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Abstract. It is known that the stresses of an isotropic elastic semi-infinite strip de-
cay exponentially at large distance x, from the end x, = 0 if the sides x2 = ±1 are
traction free and the loading at xl = 0 is in self-equilibrium. We study the associ-
ated problem for a general anisotropic elastic strip. Eight different side conditions at
x2 = ±1 and eight different end conditions at x, = 0 are considered. With the Stroh
formalism, all these different side and end conditions are encompassed in one simple
formulation. It is shown that, for certain side conditions, the loading at x, = 0 need
not be in self-equilibrium. The decay factor for the strip of monoclinic materials
with the plane of symmetry at x3 = 0 and with the sides x2 = ±1 being traction
free is derived, and it has a remarkably simple expression. Numerical calculations of
the smallest decay factor are presented.

1. Introduction. In a Cartesian coordinate system (x,, x2), let an isotropic elastic
semi-infinite strip of width two units occupy the region

0<Xj<+oo, — 1 < x2 <+1 . (1.1)

The sides of the strip x2 = ± 1 are traction free, that is,

(7,1=(t12 = 0 atx2 = ±l. (1.2)

Under the assumption of plane stress or plane strain, if all stress and displacement
components approach zero as Xj becomes large, the classical solution for the stress
is of an exponential decay form,

<r,j = e~"X,fu(x2) (i,j= 1,2), (1.3)

where the decay exponent X is determined by the eigenequation

sin2A = ±2A. (1.4)
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Related problems for the isotropic elastic semi-infinite strip have been considered
by Papkovich [1], Fadle [2, 3] and Johnson and Little [4], Extensions to certain
anisotropic elastic strips have been carried out by Horgan and his coworkers [5-9],

In this paper we consider the associated problem for the semi-infinite strip of
general anisotropic materials. For anisotropic materials the in-plane and anti-plane
displacements are in general coupled and we have to consider all three displace-
ments. We shall use the three-dimensional Cartesian coordinate system (x, , x2 , x3)
or (x, y, z), and assume that the displacement vector («,, u2, u3) depends on Xj
and x2 only. The side conditions are, in addition to (1.2),

er23 = 0 at x2 = ±1. (1.5)

In fact we will consider eight different side conditions, one of which is (1.2) and
(1.5). Coupled with eight end conditions prescribed at x = 0, there are a total of
64 different boundary conditions. As we will see in the paper a simple formulation
based on the Stroh formalism [10-20] encompasses all 64 boundary conditions with
little additional effort.

2. Basic equations. Let u -, aij be the displacement and the stress, respectively,
of a homogeneous anisotropic elastic body. The equations governing the equilibrium
and the stress-strain laws can be written as

aiJ,J = 0' (2-1)

<J1] = CUksuk,s• (2-2)

In the above, a comma stands for differentiation, repeated indices imply summation
and Cijks are the elasticity constants which are assumed to be fully symmetric and
positive definite so that the strain energy is positive.

If the displacement uk depends on Xj and x2 only, so does the stress. To satisfy
(2.1) the stress function 0 = (</>,, 02 > ̂ 3) may introduced such that

au = ~(t>i,2 °2i = (t>i,\ (' = 1,2,3). (2.3)
Substituting (2.2) into (2.3) yields

{ Qu , +Ru 2 = -</> 2,
T' ' ' (2.4)1 R u | +Tu 2 = (p , ,

where u is the displacement vector whose elements are («,, u2, m3) and the com-
ponents of the 3x3 matrices Q, R, T are

Qik = Ci\k\ ' ^ik = ^ilk2 ' ^ik = ^i2k2' (2-5)
We see that Q and T are symmetric and positive definite.

Equations (2.4) can be rewritten as [15]

(2.6)dy dx
where

w-[j]- n=[n; n;] • (2-7)
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J Nj = -T_1Rt, N2 = T '=Nj,

\ N3 = RT_1Rt - Q = Nj".
The 6x6 matrix N is not symmetric but the matrix JN is, i.e.,

(2.8)

or

(JN)T = JN, (2.9)

NTJ = JN (2.10)
where J is the 6x6 matrix

J = 0 I
1 0 (2.11)

and I is the 3x3 unit matrix.
Consider the following eigenrelation

Ni=pt. (2.12)
There are six eigenvalues pa and six eigenvectors %a . Since p cannot be real if the
strain energy is positive [10], we let

