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ON A CLASS OF STOKES FLOWS INSIDE A CORRUGATED BOUNDARY
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Abstract. A study is made of a family of steady two-dimensional Stokes flows
stirred by an infinitesimal rotating cylinder (a line rotlet) inside a corrugated bound-
ary. Parameters govern the position of the stirrer and the number and sharpness
of ridges in the boundary. A solution is found in terms of a finite combination
of elementary functions. It is demonstrated that the flow exhibits some interesting
dynamical features such as peculiar bifurcations and homoclinic orbits.

1. Introduction. The stirring of a viscous fluid is an important component in many
processes of interest in engineering and the natural sciences. In this paper, a model
of steady two-dimensional stirring, at zero Reynolds number, of a viscous fluid inside
a corrugated or furrowed boundary is considered. The stirring mechanism used is
a line rotlet, a singularity which may be regarded as a rotating circular cylinder of
infinitesimal radius. The boundary is modelled by an inverted (i.e., the geometric
inverse of a) fluted column, an object that is easily constructed using the fluted column
transformation of Godfrey [1] and the biharmonic inversion technique of Michell [2].
The position of the rotlet and the number and sharpness of ridges in the boundary
can be varied. As will be seen, the solution to this problem can be expressed as
a finite combination of elementary functions. Consequently, this solution can be
computed quickly and accurately, and can more easily be made the basis of a higher-
order analysis in which the perturbative effects of inertia or time-periodic forcing are
introduced.

A number of previous studies have used a line rotlet as a stirrer. Ranger [3], for ex-
ample, examined the Stokes flow due to a line rotlet inside a fixed or rotating circular
cylinder. This flow is topologically equivalent to the flow between two nonconcentric
circular cylinders (a journal bearing) induced by the rotation of the inner cylinder
or both of the cylinders. (See Ballal and Rivlin [4] for a comprehensive analysis of
the journal bearing flow.) However, the former flow has the advantage of being more
tractable mathematically than the journal bearing flow. Hackborn, in [5] and [6], has
also investigated the flow due to a line rotlet between fixed parallel planes and inside
a fixed elliptic cylinder, respectively.
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The flow considered in this article is similar to flows studied by Ranger [7] and
Pravica and Ranger [8]. Stokes flows stirred by a line rotlet and occurring in a gener-
alized fluted column and the analytic inverse (with respect to a fixed inversion point)
of an exterior fluted column are examined in [7] and [8], respectively. These flows
exhibit attached eddies in some cases; however, the types of dynamical behaviour
possible in these flows are limited by the facts that they are spatially periodic and
the rotlet position cannot be varied. The flow examined in this paper exhibits some
interesting dynamical features, such as peculiar bifurcations and interior saddle stag-
nation points, which are not present in the flows studied in [7] and [8]. Interior
saddle stagnation points are very rare in Stokes flows driven by only one moving
boundary. (The rotlet may be regarded as such a boundary.)

Aref [9] has noted that any incompressible two-dimensional flow may be regarded
as a Hamiltonian dynamical system with one degree of freedom. In the theory of
dynamical systems, interior saddle stagnation points (more commonly termed hyper-
bolic fixed points in the theory) play an important role. A hyperbolic fixed point
possesses stable and unstable manifolds which, in a steady Hamiltonian system with
one degree of freedom, either connect the point to another such point, producing a
heteroclinic orbit, or connect the point to itself, producing a homoclinic orbit. A
time-periodic perturbation of a steady flow possessing such orbits generally disrupts
them causing heteroclinic or homoclinic tangles, a phenomenon indicative of nonin-
tegrable or chaotic dynamics for passively advected particles in the flow. (See Licht-
enberg and Lieberman [10] for an examination of chaos in Hamiltonian systems.)
Aref and Balachandar [11] exploit this idea to generate chaos in a numerical simu-
lation of a time-modulated version of the journal bearing flow. (The steady journal
bearing flow, mentioned above, possesses either one or two hyperbolic fixed points
depending on whether the cylinders are rotating in the opposite or in the same di-
rection, respectively.) Chaiken et al. [12] and Swanson and Ottino [13], in combined
experimental-numerical studies, have also examined the chaotic dynamics arising in
time-modulated versions of the journal bearing flow. Aref [9] has moreover pointed
out that chaotic dynamics produces efficient fluid stirring. Consequently, under a
given time-periodic perturbation (e.g. resulting from a periodic motion of the rot-
let), the flow considered in this article may exhibit a greater measure of chaos, and
therefore enhanced stirring efficiency, for the cases in which the unperturbed flow
possesses a hyperbolic fixed point. Hence, the results given in this paper might assist
in the design of efficient stirring devices.

