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Abstract. The analytical solution is obtained for two-dimensional creeping flow
generated by a source-sink combination located on a spatially periodic boundary.
Separation is found to occur when the source and sink are located on concave regions
of the boundary. The velocity profile of the two-dimensional Poiseuille flow for a
channel is compared to that of the circle problem and the rough channel obtained
from the analytical solution. It is found that the mid-channel velocity (or pressure
gradient) of the rough case is greater (less) than that of the circle problem.

§1. Introduction. The study of viscous flow through a corrugated pipe has received
considerable interest in the fields of meteorology and chemical engineering due to its
usage to model flow over rough topography and in porous media respectively. The
reader is referred to [1-3] for literature in these areas.

This paper considers the two-dimensional Stokes flow generated by a source and
sink which are located on opposite sides of a bounded corrugated tube. The boundary
of the conformally mapped figure consists of n > 1 corrugations which can be made
arbitrarily sharp. The positions of these peaks and their geometry dramatically effect
the fluid flow. In many cases, there is boundary separation as well as the appearance
of separatrices.

The analytical solution to the above Stokes flow problem is used to approximate a
Poiseuille flow through a rough channel since such Poiseuille flows are used to model
laminar pipe flows found in many chemical-industrial, hydraulic, and biophysical
problems. The velocity profile of this rough channel flow is compared to that of
a smooth channel obtained from the same analytical solution. It is found that the
corrugated boundary of the rough channel results in a greater mid-channel velocity
than the smooth channel which has smooth boundary. The variation of the velocity
profile, however, is stable with respect to surface roughness and this is in agreement
with the assumptions made in lubrication theory [4j. For more literature on the
stability of such flow with the addition of inertial effects (nonzero Reynolds number)
see [5],
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§2. Boundary geometry. The mapping considered here will be the fluted column
transformation (see [7] and [8])

z = x + iy = re =<,+£<, , (2.1)

for n > 1 , where

C = pe"^, 0</?< 1, -71 < <f> < n. (2.2)

It is conformal in |£| < 1 for |e|(n + 1) < 1 and maps |f| < 1 from the C-plane to
a compact region with a corrugated boundary of n peaks between r — 1 ± e in the
z-plane. (2.1) implies

x - pcosej) +ep"+lcos(n + y = psmcj) + ep"+isin(n + \)(j>. (2.3)

Two different ranges of e are considered here, namely

£€/, =[0, \/(n+ 1)) or e E I2 = (-l/(« + 1), 0]. (2.4)

It can be shown that the boundary (p = 1) is always smooth, but as |e| —> 1 j{n + 1)
there are points that appear which approach the shape of a cusp pointing towards
the center. In particular the boundary is convex for |e| < 1 /(n + 1) ; however for
1 /(« +1) < |e| < 1 /(« + 1) smooth concavities appear. It is easily shown that the
curvature at the peak of a cusp is

K = JM**l£l. (2.5)
(1 -|e|(n+ I))2

For odd n {e > 0, e —> l/(«+l)) one cusp appears on the x-axis. For even n there
is either no cusp on the x-axis (e > 0), or a cusp at the points of intersection of the
boundary with the x-axis (e < 0, e —► -l/(« + 1)). So three cases are considered
for (2.1);

(i) odd n , ££/,,
(ii) even n , e £ /, ,

(iii) even n , e e h ■

§3. The flow problem and method of solution. For steady two-dimensional Stokes
flow, the governing Stokes equations in nondimensional form are

V2{q = Vp, (3.1a)
V-£ = 0, (3.1b)

where q_ is the velocity field, and p is the pressure field of the flow respectively. A
Stokes stream function y - i//(x, y) is introduced as

q_ = curl(y/£), (3.2)

where k is a unit vector perpendicular to the plane of motion, so that (3.1b) is
automatically satisfied. Substituting (3.2) into (3.1a) and taking the curl of both
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sides or eliminating the pressure field gives

V> = 0, (3.3a)

where

V2 = *1 + *1 V4 = (V2)2
1 ax1 By2' ' 1 •

Using the fluted column transformation, the appropriate boundary conditions for a
line source and sink located on the boundary intersecting the x-axis are

i//(1, 0) = Msgncp, y/p(l, <p) = 0, -n < 4> < n, (3.3b)

which are the no-seepage (except at source and sink) and no-slip boundary conditions
of the problem respectively.

