=\ ^ '

+it~l/2B ei{t{a»+a»,2-a"x)}

(for \fgh > x/t, V* > V)

= ni^2,Anel{'a,'t~a"x) (for y/gh < x/t, V* > V)
n=l

In

n= 1

1/2 ft \
aQj\\a0> J("ot-a0x-M/4)

/|CT0 o0-aQV -co
e,(a,t a0x 71/4) (for ^ > x/t ^ < F) _
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The quantities a2, A2, and B1 are defined similarly to the corresponding quantities
with suffix /. All other integrals in (8) can be similarly evaluated. The far field
asymptotic wave is the combination of all those asymptotic values. In the following
we write down this asymptotic wave. We incorporate the Heaviside step function H
to include all possible cases.

4npgt]= - 7C(1 + i)H (yfgh - y)

H(V* - V)At sgnaj cis e'(a''~a,x)

+ N(V-V)A2 ss„a2c,sQ4)e«-i-">»

+ A3 sgn a3cis {^a

—iA4 sgna4cis e~'(<v_<vc)

X)niH (y - y/gh^j [H{V* - V)Alei{"[t

+ H{V* - V)A2ei{"2' "2*] + A3ei{a'1 a,x)

- A.e~i(a^x)]

+ Ti i sgn (x - Vt) - [H{V* - V)A/(a,t a,x) + H(V* - V)A2e'("2t °lX)

- Aie'{ai'+ayX) - A4e~i{a*'~a*x)]

/((T3r+QjX) 1
+ niA3[ey3'™3*' + e

+ „(^_£)(£)"2(1_,)

H[V* — V)Bie'<~a>t Qix+ai'/2) _|_ B1H(V* — V)e^"2' a2x+a2'/2^

+ H

,i(o3t-a}x+a}t/2) ^_ jR ^-i(o4t-a4x+a4t/2)

1/2(V^-x7) 2n

+ B3eKi + iB4e~

H(V — F*)g0/1(a0)
t\a (a0)| a0-aov ~ a

i(o0t-a0x-n/4)

+ go/i(Qo) cHo0t-<*0x-n/4)
Cg + Qg V + co (16)

Here the quantities a3 and a4 are related respectively to the roots a3 and c*4 in
the same way as a, is related to a, and

f % 1/2°V2(a3) n _ '^3 I Wa0) J 1 I
^ _ i-1 i' g _  i _i_

3 a'(a3) + V ' 3 a3 a0+a0K-(o | cr"(«0)

^ _ <J4-^2(Q4) ft _ ^4 _|_ ffQ^ao) [ 1
'4 c'(a4)— V ' 4 «4 ffo_aoK + tul CT"(ao)

1/2
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4. Steady states waves. For t —> oo, the above system reduces to a steady wave
system with constant amplitude and the expression for t] takes a simple form. To
write down this expression for r/ in a convenient way we introduce the following
notation:

iA, ila.t—a.x) —iAj i(o t—a-,x)
^ = 2jrge ' ^ =

_ iA3 i(a3t+g3x) ' _ '(<¥-"3*) /1 1)h~2 pge ' ^~2 pge ' ( j

_ iA4 -i(a4t-a4x)
4 2 pg

Then we have the following expression for the steady state value of t]:

2n = -H (y/gh - y) [H(V* - V) sgn(Q, - a0)r,l — H{V* — V) sgn(a2 - aQ)r,2

+ sgn(a3 - a0)^ - sgn(a4 - a0)t]4]

- H (y - [//(K* - V)r/l - H(V* - V)i/2 + ^ - //4)]

+ sgn (y - K) [//(F* - K)^, - //(F* - F)^2 - r,3 - rj4] + (r,} + rj'3). (18)

From the above expression it follows that the nature of the ultimate wave pattern
depends upon the relative magnitude between the elements of the pairs (V, V*),
(.x/t, V), {x/t, \fgh), and (an , aQ), n = I4. This implies that the existence
and position of each of five waves represented in (17) depend upon the values of the
parameters V, co, and h and also on the ratio x/t. For given values of these
parameters the distributions of the waves can be determined in the following way.
First we investigate the case when the elements of each of the pairs coincide. Let
us consider the case a0 = ax , aQ = a2 . The condition for this occurrence can be
written as

o = kV + <jL>, o = x/t. (19)
We make the transformation kh = X. Then (19) reduces to