The problem to be investigated here is stated in Sec. 2 and solved in Sec. 3. In
Sec. 4, a detailed analysis is made of the case in which the corrugated boundary
containing the flow has a single ridge protruding into the flow region. Finally, some
cases in which the boundary has more than one ridge are briefly considered in Sec.
5.

2. Statement of the problem. The fluted column transformation (Godfrey [1]) is

n+l 1

z=(+c{ 0<c<(n+1), (2.1)

where z and { are complex variables, and »n is a positive integer. Let (p, ¢) be
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polar coordinates in the {-plane (i.e., { = peid’). The image in the z-plane of the
unit circle p = 1 in the {-plane is a cross section of the fluted column. This cross
section will be denoted by F . Note that (2.1) has no critical points (i.e., points at
which dz/d{ = 0) in the disk p < 1. Godfrey [1] points out that F lies in the
annular region 1 —c < |z| < 1+4c¢. Moreover, when (n+ l)—2 <c<(n+ 1)—l , Fis
concave outward at the points satisfying |z| = 1 —¢ [at which ¢ = 7(2m+1)/n, m =
0,1, ..., n—1]; hence, for this interval of ¢ values, these points may be regarded
as the peaks of n ridges that protrude into the interior of F. If ¢ = (n + 1)_1 ,
the critical points of (2.1) coincide with these points, causing F to have ridges with
cusps at their peaks.

A geometric inversion of the z-plane with respect to the point z = d (where d
is assumed to be real) is described by

zi=k(Z-d)', d<c=1)""-1 or d>c+1, (2.2)
where z; is complex, k is a real scaling factor to be specified below, and the overbar
denotes complex conjugation. The image in the z;-plane of F will be denoted by
F,; F, is a cross section of the inverted fluted column. The condition on d in (2.2)
insures that the inversion point lies outside F and, consequently, that (2.2) maps
the interior of F to the interior of F;. Note also that (2.1) and (2.2) imply that
(p, ¢) form a left-handed, orthogonal, curvilinear coordinate system in the z;-plane.
In terms of Cartesian coordinates in the z- and z;-planes defined by z = x +iy and
z,=Xx; +1y;, (2.2) becomes

x,=k(x-d)R™*, y,=kyR?, R=[(x-d)+y1"" (2.3)

Let 1, and I,, with I, < I,, denote the x -intercepts of F,. It will be assumed that
the coordinates (x,, y;) are dimensionless relative to the distance 7,1, . Therefore,
the dimensionless scaling factor k will be chosen so that I, — I, = 1. Hence, using
(2.1) and (2.3),

k={lc(-D)"™" —1-d = (c+1-a)""}". (2.4)

The flow region for the two-dimensional problem examined in this paper is the inte-
rior of F,, the set of points in the z-plane for which p < 1. The curves F and F,
are sketched in Fig. 1 (see p. 332) for thecase n=1, ¢ = %, and d = -2.

The flow to be studied will be described using a dimensionless stream function y,
in terms of which the dimensionless fluid velocity w; in the z;-plane may be written
as

e K Loy, v,
TR+ (mr el lpae? T 8p %

where p and ¢ are unit vectors in the directions of increasing p and ¢. The
stream function for the Stokes flow satisfies the biharmonic equation,
2 2
4 20 0
Viwy =0, Vi=s—+—. (2.6)
R i 3Xi2 (9)/,.2

(2.5)
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: F.
: i
e Il T,
FiG. 1. The fluted column cross section F and its geometric inverse
F,, with their x- and x,-intercepts labelled, for n =1, ¢ =1, and
d=-2.
The flow is driven by a line rotlet coinciding with x; = —k/d, y, = 0 (at which

p = 0). A line rotlet, by definition, is a singularity that exerts a torque per unit length
of magnitude 2I'z on the surrounding fluid, where I' is the circulation around the
rotlet and u is the viscosity of the fluid. Assuming that y; is dimensionless relative

to I'/(2m), the presence of the rotlet requires that
1/2

<x,+§>2+y1 , (2.7)

where x; has no singularities in the flow region p < 1. (Note that a line rotlet
is mathematically equivalent to a line vortex of potential flow theory.) The no-slip
condition on the boundary F; is satisfied if

'/’i=10gRi+X,'a R =

1

oy,
l//,.=57’=0 onp=1. (2.8)

3. Solution of the problem. Following the biharmonic inversion technique of
Michell [2], the problem will be expressed in terms of a function y defined by

v =Ry, (3.1)

where R isasin (2.3). Equation (2.6) now implies that  is biharmonic with respect
to x and y, ie.,

2 2
4 2 0 0
Vy=0, Vi=—+— 3.2
v o T 5y (3.2)
and condition (2.8) may be expressed as
w:%%:o onp=1. (3.3)

From (2.1), (2.3), and (2.7), it can be shown that
logR; = log p + log|1 +¢l"| —logR + log|k/d|. (3.4)
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Since all but the first term on the right-hand side of (3.4) are regular in the flow
region p < 1, (3.1) and (3.4) imply that (2.7) may be written as

w=R'logp+yx, (3.5)
where x has no singularities in the region p < 1.

