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WITH MIXED BOUNDARY CONDITIONS

By
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Abstract. The question of global existence for solutions of reaction-diffusion sys-
tems presents fundamental difficulties in the case in which some components of the
system satisfy Neumann boundary conditions while others satisfy nonhomogeneous
Dirichlet boundary conditions. We discuss particular examples for which classical
solutions are known to exist globally when all components satisfy the same type of
boundary condition and yet either finite-time blowup occurs or else global existence
is unknown when mixed boundary condition types are imposed on the system. Some
positive results are presented concerning global existence in the presence of mixed
boundary conditions if certain structure requirements are placed on the system, and
these results are applied to some particular chemical reaction models.

1. Introduction. Recent years have seen a great deal of research and considerable
progress on the problem of global existence for systems of weakly coupled, semilinear,
parabolic partial differential equations, namely, systems of the form

Ut - DAU = F(U) in Q x {Z > 0},
BU = 0 on <9Q x {/ > 0} , (11)
U(-,0) = UQ{') on Q

where U = {Uj)"=l , F = {Fj)J=l , D = diag{^, , d2, , dm} with each d}> 0, A
is the Laplacian, p = , , BU = {AjUj + (1 - Xj)dUJ/dn)'J=] with A, e [0, 1],
U0 — (U0j)^ , and Q is a bounded domain in R" with smooth boundary . The
following are standard, basic assumptions:

(i) F: R"' —> Rm is locally Lipschitz;
(ii) FjiQ > 0 for all £ e R^ with f. = 0

(iii) £eC(dQ;R™)
(iv) U0eL°°( Q;R

j"'~ *+»,-> (H)
+ '
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Under these assumptions, the following local existence result is well known.

Proposition 1.1. The system (1.1) admits a nonnegative, noncontinuable, classi-
cal solution [/:flx[0, ^max) ~where 0 < Tmax < oo. If Tmax < oo then

Olloo.n — oo as t^Tmax.
In many cases, it is straightforward to establish that Tmax = oo by means of in-

variant regions, differential inequalities, etc., but many systems (arising, for example,
in modelling chemical reactions) do not lend themselves to these standard methods,
and thus a priori bounds must be established by other means in order to deduce that
rmax = oo . Two-component systems of the type

ut - d^Au =-uf(v), vt - d2Av = uf(v) inQx{/>0},
du 0 . ,, , .dv

) 7T- — P\ > ^2V + ( — ̂ 2)«~~an 1 2 1 dn
u(-,0) = uQ, v(-,0) = v0 on Q,

Atu + (1 - A,)—= , A2v + (1 - A2) — = [i2 on3Qx{/>0}, (1.2)

where / 6 c'(R+; R+), dx, d2 > 0, A,, A2 e [0, 1], /?,, /?2 > 0, and u0,vQ e
L^°(Q), have been studied by several authors; e.g. [2, 3, 4, 6, 10]. (Here we use
u, v rather than Ul , U2 for notational convenience.) It follows from the results
in Hollis, Martin, and Pierre [4] that 7max = 00 (and, moreover, that u, v are
uniformly bounded in t) under the following assumptions:

/(£) < c\ + c2^ for all <^>0, where y > 1 ; (1.3)
0 < A, , A2 < 1 , A, = A2 = 1, or Aj = A2 = (ix = P-, — 0. (1.4)

When /?, = P2 = 0, assumption (1.4) may be dispensed with; that is, we may take
0 < Aj , A2 < 1 (cf. Masuda [10]). One can also modify the argument in [4] slightly to
handle 0 < A, , A2 < 1 (Neumann/Robin conditions) and the case where 0 < A, < 1
and A? = 1 with p-,> 0, provided that — 0 when A, = 0. However, the situation
where A, = 1 , /?, > 0, and A2 = ^ = 0 (i.e., a Neumann condition for v and a
nonhomogeneous Dirichlet condition for u) presents fundamental difficulties. (See
also the brief discussion of "critical" boundary conditions in Martin and Pierre [9].)
It is precisely this type of situation that is the main focus of this note.

