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Abstract. A parameter identification problem is considered in the context of a lin-
ear abstract Cauchy problem with a parameter-dependent evolution operator. Condi-
tions are investigated under which the gradient of the state with respect to a parame-
ter possesses smoothness properties which lead to local convergence of an estimation
algorithm based on quasilinearization. Numerical results are presented concerning
estimation of unknown parameters in delay-differential equations.

1. Introduction. During the past fifteen years considerable effort has been devoted
to the problem of estimating unknown parameters in distributed parameter systems.
The recent book by Banks and Kunisch [9] provides an excellent account of the
progress made in the field. Many parameter estimation problems are best formulated
as optimization problems (sometimes over infinite-dimensional "parameter spaces"),
and algorithms are developed to minimize an appropriate cost function. Although
there are several approaches to these problems, their infinite-dimensional nature re-
quires that numerical approximations be introduced at some point in the analysis.
Consequently, there are two basic classes of algorithms for optimization-based pa-
rameter estimation. The first type of algorithm, and the most frequently used for
dynamic problems, is indirect and proceeds by initially approximating the dynamic
equations (e.g., finite elements, finite differences, etc.) and then using optimization
algorithms on the finite-dimensional problem. This approach is typified by the papers
[1-6, 8, 10, 18].
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The second more direct approach is based on the direct application of an optimiza-
tion algorithm and employing numerical approximations at each step of the algorithm
to compute the necessary solutions of the dynamic equations. This approach is used
in [12, 13, 17, 19]. Both methods have advantages and disadvantages. Depending
on the particular type of distributed parameter system, one method may out-perform
the other.

Although we shall consider only the problem of identifying a finite number of pa-
rameters, the infinite-dimensional dynamic constraint enters into the optimization
algorithm. Basically, the objective function from parameter space to 1 is a com-
position of a finite rank map with an operator (defining the dynamic constraint) on
an infinite-dimensional space. Therefore, any method that requires gradients to be
computed will have to deal with the differentiation of the infinite-dimensional con-
straint, i.e., the chain rule is needed. It is in this sense that the quasilinearization
algorithm considered here has an "infinite-dimensional" nature.

Direct methods such as quasilinearization considered here are often limited by
the fact that the dependence on unknown parameters of the solution to the infinite-
dimensional dynamical equations may not be "smooth enough" to establish con-
vergence of the algorithm. Indeed, some algorithms may not be properly defined
without this necessary smoothness. Indirect methods avoid this difficulty and often
lead to easily implemented algorithms. On the other hand, when direct methods
can be applied it is sometimes possible to establish the convergence and the rates of
convergence to the unknown optimal parameters (see [13, 19]).

This paper considers the dependence on an unknown parameter q of the solution
of the linear abstract Cauchy problem

(" x(t) = A(q)x{t) + u(t), 0 <t<T,
I x(0) = x0. " }

Our ultimate goal is to formulate and establish the convergence of a gradient-based
parameter estimation algorithm applicable in this abstract setting.

This algorithm employs computation of the gradient Dqx(t\ q) of the solution
of problem (1.1) with respect to the parameter. Conditions for the existence of this
gradient are established in [11]. In Sec. 2 we review these conditions and the general
setting for the remainder of the paper. Convergence of the algorithm requires certain
smoothness properties of the gradient Dqx{t; q) with respect to q . These properties
are established in Sec. 3 and their applicability to a linear delay-differential equation
is discussed in Sec. 4. In this example the delay is among the parameters so that in
this setting the parameter dependence appears in unbounded terms of the evolution
operator A(q).

An abstract parameter estimation algorithm for a finite-dimensional parameter
space using a discrete cost function is presented in Sec. 5. In Sec. 6 its convergence
is established using the results of Sec. 3. In Sec. 7 we present several numerical
examples which indicate the performance of the algorithm for delay and coefficient
estimation in linear delay-differential equations. Additional examples may be found
in [12]. Numerical testing and evaluation on a wider variety of parameter estimation
problems will be undertaken in a subsequent paper.
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2. The general setting. The application of quasilinearization to parameter estima-
tion requires knowledge of the derivative of the state with respect to the unknown
parameter. This topic is addressed in [11], In this section we review the frame-
work used there to obtain differentiability and establish notation to be used in the
remainder of this paper.