Since { and z are related conformally by (2.1), the real part of any function
analytic in { must be harmonic with respect to x and y. Thus, logp is harmonic
with respect to x and y, and it is easily seen from this that R? log p is biharmonic
with respect to x and y. Hence (3.2) and (3.5) imply that x is also biharmonic
with respect to x and y. Now, (3.3) and (3.5) give

_ ox _ _
x=0, 6p R’ onp=1. (3.6)

Also, using (2.1) and (2. 3)
R = p + 62p2"+2 d’ - 2d p cos(o)
+2cp" 2 cos(ng) — 2cdp™ cos[(n + 1)¢].

From (3.7), it is clear that (3.6) can be satisfied by choosing x to be an appropriate
linear combination of the following biharmonic functions:

(3.7)

pmcos(m¢), m=0,1,n—-1,n,n+1; (3.8a)
xp™ cos(me) + yp™ sin(mg) = p™* ' cos[(m — 1)$] + cp" "™ cos[(n — m + 1)¢],
m=1,2,n,n+1,n+2. (3.8b)

The expression in (3.8a) is harmonic (and hence biharmonic) with respect to x and
y since p™ cos(m¢) = Re({™). The expression in (3.8b) is biharmonic with respect
to x and y by virtue of the fact that if Q is harmonic with respect to x and y then
x€ and yQ are biharmonic. Taking y to be a linear combination, with unspecified
coefficients 4, 4,, ..., Ay, of the functions given in (3.8) and rearranging yields

X =Ag+Asp” + Agep™? #3) cos(9)
+ (A" Agep™ + 4,0" ) cos[(n — 1)¢] (3.9)
+ (A3p" + Ascanr2 + Asp"+2) cos(ng) + (A‘,p"’Ll + A9p"+3) cos[(n + 1)¢].

A system of linear equations for the unknown coefficients is obtained from (3.6),
(3.7), and (3.9). A solution of this system is

2n+1

+(A1p+A6p3+A7cp + Agep

Ay =(1-)P+1, 4, =@ -1Q-cd,
A,=cQ, A;=c, Ay=-cd, Ay=-P-1, (3.10a)
A =Q , A, =-2Q, A;=cP, A,=cd,
where ) ) ,
_ c“+d —12’ Q=d[1—(n+i)c]. (3.10b)
2[1 = (n+ 1)c?] 1 —2nc

The stream function y, is now completely specified in terms of the coordinates
(p, ¢) by (3.1), (3.5), (3.7), (3.9), and (3.10).
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4. Description of the flow for » = 1. In this section, we will denote the points at
which F; intersects the x;-axis by P, and P,. (The x,-coordinates of these points
were termed I, and I, above. Recall that k was chosen so that I, — I, = 1.) The
(p, ¢) coordinates of P, and P, are (1, 0) and (1, m) respectively. The distance
between P, and the rotlet (at x, = —k/d, y; = 0) will be denoted by D. Hence,
using (2.1) with n =1, (2.3) and (2.4),

k l1+c¢ l-c

Recalling from (2.2) that d € (—oo,c— 1)U (c+1,0c) for n = 1, it is clear
from (4.1) that as d increases in this domain, the value of D decreases through the
range (0, (1+c¢)/2)U((1+c)/2, 1). Hence, for any permissible value of ¢ (i.e., for
0 <c¢ <1 from (2.1)), the rotlet takes each position on the x;-axis between P, and
P, at a unique value of & (if the limiting value |d| — oo is allowed). Note, however,
that as d varies with ¢ fixed, both the rotlet position and the shape of the boundary
F, vary; rotlet position and boundary shape cannot be varied independently. By
inspecting the curvature of the boundary at P,, it can be seen that, for % <c< %
and |d| sufficiently large, F; has a smooth ridge centered at P, that protrudes into
the flow region. Moreover, when ¢ = % , F, has a ridge with a sharp cusp at P, for
any value of d.

Since v, v _, Wr Wy and Yy all vanish on the boundary p = 1, the sign of
[and hence y; by (3.1)] near the boundary is determined by the sign of o - (Greek
subscripts denote partial differentiation here.) Eddies attached to the boundary occur
in simply-connected regions in which y, exists and has constant sign; these eddies
are separated from adjacent regions by dividing streamlines (or separatrices) along
which y; = 0 and which intersect the boundary at points (termed separation points)
where Yop = 0. Now, from (3.5), (3.7), and (3.9), it is readily seen that w,, at
p = 1 is quadratic in cos(¢); so there are at most four separation points, two for
each root of this quadratic between —1 and 1.