To solve (3.3a,b), set if/ = y/Q + such that

V>0 = 0: n(l,« = MSg„0, Vj = ^ + i + (3-4)

Note that the solution of the Laplace equation is invariant under a conformal map-
ping, i.e., V^V0 = 0, and hence V*i//() = 0 . Then the corresponding boundary value
problem for is

V'"'=n M -"<*<"■ («)''V1- ''») - • '•>> I
The solution of (3.4), easily obtained by standard techniques, is

2p sin i2M ^ / l-(-l)m\ m . 2Mt -in = — 2^ (   J P sm(mtt>) = —tan
m= 1 i - p2

(3.6)

Now a suitable solution of (3.5) can be chosen, by using the fact that y/( 1 , <f>) is an
odd function. The transformation (2.1) suggests that we assume a solution of the
form

= (Po + x&i -y<P2'
vf^. = 0, 7 = 0,1,2,

+oo

m=l (3.7a)
-(-OO

0! = ^Bmpm+'sin(rn + 1 )4>,
m= 1
+oo

^ 5mpm+1cos(rn + 1 )4>.
m= I
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Applying the boundary conditions for y/] from (3.5), it can be shown that the Am's
and Bm's satisfy (after some algebra)

f —B — e(B — B ), 1 < m < n — 1,Am=\ J" \n+m n-mh ~ - ' (3.7b)
~Bm ' eBn+m ' " < m '

Bm + e[(n + 1 )Bn+m - (n + 1 - m)Bn_J = ^((-l)m - 1), 1 < m < n - 1,

Sw + e(«+l)fim+n = ^((-l)m-l), n < m. (3.7c)

The solution for the Bm's are (see Appendix (A.2) and (A.4))

■((-!)«_ i) + am

B..

where

M
71

M
n

1 -e2(n+ l)2

1 - e2(n + l)2

1 < m < n - 1,

, n < m,

(3.8a)

"m =
((-l)m+" - l)w + e((-l)m - 1)(« - m)(n + 1 - m)

1 - e2(m + 1)(« + 1 - m)
1 < m < n — 1

= 0, n = 1, m = 0,1,

and the Q 's satisfy the identity

(3.8b)

- e(n + 1 - m)£lnm = em{\ - (-l)m+"), 1 <m<n- 1 . (3.8c)

Substitute (3.7b) and (3.8a,b) into (3.7a) and sum the required series for by
standard techniques. After some manipulations

M
^ n(l - e2{n + l)2)

x { 2 p [(1 - p2)-£2(n+ 1)(1 -p'"+2)]( 1 + /?2)sin <j)
1 - 2p2 cos2<?!> + p4

+ e/((l - /) ~ (" +!)(!- /?2))sin(« + !)</>
1 - 2p2 cos 2<j> + p4

ep"(n + 1 )p2( 1 - /?~)sin(« - 1 )<j>
1 - 2p2 cos 2<f> + p4

(3.9)

n-1

+ ~ P") - /')]sinm</>
m= 1 >



STOKES FLOW DRIVEN BY LINE SINGULARITIES 747

Adding (3.6) and (3.9) gives the solution of (3.3a,b),

V = Vo + Wi

— I 2 tan 1
71

2/?sin0
1 -P2

+
1 - e2(n + I)2

n— 1
m+2 rris ^ , 2n+2-m m, •

,m= 1

,r\ t "1+2 ms , 2n+2-m m, • ,~P )-e&n_m(p ~P )smm(f>

2 p
(l-e2(„+l)2)

[(1 - p2) - e2(n + 1)(1 - p2n+2)]( 1 + /?2)sin<

1 - 2p2 cos 20 + p4

+ ep"(( 1 - /) -(»+!)(!- p2))sin(» + 1)0
1 - Ip2 cos 20 + /?4

£/?"(« + 1)/?'(1 - /9 )sin(« - 1)0
1 - 2p2 cos 20 + /?4

(3.10)

From this the vorticity can be found as

a){p, 0; e) = V.y

= v;^,

d z 2
dC

(3.11a)

v>,
2 „2n1 + 2e(« + 1)/?" cos «0 + e (« + 1) p

2where is defined in (3.4), and thus

W{p,4) = v)y/X

fdxdtp^ 1 dx <90, ̂ (dy d(j>2 ̂ 1 dy d(p2^
I dp dp p2 d(f> d0 / I dp dp p2 d(p d(f) J

(3.11b)
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Straightforward differentiation gives for (3.1 lb)
4 M

