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Abstract. Stationary waves in an open channel with corrugated side walls possess
resonant speeds at or near which the prediction of free surface waves by the linear
approximation fails. However, if the nonlinear terms in the Euler equation and
boundary conditions are kept, a finite amplitude of these stationary waves can be
determined. In this paper, such a nonlinear approach is presented, and the amplitude
of the waves near the resonant speeds is determined to be of the order of the one-third
power of the side-wall corrugation amplitude.

Introduction. The problem of resonance considered in this paper was first men-
tioned, but not solved, by Yih when dealing with stationary water waves in a channel
induced by vertical corrugated side-walls [11] and stationary waves in a meandering
stream [12]. These water waves, which have longitudinal wavelengths equal to the
wavelength of the wall corrugation, and transverse wave-numbers as well, were first
observed by Binnie [3] in a conduit with corrugated walls. Yih [11] gave an ana-
lytical solution to the stationary waves, which he called Binnie waves, although the
waves discovered by Binnie also included waves moving upstream into the contrac-
tion which led from the supply reservoir. Yih [11] took the waviness of the side
walls fully into account in his solution and revealed the mechanism by which the
stationary waves were created. The stationary waves consist of infinitely many wave
components, each with a different transverse wave-number. However, these linear
solutions fail as the upstream velocity takes critical values, namely, when its compo-
nent normal to the slanted waves is equal to the wave speeds in quiet water [11, 12].
The failure of the linear solution is inevitable as resonance occurs when these critical
upstream velocities are reached.

The study of near-resonance problems of a water system involving a free surface
and some sort of external oscillating force is of considerable practical importance.
With the frequency of the oscillating force being near the so-called "cut-off' fre-
quency, the excitation usually produces large responses (e.g., see Aranha et al. [1]).
Such large responses can be found in a number of cases discussed previously in the
literature. For example, Lamb [9] treated surface waves caused by a flow over a
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wavy bottom and encountered resonance as infinite amplitude was found at a criti-
cal Froude number. When discussing the failure of the solution near the resonance,
Lamb conjectured that "To obtain an intelligible result in this case, we should be com-
pelled to take special account of dissipative forces." However, later works showed
that this is one of the very few places in Lamb's book to be in error. The resonant
oscillations produced in a gas-filled tube closed at one end by a rigid barrier, and at
the other by a vibrating piston were investigated by Betchov [2], Chu and Ying [4],
and Chester [5], They concluded that the oscillations near resonance appeared to be
governed by nonlinear effects. Chester [5] presented a theoretical solution, by taking
the nonlinear effects into account, of the problem of the unsteady surface oscillations
in a finite tank under prescribed horizontal sinusoidal displacement. His result was
compared with the experimental results, and reasonable agreement between the the-
ory and experiment was found. Ockendon and Ockendon [10] extended Chester's
analysis and found an explicit asymptotic solution. An asymptotic expansion with
multiple scales was adopted by Jones [8] to deal with the resonance in a long deep
channel with cross waves. Dagan and Miloh [6] showed that the resonance, occur-
ring when a flow past a body that moves at a constant speed and simultaneously
performs an oscillation near the free surface, can be removed by considering higher-
order free-surface nonlinear effects. Ellermeier [7] challenged Lamb's [9] conjecture
after carefully taking nonlinearity into consideration and successfully determining
the amplitude of the free surface waves induced by a flow over a wavy bottom. All
these studies have demonstrated the importance of including the nonlinear effects
rather than the "dissipative forces" for the free-surface oscillation near resonance.

The aim of this paper is to present a solution to the problem of a layer of water
flowing through a channel with corrugated side walls near critical speeds. In the
following sections, Yih's solution [11] will first be shown to be a natural consequence
of the first-order solution as an asymptotic expansion is applied to the nonlinear
governing differential system in the water channel. To suppress the resonance near
the critical flow speed, the expansion is carried out further, up to the third order
of a small quantity e, which is directly related to the amplitude of the corrugated
side walls. It will be shown that the amplitude of the free surface waves, near the
primary critical mean-flow speed (those found in the first-order approximation), is of
the order of the side-wall corrugation amplitude to the one-third power. Higher-order
resonances may exist as well, and their analysis becomes increasingly complicated.
However, the chance of these higher-order resonances being excited becomes less
and less as the order increases. They are therefore not as important as the primary
resonances treated herein.