Im(pJ>0, Pa+i=Pa, £a+3 = £a (a = 1, 2, 3), (2.13)
where Im denotes the imaginary part and the overbar stands for the complex
conjugate. We assume that N is simple or semisimple so that the span a
six-dimensional space. A modified solution for nonsemisimple N can be found in
[16, 18]. Writing the 6-vector <J;q as two 3-vectors aa , b :

ia (<* = 1,2,3), (2.14)

the eigenrelation (2.12) for the six eigenvalues and the six eigenvectors is

N

where

A A
B B

A A
B B

P ®.
0 P

r P = diag(/7j, p2, P3),
\ A , &2 > a^], B [b, , b2 , b^]

Using the following orthogonality relation [14, 15, 17],
A A
B B

Bt At
bt at

(2.15) leads to

and

where

N = A A
B B

I

P 0
0 P

BT At
bt at

A A
B B

(2.15)

(2.16)

(2.17)

Bt At
bt at

/INe =
A A
B B

(e»)
('*)]

bt ATi
bt at

(elp) = diag(£-AP|, eXp2, eXp>),

{elp) = diag(£-1?l , eXp2, eXp').

(2.18)

(2.19)
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If the 6x6 matrix is partitioned into four 3x3 matrices as

ANe =
, ANX , AN\(* )i (e )i
, AN\ , ANXTL(e )3 (e ), (2.20)

it is clear that
(<?*"), = A(eAp)BT + A(e^)Br,

(eAN)2 = A(eAp)AT + A(eXJ>) AT, (2.21)
. (<?AN)3 = B^B7 + B(^)Bt .

3. The eigenfunctions w[k). For the semi-infinite strip subject to a self-equilibrated
loading at x = 0 the stress is of negligible magnitude at distances x which are large
compared with the width of the strip according to Saint-Venant's principle [5-9]. We
therefore choose the solutions of (2.6) in the following form:

OO

w (x,y) = Y^Cke-i"x^k)(y), (3.1)
k= 1

where Ck and Xk , with ReAfc >.0 and Re denoting the real part, are complex con-
stants to be determined as are the eigenfunctions w(A). Substituting the series (3.1)
into (2.6) leads to the following ordinary differential equation for the eigenfunctions

(*)w ':
_ 5 XT■„.(*)

dy
A general solution of (3.2) is

*w = -AtNw(). (3.2)

-(\) = (3.3)
where p and £ are, respectively, an eigenvalue and eigenvector of N in (2.12).

Using the notation of (2.16) and (2.19), the general solution obtained by a linear
combination of six solutions of (3.3) associated with six p's can be written as

(k) 1uv '
L d>(k)

(k)= W =
h/cJ

(3.4)
A All" (e~XkPy) 0_ '
B bJ [ o {e~XkPy)_

in which qA and h^. are 3 x 1 constant matrices to be determined by the side
conditions at y = ± 1 .

For the side conditions at y = ± 1 consider one of the following eight conditions:

ct21=0, a21 — 0, <723 = 0. (3.5a)

ct21=0, ct22 = 0, m3 = 0. (3.5b)
cr21=0, u2 = 0, cr23 = 0. (3.5c)

cr2l=0, u2- 0, u} = 0. (3.5d)
«j=0, a22 = 0, (J23 = 0. (3.5e)

ux= 0, er12 = 0, u3 = 0. (3.5 f)
Mj = 0, U-, = 0, ct-,3 = 0. (3.5g)
ut = 0, u2 = 0, u3 = 0. (3.5h)
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Conditions (3.5a) are identical to (1.2) and (1.5). From (2.3)2 , a2l = 0 at x2 = ±1
implies that 0(. = const at x2 = ±1 . Let TI be the total traction at xl = 0, i.e.,

Ti = J | ou(0, x2)dx2. (3.6)

If T. vanishes, it follows from (2.3), that

^/(O, 1)-0,(O, -1) = 0.
Since <f>i = const at x2 — ± 1, without loss in generality we set

0(- = 0 at x2 — ± 1,

whenever a2i = 0 at x2 = ± \ . Thus <r2|, a22, cr23 in (3.5) can be replaced, respec-
tively, by 4>\, 02, 03 anc^ ̂ e eight different side conditions in (3.5) are rewritten
as