W{p,<t>) = 5 rn{ 1 - e (n + 1) )

( n— 1

^[(m + 1 )Clmp'n - e(« +!)(«+!- m)ftn_w/>2'I_m]sinm0X

, m= 1

+
(1 - 2p2 cos 20 + /?4)2

[—4( 1 - e2(« + 1)2)( 1 + 3/92) + 2e2(« + l)2/2^2"( 1 -/))]

x p( 1 - /?2)sin 0 + 2e(n + 1 )pn+X (1 - p")2

2x ((« + 2)sin(« + 1)0 - («/? - 2)sin(« - 1)0)

+ 4p2 sin2 0{[-4/?2 + e2(n + \ )2p2n{4p2 + 2«(1 + p~))]p sin 0

+ 2e(n + \)p',+{[(n - 2/?2)sin(/? + 1)0

2- p (n + 2)sin(« - 1

(3.11c)
Combining (3.11a) and (3.11c) gives co(p, 0; e) in general. The boundary vorticity
is, in particular,

n , ,  4M 
tt( 1 - e2{n + 1)2)(1 + 2e(n + l)cos«0 + e2{n + l)2)

x C
S + _ + •)(" + 1 " m)&n-nM{rim(t)
I m= 1

-2(1 - e2(n + l)3)sin0 + e(n + l)((n - 2)sin(« + 0 - (n + 2)sin(w - 1)0) 1
2 sin2 0 J

(3.12)
Separation near the boundary can be detected by determining the zeros of co{ 1 , 0; e)
or of the bracket on the right-hand side of (3.12). The fluid velocity at the mid-
channel and the pressure gradient dp/dx along the x-axis, for even n , are found
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to be

",M = f)
—2M{\ + e(n + \)pn(—\)k)

n{\ +2e{n+ \)pn{-\)k -e2(n + l)2p2n)

\ 2(1+/) + 1
(1 - p1)2 + 4p2 1 - s2(n + l)2

\ + 2)pm+l - mpm~X)
m= 1

o //^ , \ 2n + \-m m-1\i • x- + 2 - m)/? -mp )]sin— (3.13)

(1 — hp2) — £2 (n + !)(1 — {2n + 3) p2n+2)

1 +P2
4en(-l)kpn+2(l-p4)

(i+P2)'
2p2[{\- p2) - E\n + l)(l - p2n+2)]

(1 +P2)2

enp"{-1)*((1 -5/) + «(l -/))
d + f2)2

where n — 2k for k e N. Finally, the pressure gradient in the x-direction along
the _y-axis, for the same cases of n e N, is

dp _ j 1 + e(« + 1 )p"cos((n + 1 )(f>)
dx - 1 1 +2e(n + 1 )p" + e2(n + \)2p2n

H(p,n), (3.14a)

where 0 < /? < 1 , <f> = 0 or n and

li, ^ 4MH{p, n) = 5 y-
7t(l - e (n + 1) )

( n-1
m— 1YI m[{m + 1 )&mp"

, m= 1

- e(n + 1)(« + 1 - m)Q.n mp2"~m~l]cos{rn(l))

+ /t ' 2x3[~4(1 ~e2(n+ 1)2)(1 + 3p2)2e2(n+ l)2np2n(l-/))
(1 -P)

+ 2e(n + 1 )p"{ 1 - p2)

x ((n + 1)(« + 2) - (n - 1 )(np" - 2))cos((« + 1 )</>)]| .

(3.14b)
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As a check, set e = 0; then the full solution, (3.10), reduces to the solution of the
circle problem (see [9])

2 MV = 1T -i / 2p sin^ \
,an tv r

(1 - p2){\ + p2)p sin (j>

1 - 2p2 cos2</> + p4
(3.15)

Whereas, (3.12) reduces to

ca(l, <f>\0) = (J— ) <0 V0 < <fi < 7i, (3.16)
n \sin

which predicts no separation of streamlines near the boundary (a known result from
Rayleigh's problem [9]). The velocity profile at mid-channel becomes

= W) (3.17)
" \(1 — y ) + 4y I+}.2 (i+y2)2 )

For flow between two planes extended to infinity, i.e., two-dimensional Poiseuille
flow for a channel, the known result is

ux{y) = -™(y2~ J)' px = ~™- (3.18)