1. Formulation of the problem. A layer of incompressible, inviscid fluid with mean
layer thickness h flows through an open channel with corrugated side walls described
by y* = ±L + Acosk*x*, where k* is the dimensional wave number of the channel-
width variation, L is the mean half-width of the channel and A {A L) is the
amplitude of the corrugated side walls. The coordinate system is chosen such that
the (x, y)-plane is the mean position of the free surface when the fluid is tranquil
and the z-axis points vertically upward as shown in Fig. 1.
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Fig. 1. A schematic view of the water channel and coordinate system.

The theory is constructed on the assumption of irrotational flow. If the upstream
velocity U is adopted as the velocity scale and L as the length scale, the dimension-
less governing differential equation for the potential flow is the Laplace equation:

A^ = ^ + ^ + ^z = °, (1)
where 0 is the potential function from which the velocity components are found as
follows:

(u,v,w) = (<f>x,^y,4>z). (2)
In (1) and (2), subscripts denote partial differentiation, and x,y, z are dimen-
sionless coordinates measured, respectively, along the channel center line, across the
channel and in the direction opposite to the gravitational acceleration g.

Let the dimensionless displacement of the free surface above its mean position
be denoted by C • Then, with the flow steady, the kinematic condition for the free
surface is

uCx + vCy = w (3)
and the Bernoulli equation written for the free surface is

+ v2 + w2 + 2F "£ = const., (4)

where F is the Froude number defined as Uj\fgL.
Upon eliminating £ from (3) and (4), the boundary condition on the free surface

becomes

+ +*!}) + 4 + ̂  +ir 2+. =0 • <5)
If the dimensionless mean depth is denoted by d (= h/L), the boundary condition
expressing zero fluid flux at the bottom of the channel is

(p, = 0 at z = -d. (6)
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The boundary conditions on the side walls are

A
(j)n = 0 at y = ±1 + — cos kx , (7)

where k is the dimensionless wave number of the side-wall corrugation and n is the
direction normal to the side wall. Equations (1), (5), (6), and (7) govern the fluid
motion in the channel, even though the flow along the channel is yet to be built into
the system.

2. Solution. Following the conformal mapping adopted in Yih [11], the governing
differential equation as well as the boundary conditions can be transformed into a
space where the y-plane {y = a + ifi, i = -1) replaces the w-plane (w = x + iy)
according to the transformation function

w - y + a sin y , (8)

where a = ^4/(Lsinh/c), the dimensionless amplitude of the wavy side walls. After
the transformation, the governing differential equation in the new coordinate system
(shown in Fig. 2 with z-coordinate unchanged) becomes

J^aa + ^P^ + ^zz =0' (9)

which is to be subject to the boundary conditions

j. d j. 9
J V' ada +(t)t)dp + 2F 2<f>, = 0 at z = C, (10)1 , ,2 ,2 , ,2

+ <t>2

^=0 atj? = ±l, (11)
<f> = 0 at z = -d, (12)

where J is the Jacobian of the transformation given in [11] as

J = ' ol — 1 + cos/ca cosh kfi + a2k2(cos" ka + sinh2 kfi). (13)
^ (^ 5 P )

w = w(y)

w plane
V//////////////A

P
y plane

^//////////////////y.

Fig. 2. The mapping between «;-plane and '/-plane.
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After expanding <j>, a, and ( in terms of a small quantity e, which is a small
number directly related to the amplitude of the side-wall corrugation,1 one obtains

2 3a = ea, + e~a2 + e a3 + • • • , (14).