M,0, = 0, m202 = 0, m3</> 3 = 0 aty = ±l. (3.7)
In terms of the vectors u and 0>, we may write (3.7) as

I»u + I4>0 = ° at y = ±l, (3.8)

where
K + h = l (3-9)

and Iu, lr!> are 3x3 diagonal matrices whose diagonal elements are either zero or
one. The special cases (3.5a) and (3.5h) correspond, respectively, to \u — 0, 1^ = I
and 1^ = 0, Iu = I. It is readily shown that

= y, = v v* = ° (3.10)
Substituting (3.4) into (3.8) yields

°X-ik 1- - /,ikK(e~*kP)q, + K(e~^p)hk = 0
(3.11)

t K{e^)qk + K(e^)hk^0,
where

K = I„A + I^B. (3.12)
For the special cases (3.5a) and (3.5h), K reduces to B and A, respectively. It is
shown in the Appendix that K is nonsingular and hence K_1 exists. Eliminating qA
in (3.11) leads to

{(£2A*p)K-1K- K~lK(e2Xk^)}(e~2Xk^)hlc =0.

Hence Xk is a root of the determinant

|\{e1Xp)K~^-¥rXK{eUp)\\ =0 (3.13)

and q^., h^. are determined from (3.11).
Rewriting (3.13) as

\K{eUp)K 1 -K{elkp)K 11| = 0,
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Tor, since KK is purely imaginary (see the Appendix),

||(K(e2Ap)KT + K(eW)KT)(KKT)~'|| = 0,

we obtain from (2.21) the results that kk is a root of

||(e2AN)3|| = 0 and ||(eHN)2|| = 0

for the special cases (3.5a) and (3.5h), respectively.
Equations (3.11) remain the same if Xk is replaced by -Xk . Thus if Xk is a root

so is -kk . Denoting by w(~A ) the eigenfunction associated with -kk , we have from
(3.2) and (3.4),

_ , xt,■_.(-*]
dy ^ ' = A^.Nw K', (3.14)

(-*)U ' (~k)= w %
K (3.15)

A Al \(ekkPy) 0 ■
B Bj[ o (el"py).

By taking the complex conjugate of (3.11), it is easily shown that if Xk is a complex
root so is its complex conjugate lk . Moreover, qA., for Jk are identical to hA , q^.

(k)for kk , respectively. In employing the series solutions of (3.1), w associated with
kk and Jk should be considered as two independent solutions. The two solutions
are complex conjugates of each other, assuring us that w(x, y) is real.

4. Orthogonality of eigenfunctions w{k). From (3.2), (3.14), and (2.10),

^{(w(-m))Tjw(/°} = jw(fc)+(w(_m))Tj ^yk)

-Um-A,)(W(-m))TJNW(/c).

When both sides are integrated from y = — 1 to y = 1 ,

i (—m)T , (k) ±(-m)T Cc)i + 1 /i in/"' / (-m)NTTivT (k) .{ul '<p' ' + & 1 u' = (Am -Afc)y (w ) JNw dy.

The left-hand side vanishes due to (3.7) and we have

' (w(_m))TJNw(A:) dy = ( ° (4.1)
/ i I Jk ifkk=k m

(k)This is the orthogonality relation for the eigenfunctions w '
The value of Jk can be determined as follows. From (3.4), (3.15), (2.15), (2.17),

and the fact that the product of two diagonal matrices commutes, the integrand on
the left of (4.1) when k = m can be shown to be

(w(A:))TJNw(A:) = q^PqA. + hJPh^ .

This is independent of y and hence

= 2{q>q,+h>,}. (4.2)
Since (qfc, hfc) is unique up to an arbitrary multiplicative constant, we may choose
the constant such that Jk = 1 .
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5. The series solution. Equation (3.1) for x = 0 is
OO

yv(0,y) = ^2Ckw{k\y). (5.1)
k= 1

At the end x = 0, only one function each from the following three pairs,

(m,(0, y), <7n(0, y)), (k2(0, y), tr12(0, y)), (w3(0, y), <r,3(0, y)), (5.2)

may be prescribed. Since

<t>i = -J au(0, rj) dt],
we may replace an{0,y), an(0,y), <r13(0,j>) in (5.2) by 4>x{Q,y), <f>2{0,y),
<f>3(0, y), respectively. Thus the three prescribed end conditions can be one of the
following eight possibilities:

Mo,y), (°>y)- (5-2a)
(0,y), <j>2{0,y), uJ0,y) (5.2b)

0,(0, y), u2(0,y), 4>}(0,y). (5.2c)
01(0, y), u2(0,y), m3(0, y). (5.2d)
«i(0 ,y), <j>2(0,y), <j>3(0,y). (5.2e)
u{{0,y), <j>2{0,y), w3(0, y). (5.2f)
u{{0,y), u2(0, y), 4>3(0,y). (5.2g)
w,(0, y), u2(0,y), «3(0, y). (5.2h)

Let l°u, 1^ be 3 x 3 diagonal matrices whose diagonal elements are either zero or
one and satisfy (3.9), i.e.,

(5.3)
By properly choosing 1° , 1^ , any of the eight prescribed end conditions can be given
by

l>(0,y) and l>(0,y).
The unknown end conditions are

I^u(0, y) and l>(0,y) (5.4)

which can be replaced in terms of the eigenfunctions w[k\y). Introducing the 6x6
matrix

1° K °
0 1°

we have
w(0,y) = Iow(0,y) + (I-I°)w(0,y)

= l°w(0,y) + jr Ck{yy(k\y) - I°W(%)}. (5"5)
k=1

From the orthogonality relation (4.1), (5.1) leads to
• iL(w( m'(y))TJNw(0, y)dy = C J
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Substitution of (5.5) into the above yields the following equations for Cm :
OO

I(m = 1,2,...) (5.6)
k= 1

where
f ymk = , (5 7)
I = /^,(w(~m)(y))TJNIow(0, y)dy.

Equations (5.6) are an infinite system of simultaneous equations for Cm . Approxi-
mate solutions may be obtained by truncating (5.6) to a finite number of equations
and Cm .

6. Explicit solutions for Cm . The constants Cm in the series solution can be de-
termined explicitly for certain anisotropic materials and end conditions which satisfy
the relation

NI° + I°N = N. (6.1)

When (6.1) holds, ymk of (5.7), is

ymk = /V~m) M)1JNw(fe) (y) dy - f^~m\y))Tjf^{k\y)dy.

With Nw(A) in the second integral replaced in terms of dw{k)/dy by (3.2), integration
by parts, and use of (3.14) and (3.7) yields

X ^ r\
rmk = J (yy{ m\y))rJ^{k\y)dy.

1 + X / ,Ak / J-\

In view of (4.1),
0 if Xk ± Xm ,

ymk = \ Jk , , (6-2)

and (5.6) has the explicit solution

if X. = A

C„ = 2~. (6.3)
m

For the end conditions (5.2d) and (5.2e), it is readily shown that (6.1) is satisfied
if N has the structure "0 * * * 0 0

* 0 0 0 * *
* 0 0 0 * *
* 0 0 0 * *
0***00

.0 * * * 0 0.
where the * denotes a possibly nonzero element. Monoclinic materials with the
symmetry plane at x = 0 belong to this class.

N =



N
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For the end conditions (5.2c) and (5.2f), (6.1) is satisfied if
'0 * 0 * 0 * '
* 0 * 0 * 0
0 * 0 * 0 *
* 0 * 0 * 0
0 * 0 * 0 *

. * 0 * 0 * 0.
Monoclinic materials with the symmetry plane at y = 0 belong to this class.

As to the remaining end conditions (5.2a), (5.2b), (5.2g), and (5.2h), it can be
shown that no real materials satisfy (6.1). For these end conditions, (6.1) yields
7V12 = 0, which contradicts the fact that Nn = -1 for all materials [17].

The above discussion shows that explicit solutions for Cm and hence for the series
solution (3.1) can be obtained for the end conditions (5.2d, e) or (5.2c, f) if the
material has a symmetry plane at x = 0 or y — 0, respectively. Explicit solutions
have not been found for the end conditions (5.2a, b) and (5.2g, h) for any materials,
not even for isotropic materials [4],

7. Discussion of the end conditions. The discussion before and after (3.6) indicates
that the total traction Ti at x, = 0 must vanish if a2j = 0 is prescribed at the sides
x2 = ±1. Thus for the side conditions (3.5a) all three tractions Tt, T2, T3 must
vanish while for (3.5d) only T, is required to vanish. As to the side conditions
(3.5h) all three Tt can be nonzero. The stress still decays exponentially.