§4. Odd n; convex source and concave sink (e e /,). It was observed that for all
n > 1 , e > 1 /(n + l)2, vortices near the source appeared (see Fig. 1). For n = 1
this has already been observed for a similar problem found in [10]. These vortices
extend near the source as e —► (n + l)-1 , eventually reaching it in the limit. Note
that on the boundary mid-way between the source and sink, for n > 5 , there appear
regions of very low fluid velocity, or "stagnation." They occur for moderate to large
values of e where l/(n + 1) < e < l/(n + 1).

e = 0.45 e = 0.21 e = 0.16 e = 0.122

Fig. 1. Some solutions for n = 1,3,5,7.
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§5. Even n ; convex source and sink (e e I{). For small n , e > 0, no separation of
flow occurs (Fig. 2). For the case n = 2 this is expected (see [6]). For n > 4 regions
of stagnant flow appear. The common feature of these geometries is that fluid enters
and escapes the region from convex walls.

e = 0.31 e = 0.19 e = 0.12 e = 0.09

Fig. 2. Some solutions for e > 0 and n = 2,4,6,8.

§6. Even n ; concave source and sink (e e I2).
(i) General discussion. As in the odd n case there are always vortices for e <

— 1 /(« + l)2, but a new phenomenon occurs (Fig. 3). There is always a sufficient
e, in the range (-(« + l)-1, — {n + 1)~2) for which an eddy from the source and
an eddy from the sink meet to form one large free eddy, with two vortices interior
(separatrix). A jet of fluid is formed running from the source to sink which occupies a
narrow region and outside of which all fluid stays inside the pipe. This is a large class
of boundary value problems containing a flow divider (see [10]). It is instructive to
consider the case n — 4. This is a model for a stenotic channel with concave source
and sink. The flow is much different than the stenotic channel with convex source
and sink though, since vortices appear in this case.

(ii) Effect of stenosis. To see the formation of the vortices, consider the diagrams
in Fig. 4, for n — 4. One can also follow the transition by considering the boundary
vorticity (see Fig. 5). Note that at the limiting value e = -(4 + 1)~2 = -0.04, the
sign of the vorticity changes abruptly at cj) — 0, n. It was observed that for the
same curvature of source and sink the channel with stenosis (i.e., concave boundary
points at </> = |, 4p) experienced the formation of a free eddy later as n gets larger.
Hence this geometry hinders the formation of large vortices as n increases. This

s = 0.31 e = 0.19 e = 0.12 e = 0.09
Fig. 3. Some solutions for e < 0 and n = 2,4,6,8.



752 K. MA and D. W. PRAVICA

€ = -0.04 e = -0.14 e = -0.16 e = -0.18

Fig. 4. Transition to separatrices in n = 4 case.

Up= l

Fig. 5. Variation of boundary vorticity for n = 4 .

e = 0.2909 e = 0.1647 e = 0.0667 e = 0.0189
Fig. 6. Some solutions with source curvature k = 100, for n =
2, 4, 10. 30.

phenomenon also occurs for large n . A comparison of four different n values is
given in Fig. 6 where the curvature of the concave source and sink is k = 100.

§7. Large n . For large n the boundary approaches the shape of a circle. For
|e| ~ (n + 1)~' there is always some "roughness" of the surface. This has an effect
on the fluid flow, as the boundary vorticity plots Fig. 8(a-c) indicate.
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e = 0.0196 e = -0.01945 e = 0.0192

Fig. 7. Some solutions for n = 50, 50, 51 .

<Jp= l
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(c) n = 51 . e > 0 .

Fig. 8. Variation of boundary vorticity for some cases of n .
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It is clear though that the most important aspect affecting the pattern of the fluid
flow is the shape of the source and sink (see Figs. 1,2, 3, and 7).

§8. Approximate model of flow in a rough channel. An approximate model for
pipe flow is found by considering n large and even, with e > 0. Then the region
Jt e (-<5, 8) for e < S < 1 simulates the creeping flow in a corrugated channel (Fig.
9).