(j) = 4>q -\- E(f>i + £ </>2 + £ </>3 + • • • , (15)
C = £C,+£2C2 + e3C3 + ---- (16)

Equations (14), (15), and (16) can be inserted into (8)—(12) to form the differential
equation and boundary conditions order by order after the boundary conditions on
the free surface are expanded in a Taylor series. The <f>0 term in the above expansion
is nothing but the potential function corresponding to the uniform flow, i.e., <f>0 = a .
The first-order differential equation and boundary conditions are

^laa + + ^lzz = (17)
—2 2

<j)Xaa + 2F <f>iz = -aik sin ka cosh k p atz = 0, (18)
= 0 at /? = ± 1, (19)

4>Xz = 0 at z = -d, (20)
which are identical to the governing differential equations in [11],

The second-order differential equation and boundary conditions are nonhomo-
geneous because the product of the terms of the first-order solution becomes the
nonhomogeneous terms on the right-hand side of the second-order equations. They
are, by collecting the terms of order e ,

Ka + F 2<t>2 z = ~

(t>2aa + <t>2fifl+(t)2zz = ~2ka\ COS COSh Wlzz, (21)

£ (VL + 4>\, + '2*1) + {, + F~*K1
2 2+ a2k sin ka cosh k fi + a^k sin ka cosh kfi(f)la

3
+ 2axk coskacoshkfi(t>laa - 3axk cos/casinhA:/?</> 1/?

2 3 _2+ a",k coskasinhkfl + 6a.F cos k a cosh k/3(p1 z

(22)
at z — 0,

<t>2p = 0 atj? = ±l, (23)
02z = 0 at z = -d. (24)

Similarly, the third-order differential equation and boundary conditions are
brought forth by collecting all terms of order e . After some simplification they
are

Ka + ^fifi + Kz = ~[1k cos ka cosh kfi(a2(f)izz + a{<j)2zz)
2 2 2 21-\-a~.k~(cos" ka + sinh kfi)</>, ],

1 The expansion here has followed Ellermeier's [7] procedure for studying flows over a wavy bottom rather
closely; the explicit relation between e and a will be shown after the third-order differential equation is
solved.
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haa + F ^3z ~~ |^a[^(^la^2a + + ^lz^2zl + <=lgz^2aa +^2z)

9 ( ,2 ,2 1 ,2 \ r d , , _-2 , .
+ (<t>\a + (t>\p + 2 >z) + ~3~z iaQ +

1+ 2

1+ 3

+ ^z) + ^xpgp^U, + *1

£«L> + ̂<*?,> 2-\- a-.k~ sin /ca cosh A: /?

+ a,/, (a, /?) + a2f2{oc, /?) + a^a2f-i{a, /?) + a, ^(a, /?)

(26)
at z = 0,

03/? = O at /? = ± 1, (27)
<^3, = 0 at z = -d, (28)

where fx, f2, /3, and /4 are functions of a and /?, the explicit expressions of
which are not needed since eventually and a, will be shown to be zero.

The first-order differential equation and boundary conditions (17)—(20) constitute
an eigenvalue problem, the solution of which takes the form

OO

</>, = 22 An sin ka cos nn cosh rn(z + d), (29)
n=o

where

rn = \Jk2 + n2n2 for n — 0, 1,2,3,  (30)
Physically, rn is the magnitude of the wave number vector in the direction normal
to the wave fronts of the slanted waves with wave number k in the a-direction and
nn in the /^-direction. The A in (29) is determined from (18) to be

2a^k
Cll) J-i

where

J cos nn cosh kfi dp , (31)

=-k2 coshrnd + F 2rns\nhrnd. (32)

As pointed out by Yih [11, 12], there are infinitely many values of the Froude
number F which will make C'n'1 vanish. To each of these Froude numbers, the
coefficient of the amplitude, An, becomes infinite and resonance takes place. Ac-
cordingly, they will all be called critical Froude numbers. Let m be an integer such
thathat C''1 = 0 . The critical Froude number corresponding to this mode is then given

Fm = r-fitanhrmd- (33)

Equation (33) forms a set of critical Froude numbers Fm each of which is com-
pletely determined by the parameters of the given fluid system such as the wave
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number of the side-wall corrugation k and the depth of the fluid layer d . Equation
(33) can be rewritten as

