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UNIMODALITY AND VISCOELASTIC
PULSE PROPAGATION
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Abstract. Sufficient conditions on the stress relaxation modulus in a viscoelastic
material are given in order for initially short mechanical pulses in the material to
remain unimodal.

Introduction. The purpose of this paper is to study the shape of an initially short
mechanical pulse propagating in a viscoelastic material, in particular, to try to clarify
under what conditions the pulse will be unimodal, i.e., have only one local maximum.

Consider, for example, a fluid filling a half space resting on a plate. At time t < 0
everything is at rest, but then the plate is suddenly moved for a short time. The
velocity v(t, x) of the fluid will then only depend on time t > 0 and distance
x > 0 from the plate, and if the fluid is linearly viscoelastic with unit density, then
the velocity v satisfies the equation

vt(t, x) = a0vxx(t, x) + [ a(t-s)vxx{s,x)ds, (1)
Jo

v(0, x) = 0, / > 0, x > 0.

Here the kernel G(dt) = aQd(dt) + a(t)dt is the stress relaxation modulus. For
details, see [6] or [8],

In equation (1) the boundary value v(t, 0) must be specified, and if it is chosen
to be the delta functional, then one gets the fundamental solution u(dt, x) that has
the property that the solution of equation (1) is given by

v(t,x)= / v{t - s, 0)u(ds, x), t> 0, x > 0.
J[0,t]

In [7] it is shown that if a0 > 0 and a € ^11oc(®+; R+) is such that log(a(/)) is non-
increasing and convex (which will be assumed throughout this paper), then v( • , x)
is a probability measure (i.e., a nonnegative measure with total mass 1) supported
on R+ for each x > 0.
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The question to be studied in this paper is under what conditions on the function
a does it follows that v{ - , x) is unimodal. A probability measure k is said to be
unimodal if there exists a point t0 such that k((-oo,/]) is convex on (—00, *0] and
is concave on [£0, 00). Thus K(dt) = k(t)dt + k05t (dt) where k is nondecreasing
on (-00, tQ) and nonincreasing on (t0, 00) and kQ > 0. Here 8r denotes the unit
point mass at t, i.e., the measure defined by dx(E) = 1 if r e E and SZ(E) — 0
if r £ E for every Borel set E c E. It is clear that the restriction to probability
measures in the definition of unimodality is not essential.

A probability measure is said to be strongly unimodal if it is unimodal and the
convolution of this measure and an arbitrary unimodal probability measure is again
unimodal. In [3] it is shown that k is a strongly unimodal probability distribution
with support not contained in a single point if and only if K(dt) = k(t)dt where
log(k) is concave. Unfortunately there is no hope that v{ - , x) would be strongly
unimodal in general, because in the case where a = 0 and a0 > 0 we have

v{iit, x) — —A e x/{4a"ndt,

2\Aont

and the logarithm of this function is not concave. If a0 — 0 and a(t) = ax , then
v(dt, x) = 5 , /5_(dt), and this measure is, of course, strongly unimodal.

• V <x)

In [4] experimental results on pulse propagation along rods of different polymers
are presented. It is observed that the pulses, although decreasing in amplitude and
broadening in width, otherwise preserve their unimodal shapes and also that the
shapes for different materials can be brought into congruence by a simple scaling op-
eration. This suggests, as further elaborated in [5], that the stress relaxation modulus
is of so-called power law form, i.e., a(t) = ct~a with a e [0, 1) and a0 = 0 (unless
a = 1).

In [1] equation (1) with kernel a(t) = ct~a and xel is studied, but there the
emphasis is on the behaviour with respect to the x-variable for each fixed t and it is
proved that the fundamental solution, which is not identical with v defined above,
is unimodal with respect to the x-variable on each half-axis.

Statement of Results.

Theorem 1. Assume that aQ > 0 and that

a^= [ YVT t> 0,
J[0,1) 1(1 - a)

where // is a finite positive measure on [0,1) with aQ + //([0, 1)) > 0, and let v
be the fundamental solution of equation (1). Then there exists a constant y > 0.823
such that if the support of the measure n + a08{ is contained in an interval of length
at most 7 , then i>( ■ , x) is a unimodal probability measure for each x > 0 .

The (quite limited) numerical evidence available to me suggests that the assertion
of Theorem 1 is true in the case where y = 1 as well, but I have not been able
to prove this result. It is, however, relatively easy to show that if the support of
H + a0Sl is contained in at most two points in [0, 1], then the claim holds.
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It is not clear what are necessary conditions on the kernel a for u( -, x) to be
unimodal. One can, however, show that it does not suffice to assume that a is
completely monotone, i.e., (—1 )ja^\t) > 0 for all 7 = 0,1,2,... and t > 0.