Let P be an open subset of a normed linear space P with norm | • |, and let X
be a Banach space with norm || • ||. For every q £ P let A(q) be a linear operator
on D(A{q)) in X . Throughout this paper we assume

(HI) A(q) generates a strongly continuous semigroup S(t\q) on X\
(H2) D(A(q)) = D is independent of q ;
(H3) q)x\\ < Mewt||x||, x £ X, t > 0, q & D, for some constants M

and co independent of q, x, and t.
Fix T> 0 and u £ Lx (0, T; X). Define Q(t\q) = fgS(t - s; q)u(s)ds for

q £ P, 0 < t < T . Note that if Eq. (1.1) has a strong solution then it is given by the
formula x(t) = S(t; q)x0 + Q(t; q) for 0 < t < T .

In applications of this theory, it is useful to consider just those terms of A(q)
in which the parameter appears. To this end we write A(q) = A + B(q) where A
and B(q) both have domain D and A is independent of q. Concerning B(q) we
assume

(H4) for every q, q0 £ P , there is a constant K such that
rT

||B(q)S(t; q0)x\\dt < A^||x|| for all x € D.
/J o

In Sec. 4 we discuss an example in which an unbounded operator B(q) satisfies (H4).
This hypothesis does imply, however, that the linear mapping x —> B(q)S( ■ ; q0)x is
bounded as a mapping from D into 0, T; X). Let F(q, qQ) denote the bounded
linear extension of this operator to X. Let ||-||, denote the norm in l'(0, T; X).
Concerning F we assume

(H5) there is closed subspace Y of X such that
(i) F(q, q0)x0 G L\0, T; Y) for q, q0 e P, and
(ii) for every q0 £ P and e > 0, there exists S > 0 such that ||F(g, ^o)^ -

F(%' floM i - £Wy\\ for y e Y and \q - qQ\ < S .
The analogue of F for the function Q{t\q) is the mapping G(q, q0) from

L'(0, T- D) into L'(0, T\ X) defined by

[G{q, q0)w](t) = [ B{q)S{t-s;q0)w(s)
Jo

ds.

By (H4) it follows that G can be extended to a bounded linear mapping
on l'(0, T \ X), so that, in particular, G{q, q0)u is defined as an element of
l'(0, T; X). In addition we assume

(H6) G{q, q0)u £ L1 (0, T; Y) for q, q0 e P where Y denotes the subspace
required by (H5).

3. Parameter dependence. In this section we deduce smoothness properties of
the solution x(t; q) = S{t\ q)x0 + Q(t; q) with respect to q. These properties
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are derived from similar properties of F(q, q0) and G(q, q0) which are operators
related to A(q). These results will be used in Sec. 5 to prove convergence of the
parameter estimation algorithm. Throughout this section, T > 0, x0 e X, and
u € L'(0, T\X) are fixed as given in Eq. (1.1). The symbol Dq denotes Frechet
differentiation with respect to q . These results are given as a series of lemmas whose
proofs are at the end of this section.

Lemma 3.1. Suppose (H1)-(H5) hold. In addition, suppose that for a given q* e P
(H7) F(q, q0)x0 is Frechet differentiable with respect to q at qQ for every

q0eP.
For brevity, let DF(q0) denote D(j[F(q, q0)x0\\q=q for q0 e P. In addition,

suppose
(H8) DF(q) is strongly continuous in q at q*, that is, for each he P, the

mapping q -> DF(q)h from P into L*(0, T; X) is continuous at q* .
Then for each t e [0, T], S(t; q)x0 is Frechet differentiable with respect to q at

every q e P and Dq[S(t\ q)xa\ is strongly continuous with respect to q at q*.

Lemma 3.2. Suppose (H1)-(H6) hold and, in addition, suppose that for a given
q* €P

(H9) G(q, q0)u is Frechet differentiable with respect to q at q0 for every
q0eP.

Again denoting this derivative by DG(q0) for q0 e P , assume
(H10) DG(q) is strongly continuous in q at q* .
Then for t e [0, T], Q(t; q) is Frechet differentiable with respect to q at every

q e P and Dq[Q(t\ q)} is strongly continuous in q at q* .