>LV= (34)
rm V rm

where r*m is the dimensional total wave number in the direction normal to the slanted
wave fronts. Since k/rm is the cosine of the angle between the a-direction and the
direction normal to the slanted wave with wave number r*m , and since the right-hand
side of (34) is nothing but the wave speed of this wave, resonance takes place when
the critical mean flow speed U is such that its component normal to the front of the
wave with wave number r*m is equal to its speed. For a given k , Fm increases with
m . The smallest nontrivial critical velocity corresponds to m = 1, which is defined
as the principal critical speed, because the resonance for m — 1 will be observed
first in an experiment if the mean-flow speed, U, is gradually increased and because
m = 1 will also lead to the largest amplitude of the free-surface waves.

To prevent the amplitude from becoming infinite for any Froude number given by
(33), one has to let a, be zero. Therefore, the amplitude Am remains undetermined.
The rest of the wave components, for which n ^ m, need not be considered, since
for them there is no resonance. This is analogous to the case where a large oscillation
is excited in a water system, when the natural frequency of the system is approached
by the frequency of an external oscillating force. Therefore, with the suppression of
the modes other than m , the solution of the first-order differential system is now
written as

0, = Am sin ka cos mnji cosh rm(z + d) (35)
in which Am is an undetermined amplitude coefficient. After obtaining </>, , the
first-order displacement of the free surface £, is obtained from (4) as

C, = ~AmkFm 2 cosh rmd cos/cacos mn . (36)

If the above results are substituted into (21)—(24), the second-order differential
system can be formed and then solved. The general solution consists of infinitely
many wave components as well. However, one will find that, under resonance, the
finiteness of the wave component with wave number k will again force a2 to van-
ish and there are at most three nonzero wave components left, which are with the
transverse wave numbers 0, 2mn , and nQ7i, respectively. The nQ is an integer such

(4/c2 + «g7r2)1/2 tanh(4fc2 + n^n2)^2 d = 4rm tanh rmd. (37)
The possible existence of such a nonzero integer for a given channel has been shown
by Zhu [13]. Therefore, the solution for c/>2 is generally

<;t>2 = ^;"„[50cos'1 + d) + B2m coslmnp cosh r'lm(z + d)
; (38)

+B„ cos TinTi B cosh r (z + d)} sin 2ka,
no U no

in which the value of 5, is the wave amplitude corresponding to the wave number
no

n0 and r'n is

r'n - \JAk2 + n2n2 , (39)
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the magnitude of the wave number vector with wave number 2k in the a-direction
and nn in the /^-direction. The amplitude coefficients B0, B2m , and Bn are

2 °completely determined from the boundary conditions (22). Their expressions are
included in the Appendix.

The second-order displacement of the free surface can be obtained from (4) and
is of the form

c2 = -4L*£[g,(/*) + g2(0)cos2M, (40)
where g,(/J) and g2(/?) are given in the Appendix.

The third-order differential system must be utilized in order to determine Am ,
which remains unknown even after the second-order differential system has been
solved. Upon making use of (35), (36), (38), and (40) and noting that al and a2
vanish, the third-order differential equation as well as boundary conditions (25)-(28)
can be simplified. The nonhomogeneous forcing term on the free surface consists
of two terms now, one with wave number k and another with wave number 3k.
Correspondingly, the solution of the third-order differential system is expected to
consist of two wave components. Let

OO

0, = A\Dn smkacosnnB cosh r(z + d)
(41)

+ En sin hkacosnnp cosh r"n{z + J)],

where rn is the combined wave number for the longitudinal wave number k , which
has been defined in (30), and /' is that for the longitudinal wave number 3k, that
is,

^ = \J9k2 + n2n2 . (42)
Dn and En are constants determined from the boundary conditions (26). Since the
determination of En does not affect the determination of the amplitude coefficient
Am , to the order of 0(e3), the final expression of En is omitted here. For each
mode n ,

i 2 /»i
Dn = / M^gj(A) - a^k1 cosh/:;?]cosnnfidp, (43)

Cn J-1
where C^1' has already been given in (32).