Proposition 2. The assumptions that a0 > 0 and that a e £['0C(R+ ; ®) is completely
monotone on (0, oo) do not imply that the fundamental solution v of equation (1)
is such that v( • , x) is unimodal for each x > 0.

Proofof Theorem 1. Let G(dt) = a0S(dt)+a(t) dt. It is clear from the assumptions
that if we let ji(l) = a0, then denotes Laplace transform)

G(z) — f za 1 fi(da), SRz > 0 or / 0.
h o,i]

Taking Laplace transforms of both sides of equation (1) and solving the resulting
differential equation, we easily see that

i>{z, x) — e xz<p(-z\ x>0, where q>(z) = ' *
zG{z)

It follows from Theorem 5.2.6 in [2] that (p{z) = k(z) where k is a locally inte-
grate, completely monotone function. Since all probability distributions that are
self-decomposable, or equivalently, belong to the class L, are unimodal (see [9] and
[10]), it suffices to show that 0(z, x) is the Laplace transform of such a distribution,
and this, in turn, is equivalent to the fact that

the function 11-> t\k'(t)\ is nonincreasing on (0, oo). (2)

(We shall, in fact, prove a stronger result, namely that the function t ^ t\k'(t)| is
completely monotone.)

Since k is locally integrable and completely monotone, it can be written in the
form

k{t) = [ e~arj(dA), t> 0, (3)
J (0, oo)

where t] is a nonnegative measure such that f(0 x) jjrjfj(dA) < oo . (The observation
that >/({0}) = 0 follows from the fact that lim^^ k(t) — limT^0 zk(z) = 0.) Recall
that k(z) = cp(z) and use (3) to get

%<p{-o + ie) = - [   4j ^(dX). (4)
J(0,oo) (a - X) + e

We let

/J\ o
ina a , j x r\e a n(da) = r(a)e , a > 0,

'[0,1]

and since we can assume that the support of n is not contained in {0,1} (in this
case it is easy to see that (1) holds), we deduce that

cv , ■ \ sin(0(er)/2)Qcp(-a + ie) —► —do ase|0,
vMff)
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—to

uniformly on compact subsets of (0, oo). Thus we conclude from (3) and (4) that

i r°
W) = - / -n Jo y/W

Now an integration by parts shows that a sufficient (but not a necessary condition)
for (2) to hold is that

the function a ■-> —-— sin ( is nondecreasing on (0, oo). (5)
s/r(a) V 2 /

In order to prove that (5) holds, we shall first prove that the function </> is nonde-
creasing. If t > 0, then we get from an integration by parts that

f tae'naaaju(da) — [ ein"aafi(da)+ \n(t) ( t" f em/la^ fi{d/?) da. (6)
J[0,1] "'[0,1] Jo J[&, i]

Now we recall that if t- > 0 and

arg(Zj) e [0, n] for j = 1, ... , n,

then arg(£"=1 tjZj) belongs to the interval [min,<><n{arg(z;)}, max1^n{arg(z>)}].
In particular, this implies that arg (J[a a j e'n" an n(d a)) e [a0, a,]. It follows from

this fact that arg(/[a ^etn)> a^ n(d0)) is a nondecreasing function of a with values
in [0, n]. If now t > 1 , then we get

arg (ln(?) [ ta f oP n(d /?) da) > arg ( [
V Jo J [a, i ] / \J[(

i/iu ct / i \e a ft{da)

and we conclude from (6) that the function <t> is nondecreasing.
Since the range of the function (j> is contained in [0, n], it follows that the

function sin(0(er)/2) is nondecreasing as well. Hence it is sufficient, in order to
establish (5), to show that the function a >-> a/y/r(a) is nondecreasing.

Let us denote by c(a) and s(a) the functions

c(a) = / cos{na)a" n(da), a > 0,
J[ 0,1]

5(c) = / sin {na)oa n(da), er>0,
^ro, li'[0,1]

2 2 2 / so that r(a) — c(a) + s(a) . It is clear that a/\/r(a) is nondecreasing if and only
if

g(a) =f 2c(af + 2s{a)" - ac\a)c(a) - as'(a)s(a) > 0, a > 0.

Now ac'(a) = f[0 ^acos(7ia)o"ju(da) and as\a) = J[0 asm(na)a" [i(da), and
it follows that 0 < as'(a) < s(a) and also that

ac'(a) = ^c(a) + f (a - a" cos(na)n(da) < \c(a).
2 ./[o.ip 2/ 2

Thus we see that if c(a) > 0 , then g(a) > jc(a)2 + s(a)2 > 0 .
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Hence it remains to consider the case where c(a) < 0. Suppose that the support
of the measure n is contained in the interval [a0, aj . Then we get the following
inequalities:

g(a) = s(a) / {2 - a) sm(na)aa/u(da)
J[ 0,1]

+ (2 - al)c(a)2 - c(a) / (a - a,) cos(na)aa/u(da)
J[ 0,1]

> s(c) / (2 - a) sin(na)aan{da)
J[ 0,1]

+ (2 - a1)c(cr)2 - |c(er)| / (a, - a) cos(na)(j'1/u{da).