a = aX + b, a' = c, (20)
where

V , (l)Vh X 1 u ixl/2a = ,  , b=—— , c = 7= , a = (AtanhA)\fgh \fg ' yfgh
Now (20) can be regarded as a surface in the (a, b, c) space where A is a variable
parameter. In fact this represents two surfaces, 5, representing the case a0 — a{
and S-, representing the case aQ — a7. The range of values of the parameter A is
determined by the fact that all the quantities a, b, c are positive. It is also clear
that branches of the surfaces exist only in the region c < 1 and a < 1 . The last
condition arises from the fact that for a > 1 , the poles a, and a2 do not exist.
Now we consider a section of these surfaces by a plane a — constant which is shown
in Fig. 1. The section of a surface Sn by a plane a = constant will be denoted by
the curve cn, n = 0, 1,2,3,4.

The portion AB represents the case a0 = a, and BC represents the case a0 =
a7. The point B separates the two cases so that an = a. = a? at B . In a similar way
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0 0 2 0-4 0-6 0-8 1-0 C

Fig. 1. Position of wave fronts for a = 0.5 .

the conditions a0 = a3 and aQ = a4 represent the surfaces S3 and S4 , respectively,
and their equations are

a = -aX + b, a' — c, (21)
a = aX — b, a' = c. (22)

These two surfaces exist for all values of a. For a > 1 , the sections of these two
surfaces in the (b, c) plane are shown in Fig. 2.

Let us now consider the case V = V*, for which the condition is

a — ak + b, a' — a. (23)

This is again a surface SQ in the (a, b, c) space and in fact this is a cylindrical
surface with generators parallel to the c-axis. The section of this surface by a plane
c = constant has the constant form shown in Fig. 3. This is the curve obtained
by Debnath and Rosenblat [3] though the parameters a and b are defined by them
in a slightly different way. The section of SQ by the plane a = constant < 1 is a
straight line, shown in Fig. 1 by the dotted line. This straight line touches the curves
c, and c, at B . Now in the different regions separated by these curves the relative
magnitudes between the quantities mentioned above can easily be determined. We
at first consider the case in the (b, c) plane for a fixed value of a. We note that
V > V* for points (b, c) above the dotted line, while the reverse takes place for
(b, c) below this line. To determine the relative magnitude between aQ and an ,
n = 1,2,3,4, we proceed as follows. We fix the value of the quantity b and
increase c from zero. Then all an are fixed and qq decreases from infinity. In
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0-1 0'4 0-7 l"0 C

Fio. 2. Position of the wave fronts for a = 1.5 .

0 0-04 0 08 1-0 12 G

Fig. 3. The critical curve in the (a, b) plane.

this process in the (b, c) plane we first meet the curve c4 where a0 = a4 and
then in succession the curves c2, c, , and c3 are intersected. It follows therefore
that the inequality aQ > an takes place for points (b, c) to the left of the curve
cn, n = 1, ... , 4 and the reverse inequality occurs for (b, c) to the right of the
corresponding curve.
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0 0-04 0 08 1-0 1-2 1-4 Q

Fig. 4. The curves T, and T2 in the a = c plane.

Now since the above results hold for all possible values of a , the results are true in
general in the (a, b, c) space. So in the above statements we are to replace "curves
cn" by "surfaces Sn In addition to these surfaces there are two space curves which
are important for our discussions. The first curve is the locus of the point B and
the second is the locus of the point D for all possible values of a . Let these curves
be respectively denoted by r( and T2 . Their equations may be written as

a = </(A),
r,: b = <7(A) - Ac/(A),

c = c/(A),

a — er'(A),
r2: b = <r(A) + Ac/(A),

c = cr'(A),

0 < A < oo, (24)

0 < A < oo . (25)

It is easy to see that T, is the curve along which the surface S0 touches the surfaces
5, and S-, and both curves are in fact plane curves lying in the plane a = c. These
curves are shown in Fig. 4 where OA' is the line of intersection of the plane a — c
with the (a, c) plane. Now the plane a — c has the physical significance that it is
the plane generated by the positions of the source for all possible values of the source
velocity a.