In [3] it is shown that the solution of (1.2) with d{ > 0 and d2 = 0 can blow up in
finite time if A, = 1 , /?, > 0, and f(v) = vr with y > 1 . To see this, suppose that
v0 is bounded away from zero near x0 e dQ., and note that since u = > 0 on dQ,
one has a lower bound u>\Px > 0 on some set £?(t) = {x e Q : |x - x0| < e(t)}
for t > 0 with e(t) > 0 so long as the solution exists. Now we see that vt > yy
on <%*(t), and thus assuming that the solution exists for all time leads to the obvious
contradiction, since solutions of the equation y'(t) = \Pxy(t)y with y(0) > 0 tend
to infinity in finite time.

For the problem in the preceding paragraph, except with d2> 0 and A2 = /?2 = 0 ,
it has recently been shown by Bebernes and Lacey [1] that solutions can blow up in
finite time if y > 2 and H is a ball in Rn , « > 1 . Note that this blowup may be
directly attributed to the mixture of boundary condition types, since global existence
is known for this problem with boundary conditions of uniform type. For 1 < y < 2
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and mixed boundary condition types, the question of global existence versus finite-
time blowup remains open.

It is interesting to note also that if a solution of (1.2) does exist globally, mixed
boundary condition types as those described above will cause the solution to grow
without bound as t —► oo. More precisely, we have the following result, the proof of
which is due to Kirane [7],

Proposition 1.2. Consider problem (1.2) where dx, d2> 0, A, = 1, /?, > 0, and
■^2 ~ Pi ~ 0 ant* where / is nondecreasing with /(£) > 0 for all <* > 0. If
(u, v) is a nonnegative solution on Q x [0, rmax) with v not identically zero, then
fnv > at + b for all t e [0, rmax) where a > 0 and b > 0.

Proof. Take C to be the solution of the elliptic problem
-AC = 1 in ,

C = 0 on Sf2,
and define p(t) = /n(e£w + v) where s > 0. Then we have

p'(t)= [ - uf(v)) + d2Av + uf{v))

= edx [ + [ (1 - eQuf(v)
J n J n

" edl^Ldn ed>LU + L{
= + / ((I -eQf(v)-ed

Jil

1 - e£)uf{v)

u.
n

Note that if tQ)) > efi?1/(l-e||C||00) > 0, then /(«(., t)) > e</1/(l-e||C||00) for
all t > t0 since / is nondecreasing and v(x, t) > minu(-, t0) > 0 for all x e Q and
t >t0> 0. Thus by choosing e small enough, we can deduce that p\t) > edl/il |Q|
for all t > t0 for some t0 > 0. It follows that p(t) > E.dxPx\£l\t + c, which yields the
desired result. □

Remark. Note that this argument uses only that / is a nondecreasing function;
hence the result is true even for bounded nondecreasing functions /.

In [11] Morgan recently generalized the results of Hollis, Martin, and Pierre [4]
to establish global existence for solutions of the m-component system (1.1), m > 2 ,
where again F is polynomially bounded (cf. (1.3)) and also satisfies an "Intermediate
Sums" condition of the form

AF{U) < CU + b for all U e R™ (1.5)
where A and C are mxm matrices with nonnegative entries, A is lower triangular
and nonsingular, and b e Rm . (The linear bound (1.5) may be relaxed somewhat to
handle a polynomial bound of some small degree depending on the spatial dimension
n ; see [11].) Moreover, the assumption is also made that

A( = 0 for all / = 1, ... , m,
0 < < 1 for all / = 1, ... , m, (1.6)
or ki = 1 for all / = \, m.
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Minor modification of the arguments in [11] will allow the case in which 0 < A(. < 1
for all i — I, , m (a mixture of Neumann and Robin conditions), but again the
case involving Neumann/Robin conditions mixed with nonhomogeneous Dirichlet
conditions must, in general, be excluded.