It is by demanding, again, the finiteness of the amplitude of the waves with the
longitudinal wave number k that one can determine the unknown amplitude Am
when resonance takes place. That is, one specifies that

-i
' ~ "3"KU,(/?) - a,k2 cosh kfl] cos mnfi dp = 0, (44)

'-l

which leads to the determination of A„ as

_ l ir2f3Ah*_ (45)
V ';/•«

2The determination of Bn^ involves the usage of I'Hospital's rule.
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in which Gg is a constant defined by the integral

Gg = J g^P) cos miip dp . (46)

Since gX(P) has been determined previously, the above integral can be carried out
easily. The expression of Gg is lengthy and has been included in the Appendix.

With a, and a2 vanishing, it is clear now that the small number e used in the
expansion (14)-( 16) is nothing but a1/3 if ai is taken to be unity and all other terms
are of higher order and can be neglected. That is to say that one can take

C = a1/3C, + fl2/3C2 + aC3 + "- , (47)

which simply shows that the amplitude of the free surface at the critical speed is of
the order of the one-third power of the side-wall corrugation amplitude.

3. Discussion and summary. Upon the determination of Am , the solution is com-
pleted as far as primary resonance is concerned. It is found that the amplitude of
the free surface wave is a large but finite number whose magnitude is of the order
of the one-third power of the side-wall amplitude. The successful determination of
the amplitude of these stationary waves shows, through the model adopted, that the
nonlinear convective acceleration terms in the Euler equations play a very important
role near resonance.

To illustrate this successful determination of the amplitude of the free surface
waves near resonance, a sample channel with depth of 0.4 m, width of 1 m, the
side-wall corrugation amplitude of 0.001 m and side-wall corrugation wavelength of
0.4 m has been chosen. The critical mean flow velocities of the first four modes were
determined from (33) and are listed in the first column of Table 1.

Table 1. Prediction of the critical mean flow speed and
the amplitude of the first four modes.

Mode UCT (m/s) Am (m)

1 0.820141 -0.138460

2 0.894305 0.142703

3 0.987693 -0.137536

4 1.085518 0.131149

The maximum amplitude of the free surface waves along the center line of the channel
(when p = 0) predicted by the linear solution approaches infinity, as expected and
shown in Fig. 3 on next page, as the mean flow velocity U approaches the critical
mean flow velocity of the first mode UCT. The amplitude determined from (45) and
(46) is 0.138 m when U = Ucr. Although the experimental data are not available at
this stage to check this value, it seems to be a reasonable prediction compared to the
infinitely large amplitude predicted by the linear theory.
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Mean Flow Speed (m/s)

Fig. 3. The free surface amplitude predicted by the linear (solid line)
and nonlinear (dotted line) theories.

Although the linear theory will not break down, theoretically speaking, until U —
UCT, the amplitude predicted by the linear theory is too large to be reasonable when
U is close to UCT. Extra care must be taken when dealing with the upstream velocity
in the intermediate range between the Ucr and a smaller U at which the linear
solution is valid. This can be achieved by perturbing the Froude number directly.
For the convenience of making use of the nonlinear solution already presented in the

_ 2
above section, we expand F as a power series in e , which takes the form

F~2 = F~2 + e2F2mi + 0(e4). (48)

Note that there is no first-order term in the above expansion. The expansion (48)
with all odd-order terms dropped is reasonable because the physical problem is not
changed when the e is changed to -e . Under the expansion of the Froude number
near the critical Froude number, determined from (33), only the term F~2(f)lz needs
to be added to the third boundary condition in (26), whereas the first-order equations
(17)-(20) and the second-order equations (21)—(24) remain unchanged. Following
similar procedures to those demonstrated above, this additional term will eventually
result in an additional term in (44). Correspondingly, the modified (45) is now of
the form

/" *3 c-2 • u j a / sinh k
GSAm ~ rmFm, Sinh rmdAm = (~ 1)  2 *3 ' (49)

rm
from which the unknown amplitude coefficient A is determined. The solution of
the equation (49), for our test channel, is plotted out in Fig. 3 with a dotted line.
As can be clearly seen, it takes care of the gap between the solution of (45) and the
linear solution.