Thus the points to the left and to the right of this plane represent respectively the
downstream and upstream sides. Thus the surface 5, lies in the upstream side and
the surface S2 in the downstream side. For points (a, b) below the curve T-,, c3
lies in the upstream side, while for (a, b) above V2, c3 is in the downstream side.
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It is now easy to understand that the surfaces Sn physically represent four moving
lines on the water surface. Let these lines be denoted by x = xn , n = 1, , 4, and
let x = x0 represent the position of the source. Then the following inequalities at
once follow:

X4 < X2 < X0 < Xl < X3

for (a', b) below the curve T. ,

X4 < X0 < X3

for (a , b) above the curve Tj but below the curve T2, and

X4 < X3 < X0

for (a', b) above the curve 1% . Here a is the distance along OA'.
The distribution of the five waves in the various regions in between the five lines

is different. The following distributions can easily be determined from the general
expression (18) with the help of the above discussions:

1=13 + ^3 in x < x4 ,

= I3 + I3 + 14 in x4 < x < x2 ,

= t]2 + rj3 + rj'3 + r)4 in x2 < x < x0,

+ 1i in xQ < x < x
/

= t/3 in xx < x < x3,
= 0 in x3 < x

1'

for {a , b) below the curve T.

t] =t]3 + tj3 in x < x4,

= 13 + l'} + 14 in x4 < x < x0 ,

= t)'i in xQ < x < x3,

= 0 in x3 < x

for (,a , b) above T. but below T,, and

1 =1} + 1i in x < x4,

= It, + v'3, + 1a in x4 < x < x3.
= I3 + I4 in x3 < x < x(0'
= 0 in x0 < x

for (a , b) above the curve T,. A scrutiny of the above results at once leads us to
the following conclusions. The waves ?/,, t]2, ?/3, and t]4 are the waves generated
by the source and are the same waves found in horizontally unbounded fluid as
found by Debnath and Rosenblat [3] and is the reflection of t]} on the cliff. The
surfaces Sn are nothing but the positions of four wave fronts for various values of
the parameters a and b . Among them 5, , S2, and S4 are the wave fronts of the



448 A. K. PRAMANIK and M. MAJUMDAR

waves t]l, t]2, and t]4 , respectively, and S3 is the wave front of the reflected wave
?/3 . Each wave front moves with the group velocity of the corresponding wave and
moves in the direction of motion of the source. This is evident from the equations
of representation of the surfaces Sn. There is no wave front of the wave . It is
the only wave that moves in the opposite direction of motion of the source and, since
it has the greatest group velocity, is reflected before forming a front. Had there been
no cliff, its front would be found on the other side of the cliff. For all values of the
parameters the dimensionless group velocity of ?/, is greater than the dimensionless
source velocity a. That is why this wave front is ahead of the source whenever
>7, exists. Similarly since the group velocity of and rj4 is always less than a,
their fronts are behind the source. For points (a, b) below the curve T2 , the group
velocity of rj'3 is greater than a so that its front is ahead of the source. But for
(a, b) above Y2, since the group velocity of t]'3 is less than a, the front cannot
reach the source.

It is noted that all the fronts always lie to the left of the plane c = 1 . This follows
from the fact that in a fluid of finite depth the maximum value of the dimensionless
group velocity is 1 and the maximum distance covered by any front at any time from
the starting point is given by c = 1 . That is the reason for which some wave fronts
exist in the upstream side for a < 1 while for a > 1 there is no front in the upstream
side.

For a fixed value of a < 1 as b increases from zero, the group velocity t]{
decreases, remaining greater than a, and that of rj2 increases, remaining less than
a, so that the two fronts gradually come close to each other. Ultimately, when b
reaches the value such that the point (a, b) lies on the curve T, , the group velocities
of and rj-, become equal to a and the fronts coincide at the source. Then the
waves t]r and rj2, though generated by the source, cannot come out of the source.
This is the cause of the singularity of the solution for these values of the parameters.
As b still increases 77, and rj2 do not exist and the group velocities of and a/4
continually decrease. For large values of b , the group velocities of rj3 and r)A being
small, their fronts remain always near the starting point at the cliff.

Fig. 5. Free surface elevation for a = 0.1 , b = 0.5 .
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The free surface elevation is computed for the pressure distribution where f(x) =
constant = p0 in 0 < x < /. The results are expressed in dimensionless form. The
wave number k is made dimensionless by the length scale h and rj is made dimen-
sionless by p0/{pg). Then x/h and t(g/h)l/2 become respectively the dimension-
less distance and time, and, in the expression for t], there appear the dimensionless
quantities a, b, and l/h . Figure 5 shows the result for a — 0.1 , b = 0.5, and
l/h = 1 . It follows from the figure that there is regular interference between the
various components of the wave, and the main disturbance is confined downstream
in the neighborhood of the source. In the upstream side and far downstream the
disturbance is small.

The authors are grateful to the referee for suggestions on improving the paper.
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