In the section that follows, we will present some modest positive results concerning
situations in which one can deduce global existence of solutions to (1.1) in spite of
having a mixture of Neumann and nonhomogeneous Dirichlet boundary conditions.

2. Some positive results. We begin by partitioning the system (1.1) into a pair of
coupled systems, with I and m - / components, respectively, of the form

u( - Dx Au = /(u, v) in Q x {/ > 0} ,
Bx u = <7 on x {7 > 0}, (2.1.a)
u(-,0) = u0(-) onfi;

v; - D2Av = g(u, v) inHx{/>0},
v = p on <9£"2 x {? > 0}, (2.1 .b)
*(-.O) = To(0 onQ

where u = («,-)'=1, v = (t^.)™"', / = {f})']=x , g = {gj)™~{ , D{ = diag{</, ,</2, ... ,
off) with each at> 0, and Z>2 = diag{<5,, S2, ... , Sm l} with each Sj > 0. Also,
a = (Oj)lj=i and p = {Pj)™'/, and the partitioning is done to accomplish separating
boundary condition types according to

/ dui\'
B{u = \ r\jUj + (1 - wlth each >1j € t°' !)-

Also, u0 = (u0j)'j=i , , and the basic properties (H) are inherited
throughout.

Proposition 2.1. Suppose that the functions / and g in (2.1.a,b) are polynomially
bounded and satisfy

^/(u, v) < 3°u + dPv + a, (2.2.a)
J"^(u,v)< Ju + yv + / (2.2.b)

for all u G r'+ and v g R"!_/ , where a and / are vectors in r' and Rm 1,
respectively, and

sf , 38, 2P, and S? are square matrices, & and 31 are matri-
ces with appropriate dimensions, and all have nonnegative entries. (2.3)
Moreover, j/ and 38 are lower triangular and nonsingular.

Then, solutions of (2.1.a,b) (i.e., (1.1)) exist for all t > 0; that is, Tmax = oo.

Proposition 2.2. Suppose that the functions / and g in (2.1.a,b) are polynomially
bounded and satisfy either

(u, v) <3eu +a, (2.4.a)
g(u, v) <£f(u)v + /(u) (2.4.b)
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for all ueR'+ and v e R™-/ where

stf and ZP are square matrices with nonnegative entries, j/ is lower
triangular and nonsingular, «eR', and €: R; —► an(j (2.5)

r' —> R ' ' are polynomially bounded functions
or

/(u,v) <<f(v)u + /(v), (2.6.a)
v) <^v + « (2.6.b)

for all u e R; and v e Rm~' where sf , 3s, €, a, and / satisfy (2.5) with /
exchanged with m-l. Then solutions of (2.1.a,b) (i.e. (1.1)) exist for all />0;that
is> rmax = 00 •

3. Proofs of Propositions 2.1 and 2.2. We assume that the reader is familiar with the
standard notation and the theory of the Lebesgue spaces Lp(Q) and Lp{Q x (0, T))
as well as the basic ideas of Sobolev theory. Norms of vector-valued functions are
defined by ||z|| = || \zt\ It throughout the following.

The method of proof will be a variation on that of Morgan [11] and of Hollis and
Morgan [5]. It is an extended version of a duality argument that was first applied
to (two-component) reaction-diffusion systems by Hollis, Martin, and Pierre [4] and
makes use of Lp regularity theory (p > 1) for linear parabolic equations [8; Chap-
ter IV]. The proof of Lemma 3.2, in particular, is a straightforward adaptation of
arguments in [11] and is essentially the same as that of [5, Lemma 3.3], where the
method is applied to situations in which one or more diffusion coefficients are zero.
For this reason the details of its proof will not be included here.

The heart of the proof of Proposition 2.1 is the following lemma.