The mid-channel velocity profile of the two dimensional Poiseuille flow for a chan-
nel is compared to that of the circle problem and the rough channel (n = 20 with
smooth boundary at (f) = n/2, and n = 22 with cusp on boundary at $ = n/2)
in Fig. 10. Both the circular and corrugated boundaries give rise to an increase in

8 8
Fig. 9. Comparison of circle streamlines with case n = 50, e =
0.0196 .

y-axis (normalized) j/-axis (normalized)

n = 20 n = 22
Fig. 10. Mid-channel velocity (x-component of velocity on the line
x = 0.0).
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mid-channel velocity at y = 0, but the presence of corrugations on the boundary gives
the highest mid-channel velocity at y = 0. However, a deviation of the mid-channel
velocity at the boundary (see Fig. 11) for the circle problem and rough channel only
occurs inside a cusp. The result is qualitatively similar to that found in Fig. 2 of [5],
Similar comparisons are also made for their pressure gradients in the ;c-direction
along the x-axis in Fig. 12. On the contrary, the pressure gradient is decreased for

ux

L0~3

000 h :
2000 k

-4000 h

6000 t—

8000 h

10000 (-

12000 h

14000 f-
160 00 t-

0xp 180.00 t~
20000 \-

22000 h-

24000 |-

26000

28000

30000

32000

r

y-axis (normalized) y-axis (normalized)

n = 20 n = 22

Fig. 11. Velocity near the boundary on the line x = 0.0 .

Zao I 1 1 I I ■ J Zero
"T5 000 h      Tf„„.  —   -I 3fi

•=««  joooh    v.
•.VMBff"" \ "eVff&M"
• • 5/5i<5b " -4000 1- :y \\ -1".r 5fl-i(5b-

6000 h // V. -)

dxp

«ooo i-
100.00 h- *

i '
12000 j- j '
14000 I l

16000H j I
18000 1- j'

20000 f- |('
22000 h jl
24000 (- (|

26000

28000

30000

32000

34000

* 1I !

x-axis x-axis

n = 20 n = 22

Fig. 12. Pressure gradient in x-direction on the line y = 0.0 .
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the circle and corrugated boundaries at y = 0, x e (-<J, <5), as e increases. Also,
the presence of corrugations gives the lowest pressure gradient at mid-channel. This
result is compatible with that found for the mid-channel velocity. So it is conjectured
that for the same amount of flux the mid-channel velocity is increased (or the pressure
gradient at mid-channel is decreased) with the presence of corrugations.

Acknowledgments. The authors wish to thank Professor K. B. Ranger for suggest-
ing the problem treated in this article, and for providing many helpful discussions,
which made this paper possible.

Appendix. Recall from (3.7c) that

Bm + £[(« + \)Bn+m - (n + 1 - m)Bn_J = ^((-l)w - 1), \<m<n-\,

Bm + e(n+l)Bm+n = J^((-l)'n -1), n<m. (A.l)

For m > n set Bm = A(-\)m + B to be the form of the solution of (A.l) with a
suitable choice of constants A and B. Note that neither A(— l)m nor B alone will
yield solutions to the homogeneous difference equations if |e| < 1 /(« +1). (A.l)
implies

A(-l)m + B + e(n+ l)[A(-l)m+n + B] = — ((-l)m - 1), m>n,
n

^ (1 + (-i)ne(n+ 1))^ + (1 +e(n + \))B = — ((-l)m - 1), m>n,
71

A = ™
71

Then, for m > n

1
1 + (— 1)" e(h + 1)

b = -*L
71

1
1 + e(/i + 1)

* m 71

_ M
71

- M.
71

(-1)'" 1
1 + (-l)"e(«+ 1) 1 + e(n + 1)_
(-l)m(l-(-l)"e(n+ 1)) 1 - e(n + 1)

1 - e2(« + l)2 1 - e2(« + 1 )2

((-!)"'- l)-e(n + l)((-l)m+n- 1)

1 - e2(n + l)2

(A.2)

Due to the form of (A.2) and the solutions of Bm's when e = 0 (i.e., Bm =
f((-l)m- l)),set

5
((-l)w- 1) + Q„

1 - e2(n + l)2
1 < m < n - 1.
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Substituting this and (A.2) into (A. 1) gives the following equation, which holds for
1 < m < n - 1 :

M
71

1
1 - e2{n + l)2

{((-l)m-i) + £2m

+ e(e(n + l)(((-l)m+" - 1) - e(n + l)((-l)m - 1))

— (« + 1 - m)((-l)m+n - 1 + Qn_m))j

= ^((-l)™ - i).
71

and this reduces to

Qm + 1 - = £m(1 - (-l)W+n), (A.3)

which is true for 1 < m < n - 1 . (A.3) can be solved by trying out several «'s,
and using mathematical induction (for n) to verify the general result. The result is
found to be

„ f((-l)w+"- l)m + e((-l)m- l){n-m){n + \ - m) \
\ 1 - e2(m + i)(n+l-m) J '

for 1 < m < n - 1 .
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