Lemma 3.3. Suppose (H1)-(H5) and (H7) hold and, in addition, suppose
(Hll) F(q, q*) is locally Lipschitz continuous in q at q* , uniformly for y e

Y, that is, there exist constants /£,, <5, > 0 such that

||F(q, q*)y — F(q*, q*)y\\x < K{\q - q*\\\y\\
whenever \q - q*\ < and y e Y .

Moreover, assume that
(H12) DF(q) is strongly locally Lipschitz continuous with respect to q at q* .

That is, for each he P, there are constants K, d > 0 such that

\\DF(q)h - DF(q*)h\\ < K\q - q*\
for \q - q*\ < S .

Then Dg[S(t\ q)xQ] is strongly locally Lipschitz continuous with respect to q at
q* for every / e [0, T].

Lemma 3.4. Suppose (H1)-(H6), (H9)-(H10) hold and, in addition, suppose
(HI3) DG(q) is strongly locally Lipschitz continuous with respect to q at q* .
Then Dq[Q(t\ q)] is strongly locally Lipschitz continuous with respect to q at q*

for every / e [0, T].
Although the assumptions (H1)-(H13) are rather technical, we shall see that they

can easily be verified for delay systems even in the case that the unknown parameter
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is the delay itself. Therefore, the results presented here remove the limitations placed
on the perturbation B(q) in papers [13, 16].

For completeness we now present the proofs of Lemma 3.1-Lemma 3.4. However,
these proofs make use of the basic results found in [11], and in order to keep the
length of the proofs reasonable, we assume that the reader has [11] in hand.

Proof of Lemma 3.1. It is shown in [11] that (H1)-(H5), (H7) imply that
Dq[S(t; q)x0] exists for q e P. Furthermore, it is given by the formula

Dq[S(f, q)x0]h = J'S(t-s-,q)[DF(q)h](s)ds, he P. (3.1)

Therefore, by substitution, we obtain

Dq[S(f, q)x0]h - Dq[S(f, q*)xQ]h (3.2)

= f'[S(t — s\ q) — S(t - s; q*)]([DF(q)h]{s)) ds
Jo

+ f's(t-s- q*)([DF(q)h](s) - [DF{q*)h](s)) ds .
Jo

Let e > 0 be given and let C = Mewt. It can be shown (see [11, proof of Theorem
1]) that for all x e X

||S(r; q)x-S{t- q*)x|| < C\\F{q, q*)x-F{q*, q*)x||, . (3.3)
Combining Eq. (3.3) with (H5)(ii) shows that for some <5, > 0

\\S(t,q)y-S(f,q*)y\\<eC\\y\\, 0 <t<T, yeY,
whenever \q - q*\ < . In particular, putting y = [DF(q)h](s) € Y by (H5)(i) we
obtain

|\[S{t - s-q)-S(t-s; q*)][DF(q)h](s)\\ < sC\\[DF(q)h](s)\\
for \q-q*\ < <5j , a.e. s € (0, T). Since DF(q)h is continuous at q*, there exist
constants K2, S2> 0 such that

||DF{q)h\\x<Kx for \q - q*\ < S2.
Combining these estimates shows that the first term in Eq. (3.2) is bounded by eCK2
if \q-Q*I < min(<51 , S2).

Using (H8) it is easy to see that there exists S3 > 0 such that the second term in
Eq. (3.2) is bounded by eC for |q - q 'I <*3- These estimates complete the proof
of Lemma 3.1.

Proof of Lemma 3.2. By Theorem 3 of [11], Dq[Q(t; q)] exists for q e P and

Dq[Q(t; q)] - Dq[Q(t \q*)]= J\s(t - s; q) - S(t - s; ^*)][Z)G(^)(5)] ds

f S(t-s; «*)[(Z)G(<7))(j) - (DG(qm))(s)] ds
Jo

+

(3.4)
, T; Y) for .

by (H6), the proof follows exactly as in the proof of Lemma 3.1.
where u has been suppressed in the notation. Since DG(q) e i'(0, 7; F) for q £ P
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Proof of Lemma 3.3. Let £ > 0 be given. By Eq. (3.3) and (Hll) there exists
> 0 such that

\\S(f,q)y-S(f, q*)y\\ < C K.\\y\\\q - q

for y e Y and |q - q*\ < . Since DF(q)h e L (0, T\ Y) by (H5)(i), we have, as
in the proof of Lemma 2.1, that the first term of Eq. (3.2) is bounded by Kx K2\q-q*\
for \q — q*\ < min(<5,, S2). An estimate of the same form is obtained easily for the
second term of Eq. (3.2) using (HI2). These estimates complete the proof of Lemma
3.3.

