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Abstract. Certain thermodynamic properties of elastic-plastic materials with work-
hardening are discussed and their corresponding free-energy functions are deter-
mined.

1. Introduction. The aim of the present paper is to examine certain thermodynamic
properties of elastic-plastic materials and to determine their free-energy functions.
We shall confine ourselves to considering the von Mises yield criterion, infinitesimal
deformations, and isothermal conditions.

It is shown in [1] how, under suitable hypotheses on the spatial gradient of veloc-
ity, the infinitesimal theory of plasticity can be deduced from the general theory of
materials with elastic range, a theory formulated in [2] and [3].

In order to describe the constitutive response, we use the concepts of material
element, state, and process (the latter is a mapping defined on a real interval, which
takes its values in the set of states and specifies the possible evolution from an initial
state). We formulate these concepts as in Silhavy [4, 5].

The following general properties of material elements, states, and processes are
important to our developments. If a material element satisfies the condition of per-
fect accessibility (i.e., if any two states are linked by at least one process), then the
second law of thermodynamics states [6] that the work done by the exterior on the
material element during a closed process is nonnegative. If the second law is satis-
fied, at least one state function y/ exists, called free-energy function, which satisfies
the dissipation inequality, i.e., the inequality saying that the work done during any
process linking two states al and a2 is not less than (t//(a2) - y/{al )). In general, the
function \f/ is not unique but, for each state a , the set of all free-energy functions
vanishing at a0 has least and upper elements, i.e., free-energy functions y/_ and lj7
such that ^ f°r anY free-energy function with y/{o0) - 0.

If a material element does not meet the condition of perfect accessibility but has
a base state, i.e., a state from which every other state is reachable by some process,
it is still possible to formulate the second law in such a way that its prescription is
equivalent to the existence of (at least) one free-energy function [7],
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Here we first consider materials with combined (i.e., kinematic and isotropic)
work-hardening. A state is a triplet a = (E, Ep, £) consisting of the infinitesimal
strain E, plastic strain Ep , and Odqvist parameter £; a process is an evolution
mapping r —> er(r) = (E(t),Ep(t) , £(t)). For each state a, the corresponding
Odqvist parameter is interpreted as the length of the plastic strain path during any
process beginning at one and the same state er0 and ending in a ; £ determines the
radius of the elastic range associated with a . The state a0 has the role of basic state;
at ctq , all of the infinitesimal strain, the plastic strain, and the Odqvist parameter are
null, and we interpret rr0 as the annealed state of the material. Thus, the material
element we construct for materials with combined work-hardening has a base state;
however, it does not satisfy the perfect accessibility condition, because £ cannot
diminish during any process.

For each state a we calculate the work done along any process beginning in ct0
and ending in a . In this way, we check that the work depends solely on a , so that
there exists a free-energy function that vanishes in er0 and verifies the dissipation
inequality as an equality. This fact is at first sight surprising, especially if we consider
that, as we prove, the material element does not contain superfluous state variables.
We also determine all the free-energy functions corresponding to the element.

Secondly, by way of comparison, we construct the material element for materials
with kinematic work-hardening. In this case the radius of the elastic range is a
material constant and it is, therefore, not necessary to include the Odqvist parameter
among the state variables: the state is identified by the corresponding strain and
plastic strain alone. For this reason, the material element with kinematic work-
hardening is not a special case of a material element with combined work-hardening.
It will be shown that a material element with kinematic work-hardening satisfies the
condition of perfect accessibility and all its free-energy functions will be determined.
The work done along any process that begins in the annealed state and ends in a
depends, as in the previous case, upon the length of the plastic strain path and cannot
now be expressed only as a function of the state variables. Thus, in this case no free-
energy function satisfies the dissipation inequality as an equality.

2. Thermodynamic background. This section, taken from Silhavy [8], is devoted
to a brief presentation of the material element and of certain restrictions imposed
by the second law of thermodynamics on the constitutive response of the material in
isothermal conditions.

2.1. Material element. In this subsection, we introduce the concept of a material
element, following the scheme to be found in [4, 5], We shall confine ourselves to
examining the case of isothermal infinitesimal deformations. Let

(i) X be a set whose elements a are called states;
(ii) n be a set of functions n: [0, dn\ —> X, defined on the real interval [0, dn\

(with d > 0) that take their values in the state set; each element n e n is
called a process and the interval [0, dn\ is interpreted as the time-interval
during which the process takes place; dn is called the duration of the process;
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it' := 7r(0) and itJ := n(dn) denote the initial and the final values of it,
respectively;

(iii) E: X —> Sym be a mapping defined on the state set that takes its values
in Sym, the space of the second-order symmetric tensors; for each state a,
E{a) is interpreted as the corresponding infinitesimal strain tensor, at a fixed
material point, with respect to a fixed reference configuration;

(iv) S: X —> Sym be a mapping that, at each state a , delivers the corresponding
stress S(a).

If the process set n satisfies the following two properties PI and P2, the quadruple
= (X, n, E, S) is called a material element.

PI. If processes n{ and i11 are such that it{ = it'2, then n also contains process

7T,(T), tg[0 ,dK],

n2(x-dn), TG[dn,dn+dn]

of duration (dn + dn ); nx*n2 is called the composition of it{ with it-,.
P2. For each n e n and for every couple t, , x2 with 0 < t, < t2 < dn, n

contains process

7r[T|,T2](T) := + Tl)' T G t0' T2 ~ TJ'

of duration (t2 - rj ; r j is called the [t( , x 2]-segment of n .
In view of properties (iii) and (iv) of the material element, each process it deter-

mines the evolution of the strain and the stress, by means of mappings x En and
x Sn , defined on the interval [0, dn], which take their values in Sym,

En := E o n\ Sn:=Son. (2.1)

En and Sn are called, respectively, strain path and stress path corresponding to pro-
cess it. Here we make the assumption that, for each it e II, En and Sn are Lip-
schitz continuous functions on [0, dn], with a right derivative at each r € [0, dn[.
We shall use E„ (or S„) to indicate the value of the time-derivative of is (or S ).Tl ^ Tl ' 71 ^ TL '

For the value of x for which the derivative of En (or Sn ) is not defined, we take
EK (or Sn ) to denote the right derivative.