(V)

If a0 and are such that

(aj — a) cos(na) < 2^2 — \/2 — a sin(7ra), a£ a0, 1/2] , (8)

then it follows from an application of Holder's inequality that

/ (Qj-a)cos {na)an n(da)
■W1/2]

<2J2-al> sin(na)aa ^i(da), / (2 - a) sm(na)a" fi(da).
V J[0, i] V [°''l

If we insert this result into (7), then we see that g(o) > 0, which is what we need.
By the same argument used above, we have

g(a) = s(a) / (2 - a) sin(7ia)a"jU(da)
J[ 0,1]

+ (2 - a0)c{a)2 - c(a) / (a-a0)cos{na)aa^i(da)
J[ 0,1]

> s(ct) / (2 - a) sin(na)a"/u{da)
J[ 0,1]

+ (2 - aQ)c{o)2 - \c{o)\ / (a - a0)\cos{na)\a"ju(da).
J[ 1/2,Q,]

(9)

Now we assume that a0 and ax are such that

(a — a0)|cos(7ra)| < 2yj2 — aQ\/2 — a sin(7io:), a e [1/2, a,], (10)

and we use Holder's inequality to get

/ (a - a0)|cos(na)|craJu(^a)
J[l/2, a,]

<2J2-a0, sin(na)aan(da). (2 - a) sin{na)a"n(da).v y -A0 -'1 V-'I0'1)

If we combine this inequality with (9), then we get the desired inequality g{cr) > 0.
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It is easy to see that if (8) holds with a = a0 or (10) holds with a = a, , then at
least one of these inequalities holds for all values of a in [a0, a,]. In the extreme
cases, one of these inequalities becomes an equality. Thus we see that we can take y
to be at least the distance from the line a0 = ax in the (aQ, a^-plane to the curve
given by

(<*i - «0) = — — Qj max{ tan(7ro;0), |tan(^aj)|} (11)

in the region where 0 < a0 < 1/2 < a, < 1 .
Using the implicit function theorem one sees that (11) determines a, as a function

of q0 , and when a0 < 1 - a, we have

1 + VL^. tan(^a,da1   yf2^Ta v 1

dao l - V-L°2 tanfoa,) +
^2-at 1 cos"(7ta,)

< 1

because tan(7ra1) < 0. Similarly, when a0 > 1 - a{ we get from (11) that

! \/E°i tanf-q ) l
cJctj ^/2—a0 0' cos2(na0)

da0 . y/2-a01 + ^*^=2 tan(7ra,
\/2-a 0'

o _|_ 7r(Qi an)
2(2-q0) sin(na0) cos(na0

1 +
> 1

2(2-a.)

because
1 1 2 71

2 — qq 2 —q, sin(^aQ) cos(7raQ)
Thus we see that the shortest distance from the curve determined by equation (11) to
the line a0 = a, is obtained at the point where a0 = 1 — a, . Since a, -a0 = 1 -2aQ

at this point we conclude that y > /1 where X satisfies X - v19 - X2 cot(;rA/2) = 0.
It is easy to see that this equation has a unique solution in the interval (0,1) that
is at least 0.823 .

This completes the proof of Theorem 1.
Proof of Proposition 2. Let a{t) = (1 + 8e~9')/9, t > 0, and a0 — 0, and sup-

pose that the fundamental solution v of equation (1) is unimodal, at least when,
e.g., x = I. A straightforward calculation shows that the Laplace transform of
v( - , 1) is exp(-zv/l + 8/(z + 1)). Thus we see that v(- , 1) = * rj where
fj(z) - exp(-z-^/l + 8/(z + Tj+z) (and where "*" denotes convolution). If i/(-, 1)
is unimodal it follows that >7 must be unimodal. Since r/ is supported on R+ and
lim fj(z) = e~A, it follows from the unimodality of t] that tj can be written as
rj(dt) - e~4S0{dt) + w{t)dt where w is nonincreasing. Thus it follows that

w(0) — lim zw(z) = \2e 4.
Z—► OO

Since w is nonincreasing we must have lim inf,^ z(zw(z) - w(0)) < 0 but we
have in fact

lim z(zvu(z) - w(0)) = 20? 4.
Z—+ OO
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This gives a contradiction and shows that v{ - , 1) cannot be unimodal.
Note also that since the set of unimodal distributions is closed under weak con-

vergence, and since a sequence of probability measures converges weakly to another
probability measure if the Fourier transforms converge pointwise, it follows that the
counterexample given above does not depend on a being continuous, or on having
any number of continuous derivatives at zero. It does not depend on lim^^ a(t)
being positive either.
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