Proof of Lemma 3.4. Since DG(q)u e L1 (0, T; Y) by (H6), the proof follows
exactly as in the proof of Lemma 3.3 using Eq. (3.4) in place of Eq. (3.2).

4. Application to delay-differential equation. In this section we apply the framework
of the previous sections to the linear delay-differential equation

x(t) = aQx(t) + YI akx(t - qk) + u{t),
k= 1

X(0) = T],

X0 = cp.

(4.1!

Let P = R" ; fix r > 0; and let P = {q = (q{, q2, ... , qn) : 0 < qk < r for
k — \ ,2n) . In Eq. (4.1), »|eK, ak e R, k = 0, 1, , n , <p e Ll(-r, 0)
with norm denoted by ||^||, , u e Z.1 (0, T), and xt(s) = x(t + s) for t > 0,
—r < s < 0. By a solution of Eq. (4.1) we mean a function x that is absolutely
continuous on [0, T] and satisfies Eq. (4.1) almost everywhere on (0, T).

Following the construction in [14], we take X = RxLl(—r, 0) with norm ||(//, tp)||
= kl + ll^lli an{i define for q e P an operator A(q) on

D = {(?/, <p) € X : (p is abs. cont. on [-r, 0], <peL\-r, 0), and (p(0) = r]}

by

A(q)(ri, (p) = ^acg>{0) + Y^ak<p{-qk), .

Then it is well known that A(q) generates a strongly continuous semigroup S{t; q)
on X satisfying S(t\ q) = {y{t), yt) where y(t) - y(f, q) denotes the solution of
Eq. (4.1) with u = 0 . It is a consequence of standard results that (H1)-(H3) hold in
this setting.

For q = (qx, ... , qn) and qQ in P, (tj, <p) e X, and w e L^O, T) it follows
that in this example the mappings F and G of Sec. 3 are given by

F{q, q0)(v, <P)= 4o)> (4-2)
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and

[G{q, q0)w](t) = ^ akz(t - qk ; qQ), oj (4.3)

for a.e. t e (0, T) where z(t; q) denotes the solution of Eq. (4.1) with u = w and
(tj, <p) — (0, 0). It is shown in [11] that these mappings satisfy (H4)-(H6) with the
closed subspace Y = R x {0}. It is also shown in [11] that F and G satisfy the
differentiability hypotheses (H7) and (H9) for (tj, <p) = xQ € D and q, q0 e P.
Furthermore, their Frechet derivatives are given by

[DF{q)h](t) = 52 aky{t - qk ; q)hk , Oj (4.4)

and

[DG(q)h](t) = (- E ak^ ~ <ik ; Q)h - 0j (4.5)

for q e P, h = (h{, ... , hn) e R" , where y(t\ q) is the solution of Eq. (4.1) with
u = 0 and z(t; q) is the solution of Eq. (4.1) with (tj, <p) = (0, 0).

It remains to establish conditions under which (H8), (H10)-(H13) are satisfied.

Lemma 4.1. Fix q* = (q*, ... , q*) e P and x0 e D. Then F(q, q*)xQ as defined
by Eq. (4.2) satisfies (HI 1).

Proof. In Sec. 5 of [11] it is shown that there are constants C2 and S2 > 0 such
that

||F{q* + h, q*){r],0)-F(q\ qm)(q, 0)||, < C2|A|||(^, 0)||

for he R" , rj e R, \h\ < S2. Here we define \h\ = J2k=l estimate is
equivalent to (HI 1) with Y = R x {0}.

Lemma 4.2. Suppose x0 = (rj, <p) e D. Then DF(q) as given by Eq. (4.4) satisfies
(H8). Moreover, if, in addition, <p is of bounded variation on [-a-, 0], then DF(q)
satisfies (HI2).