Let
S(<7) :={(£,,,£,> ell, it = a} (2.2)

be the set of all the couples of strain and stress paths corresponding to the processes
that begin in a . Let us now proceed to state two important properties that a material
element = (X, II, E, S) may possess.

J? is said to satisfy the minimality condition [8] if, for cr, and o2 belonging to
X,

^(ct,) = $(o2) => ay — o2. (2.3)

The minimality condition is the assertion that from two distinct states at least two
distinct couples of strain and stress paths originate; in other words, there are no
irrelevant state variables.
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Jt will be said to satisfy the unique lifting property [8] if any two processes tt,
and 71-,, which have the same duration, begin from the same state, and determine
the same strain path, coincide, i.e.,

dnt = dn2; n\=nl2\ 4,=^2 =» n{=n2. (2.4)

If the material element satisfies the unique lifting property, each process is entirely
determined by the corresponding strain path.

2.2. Free-energy functions. This subsection deals with certain well-known results
of thermodynamics. It should be remembered that the processes are assumed to be
isothermal.

The material element = (X, II, E, S) is said to have a base state a0 if <r0 e X
exists, such that, for every other state a e X, there exists at least one process iell
that begins in a0 and ends in a , i.e., such that

n' = <70; nf = a (2.5)

(cf. [7]).
The material element is said to satisfy the condition of perfect accessibility if

each state is a base state, i.e., if, however two states cr, and a2 in X are chosen,
there exists at least one process n € II such that we get

n' = er, ; n — a2. (2.6)

For each n e II,

w(n) := f Sn(T)-En{x)dT (2.7)

is the work (per unit volume in the reference configuration) done by the exterior on the
material element during process n . In relation (2.7), E and Sn are, respectively,
the strain and stress paths corresponding to n, defined by relation (2.1); moreover,
for A and B belonging to Sym, A • B := Xr(AB), with tr indicating the trace,
denotes the inner product between A and B .

A material element with a base state a0 is said to satisfy the second law of ther-
modynamics [7] if, for each state a £ X, there exists a real constant k(o) with the
property that

w(n) > k(ct) , for each n e II, such that n' = a0 and n f = a . (2.8)

Let v. X —> R be a real estate function; ^ is said to be a free-energy function of
the material element if

w(n) > i//(n^) - i//(n') for every n 6 II. (2.9)

The inequality (2.9) is called the internal dissipation inequality. It is well known
that certain material elements may be endowed with several free-energy functions
which do not differ by a constant alone. The material element to be studied below
demonstrates this abundantly.

A function ^ is said to be regular if, for each process n, function y/n := y/ o
71 '■ [0» d ] —> IR is Lipschitz continuous on [0, dn\ and has a right derivative for each
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r e [0, dn[. If y/ is regular and satisfies (2.9), in view of P2 and of the regularity
stipulated for Sn and En , for every process n we have

■VT) •£*(*)-> 0 for each re [0, dn[, (2.10)

which constitutes the local form of the internal dissipation inequality. The funda-
mental property of the free-energy functions is stated by means of the following
proposition [7].

Proposition 2.1. A material element with a base state satisfies the second law of
thermodynamics in the formulation (2.8) if, and only if, it has at least one free-
energy function.

When proving Proposition 2.1, a free-energy function is constructed; to be precise,
on the assumption that the element has cr0 as its base state and that it satisfies the
second law, it is shown that the real function

^(ct) := inf{to(7t)|7t e EI; 7r' = er0, = a), V_(o0) — 0 (2.11)

is well defined on £ and satisfies the dissipation inequality (2.9) for every process
n. Moreover, as the following proposition states, ^ is an upper bound for the set
of all free-energy functions vanishing at aQ .

Proposition 2.2. Let a0 be a base state for a material element and let y be the
free-energy function defined by (2.11). Then, for any free-energy function ^ with
y/((T0) = 0, we have

V<V- (2.12)
For a material element that satisfies the condition of perfect accessibility, it is

possible to give a formulation of the second law of thermodynamics that is equivalent
to (2.8) in every way, but, from certain points of view, more convenient. This result
is established by means of the next Proposition 2.3 [6].

A process n is said to be cyclic if the initial state of the process coincides with
the final state, i.e., if

n = nJ . (2.13)

It should be noted that, if the material element satisfies the condition of perfect
accessibility, in view of P2, for each process n there exists a cyclic process ft such
that n is a segment of h .