The vanishing of all three Tt for the side conditions (3.5a) which are equivalent
to

</>j=0, (f)2 = 0, (f>3 = 0, at x2 = ±l, (7.1)
is not sufficient for the stress to decay exponentially. The moment M3 due to traction
(7, | about the x3-axis must also vanish. To see this, from (2.3), ,

r-+l /■ + !
/+l r-Mx2crndx2 = —J x2cl)l 2dx2

— Xj (p [
+i />+1

+ fJ cj) j dx22 '_1 J-1

The first term vanishes due to (7.1). The second term is, using (3.4),

M3 = " £ Y S {
k ^ a=\ a ' "I

Since Bla = -paB2a [11], again using (3.4) and (7.1),

^k

C, - +1
A

k Ak) = 0.
-l

Thus the moment about the x3-axis must vanish. This means that the traction
au at Xj = 0 cannot be prescribed arbitrarily. It must be in self-equilibrium, in
agreement with the Saint-Venant principle.
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For general anisotropic materials there is another moment Mx about the x,-axis
which may not vanish,

r+1 r+1
/+! /»+ Ix20xidx2 = I X24>3 2^x2

1+1 r + l

— x2(j)^ J J g^3 dx2 .

The first term vanishes in view of (7.1) but the second term is in general nonzero.
Nevertheless the solution still decays exponentially. Imposition of Mx — 0 may lead
to nonexistence of a solution. A similar situation was found for anisotropic elastic
wedges subject to a concentrated couple [19], It should be pointed out that nonzero

does not imply nonequilibrium of the strip. If the strip of height -1 < x3 < +1
is considered, the nonzero due to a13 at x, = 0 is balanced by the moment due
to ct32 at Xj = ±1.

8. Monoclinic materials with the symmetry plane at x3 = 0. In this section we
determine the exponential decay factor A for monoclinic materials with the symmetry
plane at x} — 0 subject to the side conditions (3.5a) or (7.1). The objective therefore
is to find A of (3.13) with K there replaced by B. As was discussed in the last two
paragraphs in Sec. 3, if A is a root of (3.13) so is -A and ±A. It suffices therefore
to find A for which

Re/I > 0, ImA > 0. (8.1)
In particular, we are interested in the smallest Re A that provides the slowest expo-
nential decay.

For monoclinic materials with the symmetry plane at x} = 0,

B

B 1 = 1
Pi 'Pi

-klpl -k2p2 0
kl k2 0
0 0 1

'-k~l ~P2kyX 0
k~l px k2l 0

0 0 P\-P2
where k. and k2 are the normalization constants [20], Hence

B 'b 1
P l Pi

kxXkx(px-p2) kllk2{p2-p2) 0

~P\) ki^i(P\ ~Pi) 0
0 0 P\~Pi

It is shown in [21 ] that iB 1B is an orthogonal, positive definite Hermitian. Equation
(3.13) with K replaced by B leads to

eUp'- eUPl = 0, (8.2)

and
(p, - p2){eUp> - e2rp<) (p2 - p2)(e2^ -

(p p He2*-e2*') (Pl-p2)(eUpi-enp>
= 0. (8.3)
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The in-plane displacement {ux, u2) and the anti-plane displacement w3 are un-
coupled for monoclinic materials with the symmetry plane at x3 — 0. Equation
(8.2) applies to anti-plane displacements, while (8.3) applies to in-plane displace-
ments. From (8.2)

2X(lmp3) - nn, n = integer.
The decay factor X is real for anti-plane displacements.

As to (8.3), let ak , Pk be the real and imaginary parts of pk ,

Pk = ak + lPk > k = 1,2.
Writing

eUPk = eUak[cos{2Xpk) + ism(2Xpk)},
it can be shown that expansion of the determinant in (8.3) leads to

[(a1-a2)2 + (/?1-/?2)2]sin2A(/?1+/?2)

= [(a, - a2)2 + (/?, + P2f) sin2 X{px - P2) (8-4)
+ [(£, + P2)2 - (£l - ^2)2] sinh2 A(al - a2) '

(a2 + p2) sin2A = (1 + a2) sin2(A/?) + (1 - p2) sinh2(Id), (8.5)
or

where
a, — as - B, — 6n

The new decay factor A depends on two material parameters d and /). While d
can assume any value, p is limited to —l<fi<+l because P{, p2, the imaginary
parts of p{, p2, are positive and nonzero. Since A is an even function of d and
p according to (8.5), it suffices to study A for d > 0, 0 < )? < 1 . Numerical
calculations of A for the smallest Re A are shown in Fig. 1 for Re A and in Fig. 2
(see p. 294) for the corresponding ImA. It is seen that Re A = 2n is the largest Re A
that occurs at d = 0, P = 1/2, or a{ = a2 , /?( = 3/?2 . The special cases d = 0
and P = 0 are discussed below.