Proof. Let Am = max^. \ak\ and \h\ = max^ \hk\. Then we obtain the estimate

\\DF(q)h - DF(q*)h\\ ,< A\h\J2 [ \y(t - qk-, q)-y(t - qk; q*)\dt (4.6)

+ Am\h\J2 [ Iy^-Qk' Q*) - y(t - Q*k', Q*)\dt.
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Now from Eq. (4.1) we obtain

[ \y{t - Qk ; Q) ~ y(t - qk; q*)\ dt< f \y(t; q) - y(t; <?*)l dt
Jo J o

^ArnJ2j \y{t - q} \ q) - y{t - q] ■, q*)\dt

<^mL W-qj\q)-y{t~qj\q)\dt
7=1 J°

n rj

" p l

-!•,

+ Amfl[ W-qj", q*)-y{t-q]\ q*)\dtj= i ■/°

7= 1 J°

+ Amit,J0 lytt-qj* q*)-y{t-q*\ q*)\dt.

Now since y(t\ q) = S(t; q)x0 is differentiable with respect to q, it is not difficult
to show that there are constants ft and 8 such that

fJ o
|y(t\ q)-y{t, q*)\dt < fi\q - <7*1 (4.8)

whenever \q - q*\ < d . Combining Eqs. (4.7) and (4.8) with Eq. (4.6) yields

||DF(q)h - DF(q*)h\\l < A2Jh\n(]\q - q*\ (4.9)

+ Al,\h\nY, f Iy(l-qk'^*)-y^-vl;q")\dt
k=\ "

+ Am\h\it, [ ~qk\q*)-y^~ql;q*)Idt■, Jok= 1

Since (rj, <p) e D, we have _y and j> in L (—r, T). Therefore, the integral terms
in Eq. (4.9) approach zero as q —> q* and (H8) holds. If <p is of bounded variation
on [-r, 0], then y and y are of bounded variation on [-r, T]. By [15, Theorem
2.1.7(b)], this implies that the integral terms in Eq. (4.9) are 0(\q - q*|) as q —> q*
so that (HI2) holds.

Lemma 4.3. Suppose «el'(0,r). Then DG(q) as defined by Eq. (4.5) satisfies
(H10). Moreover, if, in addition, u is of bounded variation on [0, T], then DG{q)
satisfies (HI3).

Proof. Using Eq. (4.5) in place of Eq. (4.4), one obtains the estimate (4.9) with
y replaced by z. Now if u £ l'(0, T) then z and z are in Ll(-r, T), so that
(H10) holds. Similarly, if u is of bounded variation on [0, 7"], then z and z are
of bounded variation on [-r, T], so that (HI3) is satisfied.
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5. The algorithm. In this section we define an estimation algorithm over a finite-
dimensional parameter space based on quasilinearization and establish local conver-
gence using the results of Sec. 3. In particular, we assume that the parameter space
P is R" with canonical basis ei, i — 1, 2,, n . This algorithm can also be cast
in a separable Hilbert space as in [17].

Given x0 e D and q e P c R", a strong solution of Eq. (1.1) is given by
S(t; q)x0 + Q(t; q). Here we have used the notation of Sec. 2. Let C be a bounded
linear mapping from X into r' and define

y{t; q) = C[S{t; q)x0 + Q(t; q)].

The parameter estimation algorithm is related to the following optimization problem.
Problem 5.1. Let y. e R , j = 1, 2, ... , m, be data values taken at times

t. e [0, T], j = 1,2, , m, respectively. For q e P define the quadratic cost
function

m

J{q) = YlWj' ti-JjI2-
j=i

Find q* e P such that J(q*) < J(q) for all q e P .
The quasilinearization method defines a recursive algorithm whose fixed point is

a local solution of Problem 5.1. A more complete exposition is given in [7], Given
an initial guess q0 e P, define

Qk+j = f{Qk), k = 0, 1,2,3,...,
where

f(q) = q-[D(q)]-lb(q),

D(q) =
j=i

m

b(q) = mT^j > ; <?) - yj] >
i= i

and the matrix M{t \ q) has its zth column Ml(t; q) given by

M\t; q) = CDq[S{t; q)x0 + Q(t; q)]et, / = 1, 2, 3 , ... , n .

Lemma 5.1. Suppose the hypotheses of Lemmas 3.1 and 3.2 are satisfied. Then
M(tj\q) is continuous in q at q*.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2 and the above defini-
tions.