Proposition 2.3. A material element with perfect accessibility satisfies the second
law of thermodynamics, in formulation (2.8), if and only if, for each cyclic process
7i, we have

w(n) > 0. (2.14)

Of course, for each state a0 of a material element with perfect accessibility, func-
tion defined by (2.11) is a free-energy function for the material element. With
the following proposition, we establish that, for a material element with perfect ac-
cessibility, it is possible to determine a lower bound and an upper bound for all the
free-energy functions that vanish at the same state [6],
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Proposition 2.4. Let oQ be any state of a material element with perfect accessibility
that satisfies the second law of thermodynamics. Then, the function 1/7 \ X —> R
defined by

y/(o) := sup{-u;(7i)|7i e n; n — a , n = aQ} , lj7(a0)-0 (2.15)

is a free-energy function for the material element.
Moreover, if y/: X —> R is any other free-energy function, such that y/{o0) = 0,

we have
> y/(o) > ~W{o) for each creZ. (2.16)

3. Von Mises elastic-plastic materials. To start with, this section will consist in an
examination of the properties of the isotropic elastic-plastic element, with combined
work-hardening, that satisfies the von Mises yield criterion. This will be followed
by an analysis of the case of a material that hardens kinematically, following the
classic Melan rule. We shall confine ourselves to the case of infinitesimal isothermal
deformations; for a more general discussion of this and addition references, see [9-
11]-

3.1. Combined work-hardening. For each A e Sym,
1
3l

denotes the deviator of A . Similarly,

AQ-= A - ~{txA)I (3.1)

SymQ := {A e Sym | trA = 0} (3.2)

denotes the set of all the traceless symmetric tensors.
Let p: R+ —> M+ be a strictly increasing, differentiable function such that p{0) > 0

and let t] > 0 . Let us consider a material element whose set of states

I:= {(£, E" , C) € SymxSym0xR+|C > ||£P|| and \\E0-(\+rj)Ep\\ < £(C)}, (3.3)

is made up of all the triples (E, Ep, £), where E and Ep belong to Sym and
Sym0, respectively, and the distance between the deviator E0 of E and (1 + rj)Ep
is not greater than p(Q; f is called the Odqvist parameter and is a number not
smaller than ||£p||.

E and Ep are interpreted as the infinitesimal strain and the plastic strain [1]
corresponding to a, respectively, so that, in view of item (iii) of the definition of
the material element, we have

E(a) = E . (3.4)
By the hypothesis that Ep belongs to Sym0 we assume there is no plastic change in
volume.

Let us use Ep and C to denote the mappings that assign to each state a el. the
corresponding plastic strain and the corresponding Odqvist parameter, respectively.

E":l^ Sym0, Ep = Ep{o)- C:X-R+, f = C(a). (3.5)

The hypothesis is put forward here that the stress S(cr) corresponding to state a
depends solely on the value of the corresponding strain and plastic strain, a hypothesis
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that reflects common experience with many materials of interest in applications, in
that the plastic deformations do not change the elastic moduli. Moreover, since we
are dealing with isotropic materials and infinitesimal deformations, we suppose two
material constants X and p exist, with // > 0, 2p + 3A > 0, such that, for each
a = (E, Ep , C), we have

S{a) = S[E(a) - Ep(a)] := 2fi(E(o) - Ep{a)) + (AtrE(a))I. (3.6)

As in the elastic case, X and p are called Lame moduli.
The set II of the processes is made up of mappings n\ [0, dn\ —> Z such that,

given

K
4

W = (3.12)

= Epoti, (3.7)
= C°", (3.8)

= (1 + n)EPn> (3-9)
:=(l/p(CJ)((^)0-CJ, (3.10)

and using p to denote the derivative of p , the system [ 1 ]

EPn{T) = tn{T)Nn{x), (3.11)

0 if||4(T)0-C„(T)||</>(4(T)),
0 if ||4(t)0 - Cn(T)W = ~p{tn{r)) and En(r) • Nn(r) < 0,

{(E^-Nnmi + rj + p'^T))]-1}
if ||4(t)0 - Cn{t)|| = ~p{tn{z)) and En(r) ■ Nx(r) > 0,

with the initial conditions

EPn(0) = E"(ni), Cx(0) = C(n) (3.13)
has one and only one Lipschitz continuous solution on [0, dn \, with a right derivative
for each r 6 [0, dn[.'

From (3.7)—(3.13) it is easy to deduce that the set n of the processes so defined
satisfies conditions PI and P2. Moreover, with Proposition 3.1 below, it will be
proved that n is not empty. Therefore, the quadruple (I, II, E, S), with E and
S defined by (3.4) and (3.6), respectively, constitutes a material element which will
be denoted by J?c.

We observe that each process n can be identified with the triple of the correspond-
ing mappings (En , Ep , (n) and, in view of the uniqueness of the solution of system
(3.11)—(3.13), is univocally determined by En . Therefore (2.4) proves to be verified
and Jtc satisfies the unique lifting property.

For each a — {E, Ep , C) e £, the cylinder

E(a) := {A e Sym| \\A0 - (1 + t])Ep\\ < p(C)} (3.14)

' Unlike materials with kinematic work-hardening (see the following Proposition 3.3), I know of no exis-
tence and uniqueness theorem for system (3.11)—(3.13) sufficiently general to include the cases most often
encountered in applications.
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with its center C := (1 + rj)Ep and radius p(Q is the elastic range corresponding to
a (cf. [3] and [11]). In view of (3.3), E(a) contains E(a), while it is not required
to contain Ep(a). E(a) depends on Ep(a) and £(<?) alone and is constituted
by the symmetric gradients of all deformations from the reference configuration to
configurations that are elastically accessible from the current configuration. Indeed, if
we confine our attention to processes n whose corresponding strain path En remains
within the elastic range E(nl) corresponding to n , i.e., such that

Ek(t) e E(n') for each t £ [0, dn], (3.15)

it can be deduced from (3.11) and (3.12) that

C„(t) = 0; Ep(t) = 0 for each t e [0, dn[. (3.16)

It therefore follows from (3.6) that

Sn(T) = 2n(En(T)-Ep(7t')) + (nTEn(z))I, T e [0, dn], (3.17)

and from (3.14) that

E(7i(x)) = E(n'), re[0 ,dn\. (3.18)