ReA. = 2k o
oo

0.5 1.0 1.5 2.0 2.5 3.0
ReA, = 4.21

a
Fig. 1. Contour lines for constant Rel.
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Imi = 0

a

Fig. 2. Contour lines for constant Iml.

Fig. 3. Dependence of 1 on « when /? = 0 .

Case 1. When /?, = /?2, i.e., /? = 0, (8.5) reduces to

asini = ±sinh(Aa). (8.6)

Numerical calculations show that the minus sign in (8.6) should be used for the
smallest Re A. The results for Re! and ImA are given in Fig. 3. It can be shown
that

^A = 0 at 1 = 0.
da

As is clear from Fig. 3, Re A is monotonic while ImA has a maximum at d = 0.65 .
Case 2. When a, = a,, i.e., a = 0, we have

P sin! = ± sin(A/?). (8.7)

Again the minus sign should be used for the smallest Re A. The results as shown in
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2n

Fig. 4. Dependence of X on /? when a = 0.

Fig. 4 indicate that A is real for P > 1/2 . It can be shown that

2n at P = 1/2,"{
as P —► 1

and
0 at ft = 0,

t/A
dp

oo at p — 1/2,

-n/2 as P —► 1 .
Case 3. a — P = 0. By taking a limit, (8.6) or (8.7) reduces to (1.4), and A for

the smallest Re A is
A = 2A = 4.21 + 2.25/. (8.8)

The results obtained above apply to special materials such as transversely isotropic
materials studied in [5, 8] and isotropic materials. It can be shown that (8.4), (8.6)
presented above are equivalent to (18), (26), and (28) of [8], respectively, while (8.7)
above is equivalent to (22) and its odd version in [8] as well as (48) and (50) of [5],
It should be pointed out that a = P = 0 means that pl = p2 . For isotropic materials
pl = p2 = i. Thus (1.4) and A for the smallest Re A given in (8.8) apply to materials
other than isotropic materials as long as p{ = p2.

9. Discussion and concluding remarks. The Stroh formalism for two-dimensional
anisotropic elasticity is employed to study the decay of stress in a semi-infinite
anisotropic elastic strip. It is shown that the loading at the end x{ - 0 need not
be self-equilibrated for certain side conditions at x2 = ±1 . The decay factor for
monoclinic materials with the plane of symmetry at x3 = 0 is presented for the case
when the sides x2 = ± 1 are traction free.

Discussion of the completeness of the eigenfunctions, the convergence of the series
solution, and the approximation of the truncated system for the coefficients of the
infinite series are beyond the scope of the present paper. However, the associated
problem for an isotropic elastic strip has been studied by Gregory [22, 23]. The
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solutions of infinite systems of linear equations by truncation are investigated by
Kantorovich and Krylov [24],
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Appendix. To prove that K of (3.12) is nonsingular, consider the matrix X,

X = 2/(I„A + I0B)(IuA-yj)T. (A. 1)

Carrying out the matrix products and making use of (3.10) and the identities [14,
15, 17],

2/AAT = H, -2zBBT = L, 2/ABT = S + il,
where S, H, L are real matrices, we have

X = I HI + I.LI, + LSTI - I SI, (A.2)UU(p(p(pUU(f) v/

which is real. The fact that L and H are symmetric and positive definite implies
that

aTXa = + j/TL»7 > 0, £ = I„a, ? = I0a, (A 3)

for any nonzero vector a. Hence X is positive definite, though not necessarily
symmetric. If X is singular and a is the right null vector, Xa = 0 means that
aTXa = 0 which contradicts (A.3). Hence X is nonsingular. By (A.l), IUA+I^B = K
is nonsingular.

Following the same procedure in deriving (A.2), it is readily shown that

2zKKT = I HI - I .LI, + I ,STI,, + I SI, .U U (p 0 0 U U (p

T •Hence KK is symmetric and purely imaginary.
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