Lemma 3.1. Let the conditions of Proposition 2.1 be fulfilled, and let 0 < T < Tmax
or T = rmax if rmax < oo. Then there exists a constant Cp(T) such that for all
i = I, , I and ic= I, , m —I:

n + 2if 1 < /? < ——— , (3.2)n
then

llw/llp,0x(0, T) — + llu(- > 0)llp,O + llUll 1 ,£2x(0, T) + IMIl ,nx(0,7")J ' (3.2.u)
llWJlp,Qx(0, T) — Cp(T)[ \ + IIv(- , 0)||p £J + |u| , nx(0j 7") + IKII, tjx(0, 71)] ' (3.2.v)

and
n +2 j p{n + 2)

if r < p < oo and r = — , (3.3)
n+1 p+n+2 K '

then

llM;llp,nx(0, T) — + IIu('j ®)llp,fi + llUllf,£Jx(0, T) + II VHf, Ox (0, T)1' (3.3.U)

llvfcllp,£jx(o,r) - Cp{T)[l + ||u(., 0)11^ ̂ + llullr,nx(o,r) + llvllr,nx(o,r)]- (3.3.v)
Proof. The proof is a straightforward modification of the arguments in Morgan

[11] and, in particular, Hollis and Morgan [5, Lemma 3.3]. □
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Lemma 3.1 provides a bootstrapping mechanism for obtaining Lp estimates on u
and v for arbitrary p e [1, oo). To initiate this bootstrapping procedure, we need
L1 estimates, which are provided by

Lemma 3.2. Let the conditions of Proposition 2.1 be fulfilled, and let 0 < T < Tmax
or T = rmax if Tmax < oo . Then there exists a constant C(T) such that

Hulli,i2x(o,r) + IMIi ,ox(o,r) - C(T).
Proof. First note that because of the assumptions on the matrices srf and 38

in (2.2)-(2.3), we may assume without loss that al .> 0 for j = 1, ... , / and
bm i > 0 for j — I..... m - I. Let us now defineTYl — / , J j ? ->

l m—l

w = J2auuj and Z = Y.djbm-l,jVr
;=1 7=1

By (2.2) we have, for an appropriate constant C, ,

/
J2a,Jfj(u,\)<Cl[l+w + z], (3.6)
j=i

m—l

J2bm-ljgj(U> V) ̂  C,[l +1i> + z]. (3.7)
j=1

Applying (3.6), we see that wt < t/j a, Au- + C,[l + w + z], and hence

Lw s Lw{-'o)+/„' L S+c' [' ■+ II Lw+/.' L.
Since dUj/dn = ((cr - r]jUj)/( 1 - rjj)) < ajj{ 1 - rjj) on 5Q, we have

[ W < [ w(-, 0) + C2 \t + [' f w+ f fJn Jci Jo Jci Jo Jn

z
n .

z
in .

(3.8)

Now define
nt rl m — l

£(•> t)= Z{-, s)ds = / J2SJbm-l jVj(-,S)dS.
Jo Jo

A straightforward calculation using (3.7) shows that

C,<^mi,AC + C3^(.f0) + r+ I w + t).

A maximum principle argument now produces the estimate
/'Jo

C(", 0 = ^ z(-,s)ds < C4eil ̂ 1 + t + Jo '

if A > C3. Returning to (3.8), we now see that

w (3.9)

f w< [ w(-, 0) + C5(/) (\ + t + [ [
Jn Jq V Jo Jn

w
Q
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from which Gronwall's inequality yields a bound fQu>(-, t) < Ml(t) where M, e
C(R+;R+). Finally, (3.9) now implies a bound /0' fn z < M2(t) with M2 e
C(R+; R+ ). From these last two inequalities follows the conclusion of the lemma. □

We are now in a position to give the
Proof of Proposition 2.1. Let us assume for the sake of contradiction that 7'max <