Every process n that satisfies (3.15) is called an elastic process.
Relation (3.11) constitutes the classic associated flow rule according to which

Ep{t) is either null or is parallel to Nk(t) , the outward unit normal field on elastic
range E(n(x)) at En(t) . Then, from (3.11), it can be deduced that

4K)-4(°)= f'WKWWdr (3.19)
Jo

is the length of the plastic strain path Epn corresponding to n .
From (3.9) and (3.14), respectively, we obtain the isotropic work-hardening rule

kcn) = p(CnKn (3.20)
and the kinematic work-hardening rule, similar to the one proposed by Melan [12],

Cn = (l+r,)Ep. (3.21)

In view of (3.14), (3.20), and (3.21) we shall call a von Mises elastic-plastic
material element with combined work-hardening. In particular, if we have tj = 0 we
obtain a material element with isotropic work-hardening [13]; in this special case,
it follows from (3.14) that, for each state a e I, the center of the elastic range
coincides with plastic strain Ep .

The result proved by means of the following proposition is crucial for study of the
thermodynamic properties of the material element.

Proposition 3.1. Let er, = (£,, Ep , and a, = (Zs2, Ep , C2) be two states of the
material element Jfc. A process n such that n' = er, and n1 = a1 exists if and
only if

C2"C, > 11^2 -E'W. (3.22)
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Proof. Necessity is an immediate consequence of (3.19). We shall prove sufficiency
in four steps; let us begin with the case in which we have

E2 e E{ax)

and therefore, in view of (3.16), Ep — Ep; C2 — Cj • In this case, it is possible to
construct an elastic process n that starts in ox and ends in a2. Indeed, for this
purpose, it is enough to put En{r) = tE2 + (1 - t)Ex , t e [0, 1], and from (3.12)
we can immediately deduce

Kw = E\f; 4(t) = Ci, re[o,i],
so that n {En, Ep , Cj) is the required process. Let us now prove sufficiency in
the case in which £2 - C,x = \\EP2 - Ep\\.

Given that a := \\EP — Ep\\, M = (Ep - Ep)/a, let Ax and A2 be the elements
of SymQ defined as follows:

Ax-.= {\ + n)E> + j>[£x)M-, A2:=(\ + r1)EP2+p(t;2)M. (3.23)

We will prove that the required process can be obtained from the composition of
three processes nx, n2, and n3, where:

nx is any elastic process such that n\ = ax , nx= ct, := (Ax, Ep, C));
n2 is a process such that n\ =ax, n2 — a2 := (A?, Ep, C2);
n3 is any elastic process such that n\ = ~a2, n3 = o2.

In view of (3.14) and (3.23), Ax e E(ax), A2 e E{o2) and therefore the elastic
processes nx and exist, as has been shown in the first step of the proof. The
existence of n2 remains, then, to be proved.

For this purpose, let us consider the mapping E: [0, 1 ] -* Sym0 ,

E(t) := (1 + ri)(rEp + (1 - t)EP) + />(£, + ax)M, (3.24)

which satisfies the relations

£(0) = ^,; E{\) = A2\ £{t) = a[(l + rj) + p (Cx + a-c)]M. (3.25)

Direct calculation proves that, given E := E, the functions
2

EP2(z):=tEp + (1-t)Ep, Cni(r) = Zx + at, te[0,l[, (3.26)

satisfy equations (3.11) and (3.12), respectively, with the initial conditions Ep (0) =

Ep, ^(0) = C, • Given n2 := (E^, E^, Q ,

n := nx * n2* n}, (3.27)

the existence of which is guaranteed by property P1, is the required process.
Let us now prove sufficiency in the case in which cr, and er, have the same

corresponding plastic strain, i.e.,

ax =(EX,EP, C,), = (E2, Ep, C2), with C2 > Cl •
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Given that N := EP/\\EP\\ (if Ep = 0, N can be arbitrarily chosen among the
traceless unit tensors), for a > 0, we put

f,:[0, l]->Sym0, Ex(t) := (1 + r,)(Ep + axN) + p(Cx + ax)N,
E2: [0, 1] - Sym0, E2{r) := (1 + rj)(Ep + a( 1 - i)N) - p(tx + a(l + r))N.

Given En Ex , En := E2 , from (3.11) and (3.12) we obtain

EPny) = E"+ axN, ;_(!) = {,+«; (3.28)

EPi(T) = Ep + a(\-T)N, f,j(r) = f1+a(l+T). (3.29)

Thus, if we use n2 to denote the elastic process that links states er3 = (En (1), Ep +

aN ,£[+<*) and ct4 = (£^ (0), Ep + aN, C, + a) and if we put

a

'«■2

12(C2 — Cj)» 71 := * n2 * (3.30)

we get

where

n = o5 =: (El, Ep, C,), 7if = a6 =: (E2,EP,C2),

Ex =:(1 + rj)E" + HCJN, E2 =: (1 + r,)E" - p(C2)N. (3.31)
On the other hand, E{ belongs to E{o5) = E(ax) and therefore also to E(cr6),
because p(C2) > p{Ct) • We can thus construct two elastic processes n4 and such
that n'4 = at , nfA = o5; n'5 = a6, - a2 and, therefore,

n 7t4*n * 7t5 (3.32)

is the required process.
Lastly, let us consider the general case in which C2-Ci> \\Ep2-Epx\\. Let a* :=

((1 + t])Ep , Ep , C) + \\EP -£[11). In view of the second and third steps of this proof,
respectively, there exist two processes fi{ and h2 such that h\ = ox , 7\x = a* ;
fi'2 — o*, h2—a2. Thus

n := nx * n2 (3.33)
is the required process. □

With the following proposition we shall prove that no irrelevant state variables are
introduced in defining the material element J?c.