Lemma 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied. Then there
exist constants a, 5 > 0 such that

|M{tj \ q) - M{tj; q*)\ < a\q - q*\

for \q-q*\<8, j = 1,2,... , m.
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Proof. This is a direct consequence of Lemmas 3.3 and 3.4 and the above defini-
tions.

Note that although the smoothness results of the previous sections hold for an
infinite-dimensional parameter, the implementation of the solution of Problem 5.1
by this method is limited to finitely many parameters. In fact, a simple rank argument
is used in [17] to show that if the number of parameters, n, exceeds the number
of data values, ml, then the matrix D(g) is singular. In [17] a pseudoinverse is
proposed as a means of solving the underdetermined problem.

We can now prove the following convergence results. These results are typical
of quasilinearization methods, and the proofs given here are in the same spirit as
those in [7], As is usual for this method, whether the hypotheses of the following
theorems hold for a particular example depends on the nature of the data. We obtain
superlinear convergence when there is an exact fit to data (Theorem 5.1) and linear
convergence in the presence of error (Theorem 5.2).

Theorem 5.1. Suppose the hypotheses of Lemmas 3.1 and 3.2 are satisfied. More-
over, assume [Z>(g*)]_1 exis
there exists 5 > 0 such that
over, assume [D(q"]\ 1 exists, f{q") - q*, and J{q") = 0. Then for every e > 0,

1/(0)-/(Ol <e\q-q*\

for \q-q*\ < d . In particular, there is a neighborhood ^ of q* such that qk —> q*
as k —► oo whenever q0 e ^.

Proof. Note that f(q*) = q* implies that b{q*) = 0,or

(tj-,q*)[y(tj-,q*)-yj] = 0. (5.1)
7 = 1

Therefore

/(?) - /(<!*) = D{qyX[D{q){q - q*) - b(q)]

— D{q) '
in

^MT(?7; q)[M(tj- q){q - q*) - (y(tj ; q)-yj)]
7=1

m
= D(q)~l J2 MJ(tj; q)[M{tj ; q) - M(t]; q*)](q - q

7=1
m

- D{qfl ^('j; Q)[y(tj; q) - y(lj; ?*) - Mitj; <?*)(<? - ?*)]
7 = 1
m

-1 \^ , A,~D(^) Y1M 9)[y{tjm, q*)-yj\-
7=1
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Therefore, using Eq. (5.1), we have that
m

/(<?) - /(O = D(q)~l £ MJ(tj ■ q)[M(tj ; q) - M(t]; q*)]{q - q)
7=1

m

- D(q)~l Y, MT(tj; q)[y{tj; q) - y{t]; q*) - M(tj ; q)(q - <?*)]
7=i
m

- £>(<?)"1 ; q) - Mr(tj ; 9*)][y(r;; 9*) - P,]-
7=1

(5.2)
Note that D(q)~l exists and is bounded in a neighborhood of q* since D(q*)~l
exists by assumption and D(q)~l is continuous at q* by Lemma 5.1.

Let e > 0 be given. Using Lemma 5.1 it is easy to see that there exist constants
, <S, >0 such that the first term in Eq. (5.2) is bounded by eP{\q - q*| for

\q-q*\<Sx. Furthermore, since M{t -; q*) is the Frechet derivative of y(t}; q) at
q*, one can show that there exist constants fi2, S2> 0 such that the second term of
Eq. (5.2) is bounded by efi2\q - q*\ for \q - q*\ < S2. Combining these estimates
with Eq. (5.2) yields

< sfi\q -q*I + |£>(/?r'| Y2 ImT(0 ; 9) - M^itj ; q*)\ \y{tj; q*) - y.\ (5'3)
;=i

for \q-q*\ < d — min(<5j, S2) and ft = + ft2. Since J(q*) = 0, the last term in
Eq. (5.3) is zero. This estimate yields the desired result.