In Fig. 4, the amplitudes of the free surface under the critical Froude numbers
corresponding to different modes are plotted against the variation of the wavelength
of the corrugated side walls. As expected, the amplitude of the free surface waves
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0.25 r

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Side-wall Wavelength (m)

Fig. 4. The free surface amplitude predicted by the nonlinear theory
vs. the variation of the wavelength of the side-wall corrugation (solid
line for m = 1 , dotted line for m = 2 , dashed line for m = 3 , and
dash-dotted line for m = 4).

on the center cross section of the channel (i.e., the vertical plane corresponding to
P — 0) decreases as the side-wall wavelength increases. As for the limiting case,
there should be no wave for a channel with two straight walls (A —> oo) because the
external force, which is the source of the perturbation for the waves being generated,
has been removed. There is a phase shifting of the amplitude from on-phase with
the side-wall corrugation (Am > 0) to out-of-phase with the side-wall corrugation
(Am < 0) for the mode 3 (dashed line) and vice versa for the mode 4 (dash-dotted
line). These phase shifts were due to the sign change of Gg in (45), which shows the
existence of higher-order resonances. The higher-order resonance takes place as both
C^' and Gs vanish simultaneously for some given k and d. However, they are not
as important as the primary resonance that we are most concerned with in this paper.
The determination of the amplitude coefficient, at the higher-order resonance due to
the vanishing of Gs, requires that the expansion be carried to the fifth or even higher
order. This expansion will involve a lot of tedious algebraic manipulation, and is left
for future investigation.

Finally, the solution presented here shows that there is only one dominant wave
component left. This makes sense because the neglected wave components, when
resonance takes place, all have the order of magnitude e or a, and are thus dwarfed
by the single dominant wave component emphasized in this paper.
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Appendix. The solution of the second-order equation was given in (36) in terms
of three amplitude coefficients, B0, Blm , and Bn , which are determined from the
given physical parameters. They are of the form

if n = 0;
r(2)L0

-Ji) if « = 2m;
2m

(-l)"o2r'no2[(n20-4m2) + n20G2]

mn0n (n^-4m )[{4k~dFm + l)coshr^d - 4k~dr'n^mhr'^d)]

in which

C{2) = 2k{Fm 2 sinh 2kd - 2k cosh 2kd), C^n — -4k2 sinh7 rm d,

if n = nn,

and

G, = - \k

Gi= - \kri

1 2 2 2 2 2 2
-(m n" - 3k ) cosh rm d + rm sinh" rm d

3 2 2
■- cosh" rm d + sinh rmd

The second-order displacement of the free surface in (38) was given in two func-
tions of p , which are

g,(j3) = (G3 + G4 cos 2mnfS),
g2(>ff) = (Gs + Ge cos2mnp + G-j cos n0nfi),

where

r 1 2<y3 = r-
G4 = ^(/c2 - m2n" cosh 2rm d),

G5 = 2/c5Qcosh 2kd + ^[(^2 - rn2n2) cosh2 rmd - 3r2m sinh" rm d],

Gb = 2kB2m COsh r2m d + rmd ~ 3 sinh2 r,nd) '

Gn = 2kBn cosh 2r' d.' "0 no

Upon using all these predetermined constants, the G„ in (44) and (47) can be
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;asily determined after algebraic simplification, and is

-4k" cosh r d cosh 2kd + 3kr sinh r d sinh 2kd + r2 cos^kd
m mm m cosh r

+ kB2m ~ K + \r L) cosh rmd cosh r'2md + -rmr'2m sinh rj sinh r'lmd

1 2 cosh r^d
2 m cosh rmd

+
1 2 2,2 3, 22 ,2, 2
g/w n k + — {m n -k)rm cosh3 rmd

, 2 ( 9 2 2 i\ i i • i 2 * 3 4 cosh 2rmd
+ 77r - w 7T cosh sinh r a - —r16 m / m m 32 m cosh rmd
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