Proposition 3.2. The material element Jfc satisfies the minimality condition.
Proof. Let us suppose er, / a2 . We wish to prove that 5(cr1) ^ Sr(<r2). In view

of the definition of n, it is sufficient to confine ourselves to considering states cr, =
(E, Ep , £,), o2 = (E, Ep , C2) > C2 > Ci > which differ only as far as the value of
the corresponding Odqvist parameter is concerned. We shall omit the details of the
proof here, confining ourselves to observing that, in view of (3.14) and the fact that
p is a strictly increasing function , E(a7) and E{ax) are two concentric cylinders,

2It should be noted that the fact that p is a strictly increasing function is crucial for the proof of this
proposition.



FREE-ENERGY FUNCTIONS 309

the first of which contains the second. Therefore, any straight strain path starting in
E, similar to those constructed during the proof of Proposition 3.1 above, intersects
the boundary of E(a2) after the boundary of E(ox). In view of (3.11) and (3.12),
this latter fact implies ^(ffj) ^ $(o2) • D

3.2. Kinematic work-hardening. In this subsection we shall deal with an elastic-
plastic material for which the radius of the elastic range does not depend on the state.
In these circumstances, therefore, the state is characterized entirely by the strain and
plastic strain. Let

I := {a = (E, E") e Sym x Sym0 | \\E0 - (1 + rj)Ep|| < p0} , (3.34)
where p0 is a positive material constant, the set of the states.

The set II of the processes is made up of the couples of strain and plastic strain
paths,

n = (En, Ep): [0, dj — SymxSymQ, (3.35)
such that En is a Lipschitz continuous function on [0,d \, with derivative of
bounded total variation and Epn satisfies the following relations (3.36)—(3.38):

EPn{Q) = E"{ni) (3.36)
and, for t € [0, dn[,

EP(T) = \\Ep(T)\\Nn(T), (3.37)

0 if||4(T)0-C,(T)||</>0,
0 if ||4(t)0 - C^tJH = p0 and En(t) • Nn(r) < 0,
{(En(t) • ̂ (i))[l + t]]~1} if ||4(t)0 - CJt)|| = p0

and En{x)-Nn{x) > 0,
where, as in the case of combined work-hardening materials, we put

Cn := (1 + rj)Ep ; Nn := (1 /p0){{En)0 - CJ. (3.39)
In this case, in the definition of II it has not been necessary to require the exis-

tence, uniqueness, and regularity of the solution of the system (3.36)—(3.38) because
these are ensured by the following proposition, the proof of which is similar to that
of Proposition (3.3) in [14] and, consequently, has been omitted.

Proposition 3.3. Let us suppose En is a Lipschitz continuous function on [0, dn],
with the derivative of bounded variation. The system (3.37), (3.38), with initial
condition (3.36), has a unique Lipschitz continuous solution Ep on [0, dn\, with a
right derivative for each re[0,fifj.

For each state a , the corresponding elastic range is the cylinder

E(a) = {A e Sym | \\A0 - (1 + rj)Ep|| < p0} (3.40)

whose center C = (1 + rj)Ep follows evolution law (3.21).
Such a material element is called a von Mises elastic-plastic material element with

kinematic work-hardening and is indicated by ,£k. In particular, if we have rj - 0,
the material is said to be ideally plastic.

(3.38)
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The next proposition follows directly from the definition of n.

Proposition 3.4. The material element satisfies the minimality condition and
unique lifting property.

Unlike what happens in the case of materials with isotropic work-hardening, the
radius of the elastic range is a material constant and, therefore, the Odqvist parameter
C is not needed to define the state of the material element. If, in this case too, we had
included £ among the state variables, the element thus constructed would not have
satisfied the minimality condition. Of course, J(k cannot be obtained as a special
case of JKc by choosing p = 0.

4. Thermodynamic properties of material elements J(c and JKk . In this section,
we prove that elements and J?k satisfy the second law of thermodynamics and
we determine the corresponding free-energy functions.

4.1. The material element . As proved by Proposition 3.1, n does not con-
tain processes that begin at a state to which an Odqvist parameter corresponds that
is greater than the one corresponding to the final state, and therefore J?c is not a
material element with perfect accessibility. In spite of this, .£c has a base state, as
is proved by the next proposition.

Let cJ0 be the state to which null strain, plastic strain and the Odqvist parameter
correspond, i.e., aQ := (0,0,0); ct0 is called the annealed state of the material
element J?c. A free-energy function if/ for J?r is said to be normalized if y/{a0) =

C

0.
Proposition 4.1. The annealed state is a base state for the material element

Proof. The desired result follows directly from Proposition 3.1, if we observe that,
in view of (3.3), for each state a = (E, Ep , £) we have £ > ||£'p||. □

Proposition 4.2. Let ax = (is, ,£[,£,) and a2 = (E2, E%, C2) be two states and
let n be a process such that n = er, and nf = o2. Then, we have

w{n) = \{{E2 - Ep2) ■ S[E2 - Ep2] - (El - Ep{) ■ S[£, - ]}

+ nrj{\\EP2\\2 - H^ll2} + 2 n{(b{t:2) - &(£,)} ,
(4.1)

where cb is a primitive of p .
Proof. From (2.1), (2.7), (3.6), and (3.7) we deduce

w(n) = [ ' Sn{x)- En{x)dx
Jo

= f * En(r)-S[En(z)-Ep(z)]dz
Jo

= ["'{(KM - KW) ■ ̂En(T) - Ep(t)] + £*(r) • S[En(T) - Ep(T)]} dr
Jo

= [(E - Ep) ■ S[E - Epvfcl2 + [ ' 2fi(En(r) - Ep(r)) ■ Ep(z) dz.
Jo
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Moreover, from (3.8)—(3.13) we obtain

f" 2n{En(T)-EPn{T)).EPn(T)dTJ 0

= f 2np{Cn{T))Nn(x) ■ Ep(t) dz + [ 2nt]Ep(r)-Ep(z)dr
Jo J 0

= [2ncb(0 + M\\EP\\2]do- □

Relation (4.1) shows that for every process n , the work w(n) depends on nl and
7i^ alone. Consequently, in view of (2.11), we have