The following theorem does not require an exact fit to data, but does place some
technical restrictions on the behaviour of M near q*. Note that if Lemmas 3.3 and
3.4 hold then there exists S > 0 such that for 0 < S < S there exists a constant
K{d) such that

m

1 mT^j ; q"> - j ; - K^)\^ - 9*1
7=1

for \q-q*\ < 6 . Let K* = lim sup^Q K(S) and define

A* = K*\D(q*)~l\ max\y(tj ; q*)-yj\. (5.4)

Theorem 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied. More-
over, assume [D(q*)]~x exists and /(<?*) = q*. Let A* be defined by Eq. (5.4) and
assume A* < 1 . Then there exists S* > 0 such that

1/(9) -/(9*)l <^*|9-9*|
for \q-q*\ < S*. In particular, qk —> q* as k —> oo whenever \q0 - q*\ < S*.

Proof. This estimate is a direct consequence of Eq. (5.3).

6. Numerical examples. In this section we consider several examples in which the
above algorithm was used to solve parameter estimation problems in delay-differential
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equations. In these examples, the emphasis is on delay identification, since in the
abstract setting, this represents an unbounded perturbation of the generator as noted
in Sec. 4.

With the exception of Example 6.8, the various unknown parameters are estimated
using data generated from closed-form expressions for the solution found by the
"method of steps." The algorithm is implemented by an averaging scheme [2] that
approximates the state equation and the associated sensitivity equations by a system
of ordinary differential equations. This system is solved by a fourth-order Runge-
Kutta routine.

In the one-delay examples the averaging scheme is implemented with the delay
interval [-r, 0] divided into sixteen equal segments, except that Example 6.8 uses
sixty-four equal segments. In the two-delay examples the intervals [—r2, —r 1] and
[—r 1, 0] are divided into sixteen equal segments. All computations were done on
a VAX 11/750 minicomputer or a SUN Microsystem at the Institute for Computer
Applications in Science and Engineering (ICASE).

Example 6.1. This example illustrates the rapid convergence of the method for
a single unknown parameter—the delay in the following equation—with an initial
guess that is an order of magnitude greater than the "true value" of r = 1.0. The
equation and the results of the iteration are given below.

j x(t) = -2x(t) + 3x(t - r), t> 0,
I x(t) = t + 1 , t < 0.

iterate r error

0 10.000 34.056

1 1.299 0.955

2 0.946 0.175

3 0.989 0.115

4 0.987 0.115

The convergence of the states to ten data points on the interval [0, 2] is illustrated
in Figure 1.

Example 6.2. The data is the same as for Example 6.1; however, in this case,
the algorithm is asked to estimate the coefficients as well as the delay. The equation
shows an insensitivity to the individual coefficients, which leads to the inaccuracy
in the converged estimates. In fact, because of errors introduced by the averaging
scheme for computing the state, the estimated values fit the data better than the
"true values" used to compute the data by the method of steps. The "true values"
are a = -2 , b = 3 , and r = 1 . The equation and the results of the iteration are

x(t) = ax(t) + bx(t - r), t > 0,
x{t) = t+ 1, / < 0.
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iterate a b r error

0 -4.000 7.000 2.000 3.379

1 -0.815 3.537 1.184 2.968

2 -1.596 3.342 1.122 0.775

3 -2.403 3.713 1.002 0.188

4 -2.250 3.361 1.015 0.094

5 -2.352 3.483 1.006 0.093

c
o

J3
o

-4

-6

-8 -

-10 -

0.0 0.5 1.0 1.5 2.0
time

Fig. 1
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3.0

c
o

_D
O

2.5

2.0

1.5

.0

0.5

0.0

-0.5

ooo data

0.0 0.5 1.0 1.5 2.0
time

Fig. 2

The convergence of the states is illustrated in Figure 2.
Example 6.3. This case illustrates the effect of a forcing function on the state

equation. The nonhomogeneous delay-differential equation

x(t) = ax(t) + bx(t - r) + u(t), t> 0,
x(t) — t + 1, / < 0,

where

u(t) =
0, /<0.1
1 , t > 0.1
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is solved in closed form by the method of steps with parameter values a = -2,
b = 3, r = 1 as in Example 6.2. The results of the parameter estimation algorithm
are

iterate a b r error

0 -4.000 7.000 2.000 4.0527

1 1.022 3.165 1.140 39.2657

2 -2.637 23.652 1.168 24.9577

3 -5.979 28.631 1.141 11.6964

4 -8.034 23.250 1.118 3.5425

5 -5.167 5.417 1.028 2.0471

6 -1.239 4.195 1.008 4.8981

7 -2.861 6.222 1.005 1.8930

8 -2.485 3.795 0.998 0.0819

9 -2.115 3.201 1.013 0.0724

10 -2.247 3.380 0.998 0.0691

The results are similar to those of Example 6.3, except that the solution has become
somewhat more sensitive to the coefficients.