00 in Proposition 1.1. The result of Lemma 3.2 together with (3.2) from Lemma
3.1 implies that if p e [1, {n + 2)/n) then vk € LP(Q, x (0, ^max)) for each
1 = 1,...,/ and k = 1, ... , m - I. Taking r = (n + 2)/(n + a) in (3.3) results
in p = (n + 2)r/(n + 2 - r) — (n + 2)/(n + a - 1), and with {cij}^ any decreasing
sequence in (1 - n, 1] such that a0 — 1, a. - aj+l < 1, and a}. —> 1 - n as j —> oo,
we have r} < rj+x < Pj < pj+l —► oo. From (3.2) and (3.3) we then obtain by
induction that ut, vk e LPj(Q x (0, 7max)), j = 1, 2, ... , for each i and k , from
which it follows by Sobolev imbedding (due to the polynomial growth assumptions
on / and g) that , vk e L°°(Q x (0, 2"max)) for each i and k . Thus Proposition
1.1 leads by contradiction to the conclusion that rmax = oo . □

The proof of Proposition 2.2 is similar to the above proof of Proposition 2.1. We
will sketch the argument in the following.

Indication of the Proof of Proposition 2.2. Let us assume that the conditions (2.4)
and (2.5) are met. Arguments similar to those that prove Lemmas 3.1 and 3.2 produce
the following estimates for T = 7" if 7" < oo :max max

Yl -f- 2If 1 < p < —-— , then for each i = 1,

llM/llp,ax(o,r) — Cp(T)[\- + H-, 0)IU + llulli;Qx(o,r)l- (3.10)

,, n + 2 , p(n + 2) . . , . ,
It  r < p < oo and r — —^   , then for each i = 1,n+\ r p + n + 2'

llM/llp,nx(o,r) — + llu("> ®)llP,n + Hullr,nx(o,r)]-

Hi.nxco ,t)<C(T). (3.12)
From these, the bootstrapping procedure in the proof of Proposition 2.1 provides the
estimates

Hullp,£jx(o,r) — Cp{T), 1 < p < oo.
It now follows from assumption (2.4.b) and the results of Chapter VII of Ladyzhen-
skaya et al. [8], that v € L°°(Q x (0, T); Rm_/). Now, Sobolev imbedding puts
u € L°°(Q x (0, T); r') as well. It therefore follows that rmax = oo. The proof is
similar under the condition (2.6). □

4. Applications. In this section we will examine some particular chemical reaction
models in order to illustrate the applicability of Proposition 2.1. Throughout this
section we will assume that all reactions take place in a bounded domain Q with
smooth boundary d£l. When we say that two functions £, and £2 satisfy the same
type of boundary condition, we mean that either both satisfy nonnegative Dirichlet
conditions = er on dQ. x {/ > 0} or else both satisfy Robin/Neumann conditions
d£i/dn = ki(oi - £.) on x {/ > 0} where er ,kf> 0.
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Let us begin with the simple three-component reaction A + B ±+ C that leads
(with unit reaction rates) to the reaction-diffusion system

at - dxAa = -ab + c,
bt - d2Ab = -ab + c, (4.1)
ct - d}Ac = ab - c.

If boundary conditions of the same type are imposed on all three components of
this system, then it follows from known results [11] that, for any nonnegative Z,°°
initial data, solutions of (4.1) exist for all t > 0. It follows from Proposition 2.1 that
solutions of (4.1) with nonnegative L°° initial data exist for all / > 0 if c satisfies
the same type of boundary condition as either a or b . Thus if boundary conditions
of different types are imposed on a and b, global existence follows regardless of
the type of boundary condition that is imposed on c. To see this, consider, for
example, the case where a satisfies a Dirichlet boundary condition and b and c
satisfy Neumann/Robin conditions. Then we take u = (b, c) and v = (a) and
observe that (2.2.a) and (2.2.b) are satisfied if we set srf = [[ °] , 3° — q] ,
<? = [0], *= [q], 3S = [\), 31 = [0, 1], iS* = [0], and / = [0].

We next consider a model of the oxygenation of hemoglobin (Hb) in a pulmonary
capillary (see [14, 12]). If we let A, B, C, D, and E represent Hb, 02, Hb02 ,
C02 , and HbC02 , respectively, then the reactions considered are

A + Bt^C, A + D E.