£((7) = (E - E") ■ S[E - E"]/2 + wWE'W2 + , (4.2)
where cb is the primitive of p such that w(0) = 0. Therefore y/ is a normalized
free-energy function for J?c with the special property of satisfying relation (2.9) with
an equality. In particular, for a material element with isotropic work-hardening we
have

y{o) = {E- Ep) • S[E - Ep]/2 + 2fia){Q. (4.3)
The following proposition is an immediate consequence of Proposition 2.1 and of

relations (2.9), (4.1), and (4.2).

Proposition 4.3. The element J?c satisfies the second law of thermodynamics. Any
normalized free-energy function \f/ corresponding to J?c satisfies y/ < y/ .

The following Propositions 4.4 and 4.5 supply the required characterization of the
free-energy functions corresponding to the material element df . Let us put

r := {(A, a) € SymQ xR| ||^|| < a} . (4.4)

Proposition 4.4. A state function y/: E —► R is a normalized free-energy function
for JKc if and only if, for each a = (E, Ep , Q e I.,

yt{E ,Ep,t)= E(E, E" , C) - <P(E" , C), (4.5)
where <p: T —* R has the following properties:

p(0,0) = 0; (4.6)
<P{A2, q2) > <p{Al, a,), (4.7)

for each (Al,al), (A2, a2) e T such that

a2-al>\\A2-Al\\. (4.8)

As a consequence, every function <p with properties (4.6) and (4.7) is nonnegative.
Proof. Let us suppose y/ is a normalized free-energy function for .£c. Then,

with a similar procedure to that used to prove Proposition 8.1 in [11], we prove the
existence of a function y: T —> R, such that

yj{E ,Ep,t;) = (E- Ep) ■ S [E - Ep]/2 + y(Ep , Q • (4.9)
Defining (p by

(p{A, a) = -y(A , a) + jut]\\A\\2 + 2^cb{a), (4.10)
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we have

p(0,0) = 0; (4.11),
y/ = V-<p. (4.11)2

Since y/ is a free-energy function, we deduce from (2.9)

<//{nf) - i//(n') <w{n), (4.12)

for each process n . By combining (4.12) with (4.2) and (4.11) 2 , we obtain <p{n f) -
(p{nl) > 0, from which we deduce (4.7), taking into account Proposition 3.1.

Conversely, if (p\ T —> E is a function satisfying conditions (4.6) and (4.7) and if
y is defined by (4.5), we have, in view of (4.1) and (4.2),

<j/{nf)- y/(n') = ty(nf) - v{n') -(p{Ep, C2) + <p(Ep, (,)

= w(n) - (p(Ep, C2) + <P(Ep, C,) < w(n),

for each process n such that nl = (E{, Ep, £,), n f — (E2, Ep, C2) • Hence y/ is
really a free energy function for J?c. □

Proposition 4.5. Let cp: T -+ K be a continuously differentiable function. Then <p
satisfies condition (4.7) if and only if

\\dA(p{A , a)|| < da<p(A, a) for each (A , a) € T. (4.13)

Proof. Let us suppose <p satisfies condition (4.7). For (A, a) £ T and B e SymQ ,
let us put

A(z) = A + zB, d(T) = a + T||fl||, r>0, (4.14)
so that we have

o(t) - d(0) = r||fi|| = |M(r) - i(0)||. (4.15)

In view of (4.15), condition (4.7) implies

<p(A(r), a(r)) > <p(A(0), a(0)), (4.16)

from which we obtain

dA<p(A,a)-B + da<p(A,a)\\B\\>0. (4.17)

Moreover, choosing Ax = A2 and a2 > a, > ||/4,|| = ||^2|| in (4.7), we establish that
a (p{A, a) is a nondecreasing function, and, therefore, we have

da<p{A,a)> 0. (4.18)

On the other hand, by observing that dA<p(A , a) e SymQ , it is easy to check that
conditions (4.17) and (4.18) imply inequality (4.13).

Conversely, let us suppose that <p satisfies condition (4.13). Choosing (A{ , a,)
and (A2, a2) in T such that

a2 > + \\A2 - A{\\, (4.19)
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by means of a procedure similar to the one used to prove Proposition 3.1, we prove
the existence of a path t >-> (A(t), d(t)) on [0, 1], which takes its values in T,
such that

A{0) = Al-, A(1) = A2 (4.20)
and

d(T) = a1+ fT \\A(x')\\dr . (4.21)
Jo

Differentiating the function t tp(A(r), d(r)) and observing that condition (4.13)
implies that inequality (4.17) is verified for each (A, a) e T and for each B £ SymQ ,
we obtain

<p(A{t) , d(r)) = dAtp(A(r), d(r)) • A{t) + da<p(A{r), d(i))d(i)
= dAp(A(T), a(T)) • A(t) + da<p(A(T), d(r))||i(T)|| >0,

where the last step has been obtained in view of (4.21). Thus, bearing in mind (4.20),
we get

<p(A2, a2) = <p(A( 1), C(l)) > 0), d(0)) = tp{Ax ,a{). □
For each process iell and t e [0, dn[, we call

Sn{T)-EPn{T) (4.22)
the plastic power. In view of (3.3) and (3.6) we have

^(t) • Epn{r) = 2n(En(r) - Epn(z)) • Ep(z).