Example 6.4. This example indicates the ability of the algorithm to estimate two
unknown delays. The algorithm converges rapidly from a relatively poor initial guess.
The "true values" are rx = 1.0 and r2 = 2.0. The equation and the results of the
parameter estimation algorithm are given below and the convergence of the states to
ten data points on the interval [0, 3] is illustrated in Figure 3 (see p. 16).

( x(t) — —x(t) + x(t - r{) - x(t - r2), t> 0,
\ x(t) — t + 1 , t < 0.

iterate r{ r2 error

0 0.600 4.000 7.500

1 1.569 3.216 2.295

2 1.146 2.100 0.100

3 0.977 1.998 0.034

4 0.978 2.003 0.032
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ooo data

third iteration

Fig. 4

Example 6.5. The equation and data for this example are the same as in Example
6.4. In this case the initial guess reverses the order of the "true" delay values. The
results of this iteration are given below and convergence of the states on the interval
[0, 3] is illustrated in Figure 4.
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iterate r, r2 error

0 2.000 1.000 2.460

1 0.483 1.151 1.379

2 1.561 2.014 0.788

3 1.100 2.072 0.077

4 0.980 2.002 0.033

Example 6.6. In this case the algorithm is asked to estimate parameters in a delay
model of a system with no delay. Ten data points on the interval [0, 2] are computed
from the exponential solution of

x{t) = -2 x(t),
x(0)= 1 ,

and the algorithm is asked to estimate unknown parameters in the system

x(t) = ax(t) + bx(t - r), t> 0,
x(t) = t + 1 , t < 0.

The first four iterations are

iterate a b r error

0 -3.000 3.000 2.000 1.2577

1 -3.060 -0.637 1.947 0.2551

2 -1.687 0.235 1.981 0.1144

3 -1.967 0.025 1.985 0.0110

4 -2.000 0.000 1.986 0.0001

On the fifth iteration the algorithm aborted when it was asked to invert a nearly
singular matrix. This reflects the fact that at the true parameter values the state is
completely insensitive to the delay.

Example 6.7. This case is the same as the previous example except that the data
is taken from the closed form solution of the nonhomogeneous undelayed equation

( x{t) = - 2x(t) + u(t),
I x(0)= 1,
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where u is the same step function as in Example 6.3. The results are similar to those
of the previous example.

iterate a b r error

0 -3.000 3.000 2.000 1.3135

1 -2.848 0.099 1.804 0.5121

2 -1.841 0.138 2.401 0.0811

3 -1.971 0.003 2.508 0.0197

Example 6.8. In this example we consider the second-order equation
,2 ,

—j(t) + co2x(t) + a0-yj(t -r) + axx(t - r) = u(t), t > 0,
dt "t

x(t) = 1, t < 0,

where u(t) is the step function of Example 6.3. This equation models a harmonic
oscillator with retarded damping and restoring forces. In [13] a quasilinearization
algorithm is used to estimate coefficients in this equation. The methods of this paper
allow the delay r to be added to the set of unknown parameters. For this example the
averaging method was used to compute "data" values for the parameter estimation
algorithm with "true" values of co — 6, a0 = 2.5, a, =9, and r = 1 . The
results of the iterative algorithm are given below and the convergence of the states
(displacement and velocity) on the interval [0, 2] is illustrated in Figures 5 and 6
(see pp. 20 and 21).

iterate co a0 a, r error

0 4.100 4.600 6.300 1.500 15.212

1 5.073 6.025 -8.338 0.918 15.181

2 6.705 4.710 -0.682 1.524 12.389

3 6.188 -14.677 -4.838 1.102 31.950

4 5.902 12.347 8.396 1.068 25.234

5 5.964 2.994 8.980 1.061 2.186

6 5.995 2.416 9.016 1.004 0.344

7 6.000 2.503 8.999 1.000 0.007
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c 0.0 -
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time

Fig. 5
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8

seventh iteration

nitial guess

-4

-6

-8 L-i
0.0 0.5 1.0 1.5 2.0

time
Fig. 6
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