This leads to the five-component reaction-diffusion system:

At - d,AA = -ktAB + k2C - k3AD + kAE,
B( — d2AB = —kyAB + k2C,
C,-dyAC = kxAB -k2C, (4.2)
Dt - d4AD = -k^AD + k4E,
Et - d5AE = k3AD - k^E.

The result of Proposition 2.1 applied to this system is summarized as

Proposition 4.1. Solutions of (4.2) with nonnegative L°° initial data exist for all
t > 0 provided that: (1) C satisfies the same type of boundary condition as either
A or B , and (2) E satisfies the same type of boundary condition as either A or D .

Note that this covers the physically interesting case in which i)A/dn = dC/dn =
dE/dn — 0, B — p, and D — y on dQ. x {t > 0}. For the sake of illustration, we
will indicate for this case how the assumptions of Proposition 2.2 are verified. If we
define u = (A, C, E)J and v = (B, D)J, then (2.2.a) is satisfied with a — 0 and
the matrices sf , 3°, and & taken to be

1 0 0
1 1 0
1 1 1

0 k2 /c4
0 0 k4
0 0 0

and
0 0
0 0
0 0
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respectively. Also, (2.2.b) is satisfied if we take / = 0 and the matrices 38 , 31 ,
and 5? to be

1 0
0 1

0 k2 0
0 0 kA and 0 0

0 0
respectively.

Another model, which is very similar to the preceding one, is the following model
of phosphorus diffusion in silicon [13, 5]:

V + I*=i( 0), P+Vt=,E, P + I±^F

where P represents a substitutional phosphorus atom, I an interstitial site, V a
lattice vacancy, E a phosphorus-vacancy pair, and F a phosphorus-interstitial pair.
This leads to the reaction-diffusion system:

Vt - dxAV = -kxPV + k2E - k0(VI - VeqIeq),
Et -d2AE = k{PV -k2E,

I, ~ d,M = -k3PI + k4F - k0(VI - VeqIeq), (4.3)
Ft - d4AF = k}PI - k4F,
Pt - d5AP = -k{PV + k2E - k3PI + kAF

where the ki are positive reaction rates and the dt are positive diffusion coefficients.
In [13, 5] the diffusion coefficient d5 is taken to be zero, reflecting the assumption
that the only significant transport mechanism for phosphorus is the combination with
the vacancies and interstitials; however, for our purposes here, we will assume d5> 0
in analogy with the idea of artificial viscosity. Of physical interest for this model (cf.
[13]) are the boundary conditions:

y = / = v
r)F r)F
^ = ^-=0 on dQ. x {? > 0},
an an
~ = k(C*-P).
an

X TBy defining u = (P, E, F) and v = (V, I) , we see that Proposition 2.1 guar-
antees the existence of global solutions for any nonnegative L°° initial data. Other
combinations of boundary condition types are also covered by Proposition 2.1; they
are summarized in the following proposition.

Proposition 4.2. Solutions of (4.3) with nonnegative L°° initial data exist for all
t > 0 provided that: (1) E satisfies the same type of boundary condition as either
V or P, and (2) F satisfies the same type of boundary condition as either / or P .

We conclude with an illustration of Proposition 2.2. Let us consider the system

ut - dx Au = -unv^ - uywp + + k2w ,

vt - d2Av = -u'v^ 4- uywp, (4.4)
j a a P , y pw( - a3Aw = u v + u w
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where a, fl, y, p > 1 and A, , X2 > 0. Unless all three boundary conditions are of
the same type, Proposition 2.1 does not apply here. However, the result of Proposi-
tion 2.2 applied to (4.4) may be summarized as

Proposition 4.3. Solutions of (4.4) with nonnegative L°° initial data exist for all
t > 0 provided that either: (1) A, =0 and u satisfies the same type of boundary
condition as w , or else (2) A2 = 0 , p = 1 , and u satisfies the same type of boundary
condition as v .
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