Thus, the plastic power is nonnegative for each process n e n and r € [0, dn[ if
and only if

E"(a) e E{o) for each a el. (4.23)
On the other hand, we deduce from (3.14) that (4.23) is verified if and only if

rj\\Ep(a)\\ < p{l{o)) for each a eZ, (4.24)
i.e., in view of (3.3), if and only if

tl < a 1 p{a) for each a >0. (4.25)

In particular, for a material element with isotropic work-hardening the plastic power
is nonnegative for each process n e n and r € [0, dn[.

The result proved by means of the following proposition has been obtained by
Owen in a slightly different context [15].

Proposition 4.6. The state function

i//\E - E") := (E - Ep) ■ S[£ - Ep]/2 (4.26)
is a normalized free-energy function for if and only if the plastic power is non-
negative for each process n e II and t € [0, dn[.

Proof. In view of (4.5), we have

<p\Ep , C) := iff{E ,Ep,Q-v\E- Ep) = ^\\EP\\2 + 2 pco(Z).
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An easy computation proves that <p* satisfies condition (4.13) if and only if

f/IMII < p{a) for each (A , a) e T.
Then, the desired result follows from (4.24), (4.25), and Propositions 4.5 and 4.4. □

The next Proposition 4.7 provides a few examples of free-energy functions for
JKc. For this purpose, let us consider the following functions, on Y:

(pp{A , a) := 2nPcb(a), (4.27),
where /? > 0 is a given parameter;

<p\A,a):= 2n[6){a) - (b{\\A\\)Y, (4.27),
<p2{d , a) := 2p[6)(a) + <y(||/l||)]. (4.27)3

Proposition 4.7. The functions

y/p{E, Ep , C) :=^_-(pp

= (E- Ep) ■ S[E - Ep]/2 + w\\Ep\\2 + 2/^(1 - fi)oj(C), (4.28),
yt\E, Ep , 0 :=y_-y

= (E- E") ■ S[E - Ep]/2 + m\\Ep\\2 + 2n6i{\\Ep\\), (4.28)2
V2(E, E" , 0 \^yy_-(p2

= (E- Ep) • S[E - Ep]/2 + nr,\\Ep\\2 - 2pco{\\Ep\\), (4.28)3
are normalized free-energy functions for J?c.

Proof. The functions <pe, <p\ and <p2, defined by relations (4.27), satisfy con-
dition (4.6) and therefore, in view of Proposition 4.4, it remains to be proved that

12*(pp , <p , and (p satisfy the hypotheses of Proposition 4.5, too.
The function (p^ is continuously differentiate on F and, for each (A, a) g T,

we have
da<Pp(A > oc) = 2npp{a) > 0 = ||dAtpp{A , a)||. (4.29)
1 2The functions cp and (p are continuously differentiate on the set

r* := {(-A, a) € r\A / 0}
and, for each (A, a) e T*, we get

'A

Therefore, we can put

\\dV(A , a)|| = || d.cp2(A , a)|| = 2pp{\\A\\). (4.30)

113,/(0, a)|| = P^2(0, a)|| = 2^(0). (4.31)
Moreover, since, for (A, a) e T, we have

a) = da(p2{A, a) = 2fip(a),

the desired result follows from the fact that p is an increasing function. □
With Proposition 4.3 we have proved that the set of free-energy functions corre-

sponding to has an upper bound. That this set has no lower bound is proved by
the next proposition.
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Proposition 4.8. For each state a - {E, Ep, £) with £ / 0, and for each y > 0,
there exists /? > 0, such that the free-energy function y/^ defined by (4.28), satisfies
Vp(o)< -y ■

Proof. In view of the first statement of Proposition 4.7 it is enough to choose /?
such that

p> l + (2ndj(0)-l(y + ^(E-Ep).S[E-Ep] + nr1\\Ep\\2). □

At the end of this subsection, let us calculate the work done by the exterior on
Jtc, during a particular process that starts at the annealed state and whose strain and
plastic strain paths are straight line segments in Sym0 .

Let Ci > 0, t0 > 0, and M e Sym0, with \\M\\ = 1 . Consider the mapping

{En , Epn , 4): [0, 1 + r0] — SymQ x SymQ xM+ ;

where

E M={ (T/To)mM f0r T S [°' To]' (4 32)
I [Ci(t-t0)(1 + f/) + yo(C1(t-i0))]M for t e [r0 , 1 + r0];

7P()=f° for r e [0, t0] ,
I C,( (4.33)

,(t-T0)M for r 6 [T0, 1+T0];

( 0 foi ,
w = , (4-34)

0 for t € [0, tq] ,
Cj(t-t0) for t e [T0, 1 +T0].

It can be checked from (3.8)—(3.12) that n is a process that starts at the annealed
state aQ and ends at

nf = ([C,(l +r,) + p(Q]M, Q. (4.35)
The value of work w(n) can be deduced from (4.1), (4.2), and (4.35):

w{n) = /u{riCl + p{Ci))2 + /^^(C,)2 + 2//<y(C,) • (4.36)
In Fig. 1 (see p. 316), which plots the stress norm versus the strain norm, the work

w(n) is represented by the area of opqe; the first two terms on the right-hand side
of (4.36) are represented by the areas of triangles rqe and pts, respectively, and the
third term is represented by the sum of the areas of pqt and opsr.

4.2. The material element J?k . The proofs of the following two propositions are
similar to those of the second step of Proposition 3.1 and of Proposition 4.2, and
have therefore been omitted.

Proposition 4.9. The material element J^k satisfies the condition of perfect acces-
sibility.

Proposition 4.10. Let a, = (E{, Ep) and a2 = (E2, Ep) be two states and let n
be a process such that nl = er, and n* = a2. Then, we have

w{n) = {(E2 - Ep) ■ S[E2 - E[] - (El - Ep) ■ S[E, - Ep)}/2

+ ̂ {||4l|2-||£f||2} + 2^0C(^), (4.37)
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Fig. 1. ||S|| versus ||£|| . a = tg '(2/i) ■ y = tg 1 (2/^/(1 + r/)).

where

f "\\Ep(r)\\ dr. (4.38)
Jo

Unlike the case of materials that harden in a combined way, the work w{n) now
depends not only on nl and n f, but on the entire process n because of the term
2 npQC(it).

Let a0 := (0, 0) be the annealed state of Jtk ; a free-energy function y/ for Jfk
is said to be normalized if t//(cr0) = 0 .

The following Propositions 4.11 and 4.12 characterize the free-energy functions
corresponding to J?k [16].

Proposition 4.11. A state function \)/\ X —> K is a normalized free-energy function
for JKk if and only if, for each a = (E , Ep) e X,

V{E,Ep) = V\E-Ep) + y{EP), (4.39)
where if/* is the function defined by means of relation (4.26), and y: SymQ —» E
has the two following properties:

?(0) = 0; (4.40)
Y(A2) - ?(^i) < Ml(\\A2\\2 - pt||2) + 2np0\\A2 - A, || (4.41)

for each Ax, A2 e SymQ .
Proof. Let us suppose ^ is a normalized free-energy function for J?k . With a

similar procedure to the one used to prove Proposition 8.1 in [11], we can prove
the existence of a function y: Sym0 —> E that satisfies (4.39) and (4.40). Let ax =
(Ej, Ep) and a2 = (E2, Ep) be any two states and n the special process such that

7t' = cT,, Ttf = a2- \\EP - Ep\\ = t(7i), (4.42)



FREE-ENERGY FUNCTIONS 317

the existence of which is proved as the third step of Proposition 3.1. From (4.37) we
deduce

W(7C) = yr\o2) - v*{ox) + m(\\E*\\2 - pfII2) + 2ppQ\\EP2 - EpII (4.43)

and, together with (2.9), this implies (4.41).
Conversely, let us suppose y/ is defined by relation (4.39), with y satisfying (4.40)

and (4.41). We then get

W{o2)~ V(ffi) ^ vV2)~ V*(°i) +VV(\\E2\\2 - \\E[\\2) + 2np^(n)
= w(n) (4.44)

which, in view of (2.9), proves that y/ is a free-energy function for J?k . □

Proposition 4.12. Let y: Sym0 -» 8 be a continuously differentiable function.
Then, y satisfies condition (4.41) if, and only if, we get

\\dAy - 2prjA\\ < 2pp0 for each A e Sym0 . (4.45)

Proof. Let us suppose y satisfies condition (4.41). For A, B e SymQ with
P|| = 1, let

A(t) := A + xB, t>0. (4.46)

Given
<f(r) := y(A(i)) - y(i(0)) - prj(r2 + 2tA • B) - 2pp0x, (4.47)

from (4.41) and (4.47) we deduce £(0) = 0; £(t) <0 for t > 0, from which we
obtain

(dAy - 2prjA) ■ B < 2pp0 (4.48)

which, in view of the arbitrariness of B , implies (4.45).
Conversely, let us suppose y satisfies (4.45) so that, for each A, B e Sym0, (4.48)

proves to be satisfied. Let ox = {Ex, Ep) and a2 = (E2, E2) be two states and let
n be any process such that n = ct, , nf = cr7. In view of (4.48), (3.37), and (4.38),
we get

y(EP) - y{E[) = /"%(t)</t = ["' dEPy(Ep(r)) ■ Ep{x) dz
Jo Jo
fdji

< / (2prjEp(z) ■ Ep(x)+ 2pp0C(r))dr
J o

= pV(\\Ep\\2-\\Ep\\2) + 2pp0 ['fa) dr
Jo

<pri(\\Ep\\2-\\Ep\\2) + 2pp0\\Ep-Ep\\.

Therefore, (4.41) is satisfied. □
The following proposition, which parallels Proposition 4.6, is an immediate con-

sequence of (4.45) and Proposition 4.11.
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Proposition 4.13. The state function y/* is a free-energy function for Jfk if, and
only if, Jfk is an ideally plastic material element.

Since Jtk is a material element with perfect accessibility, Proposition 2.4 guar-
antees that the set of the normalized free-energy functions has a maximum and a
minimum; with the next proposition these are determined. Let tj/[o) and Tj/{a)
be the two free-energy functions defined by relations (2.11) and (2.15), respectively,
with <t0 the annealed state of .£k .
Proposition 4.14. We have

V[p) = (E- E") ■ S[E - Ep]/2 + w\\E"\? + 2fip0\\Ep\\, (4.49)

y7(o) = {E- Ep) ■ S[E - E"]/2 + pr,\\Ep\\2 - 2np0\\Ep\\. (4.50)
Proof. From (2.11) and (4.37) we deduce, for each state a ,

W(<r) = {E- Ep) • S[£ - Ep]/2 + pt]\\Ep\\2 + 2/ip0 inf{£(7t)|7r' = a0, nf = a}.
In view of (4.38), £(n) takes the minimum value when n satisfies relation (4.42) 2
and this implies (4.49). Relation (4.50) is proved in a similar way. □
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