Computations and local analyses of the flow near P, and P, reveal that for per-
missible values of d lying sufficiently close to ¢+ 1 or ¢ — 1, or equivalently for
D values sufficiently close to 1 or 0, the flow has a single attached (i.e., attached to
the boundary) eddy adjacent to P, or P,, respectively. Such an eddy appears in
Fig. 2(a). There are no eddies in the flow if and only if D lies in a certain closed
subinterval of the interval (0, 1); as ¢ — %_ , this subinterval decreases in length,
and, when ¢ = % , there are eddies for all values of D except D = % (i.e., except in
the limiting case of |d| — oo, as will be shown in the next section). When d > c+1,
at most one eddy exists; as mentioned above, one attached eddy adjacent to P, ex-
ists if d is sufficiently close to ¢ + 1, and, as d increases, this eddy shrinks and
eventually vanishes unless ¢ = % in which case the eddy vanishes only in the limit as
d — oo. On the other hand, when d < ¢ — 1, the flow is much more interesting; in
this case, the flow can exhibit two attached eddies, as in Figs. 2(b) and 2(d), or two
“free” eddies bounded by a double homoclinic orbit (figure-eight), as in Fig. 2(c).

The interesting bifurcations that can occur in the flow as d decreases in the interval
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(a)

(b)

(c)

(d)

FiG. 2. Exact streamlines of the flow for » = | and (a) ¢ = 0.2,
d=-14,(0b) c=04,d=-1.1,(c) c =048, d = -0.8,
(d) c=4, d =-3. The position of the rotlet is indicated by “+”.

(=00, ¢ — 1) while ¢ is held fixed will now be explored. The basic tool of this
exploration is the Taylor expansion of y about P, :

1 1 3
V(P 9) = 3,1, (P = 1) + 2v,,, (1. )(p = 1) w

+ %wpm(l ,m(p- 12—+ %y/pppp(l N )
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All nonzero terms up to and including those of order four are given in (4.2). Since
the term involving v, p(l , ) is normally the dominant term in (4.2), bifurcations

can occur at values of d at which v, p(l , ™) changes sign. Now, if 0 < ¢ < %,

c//pp(l , ) is quadratic in d, and, if ¢ = 1, c//pp(l , ) vanishes for all parameter
values; moreover, when 0 < ¢ < % , one of the roots of the quadratic expression lies
in the interval (—oo, ¢ — 1) and the other in the interval (¢ -1, c+1). Let d,(c)
denote, for 0 < ¢ < 1, the lesser of these roots or, for ¢ = 1, the limit of this root

as ¢ — 17 Using (3.5), (3.7), (3.9), and (3.10) yields

—203+2c2+c—1—(406—8c5+4c4+8c3—4cz+2)'/2
2c+1 ’
For dy(c) <d <c—1, y, (1,7 >0if 0 <c < 1, and w,,(1,m) =0,

d,(c) = (4.3)

'/’ppp(l , ) < 0 and t//pp¢¢(1, n) >0 if ¢ = % Hence, from (4.2), v > 0 in the
flow region p < 1 sufficiently close to P, when d,(c)<d <c—1 and 0<c< %;
thus, since ¥ < 0 near the rotlet, there is an attached eddy adjacent to P, for these
parameter values, and numerical work shows that this is the only attached eddy in the
flow (although two free eddies may exist inside this attached eddy). The bifurcations
that occur as d decreases through d,(c) while holding ¢ fixed depend primarily
on the signs of y, (1, 7) and y, (1, ) when d =d,(c). Computations show
that, when d = dy(c), v, ,,(1,n) <0 for 0 < ¢ < ¢ and W pes(ls ) > 0
for ¢* < ¢ < %, while ¥,,,(1,m) >0 for 0 <c< ¢ and v,,,(1,m) <0 for
¢ <c¢ <}, where ¢" ~ 0.2356 and ¢™* ~ 0.4370. There are now six cases to
consider. [Unless otherwise stated, the assertions below follow from (4.2) or careful
numerical work.]

(i) 0 < c < c': When d < dy(c), ¥ < 0 in the flow region sufficiently close
to P,. Hence, the attached eddy adjacent to P, that exists for d,(c) <d <c—1
vanishes as d decreases through d,(c). Moreover, no eddies of any kind exist for
d<d(c).

(ii) ¢ =c": When d = d,(c), Wopse(ls ) =0 but y .. (1, 7)< 0; thus,
w < 0 in the flow region sufficiently close to P, when d < d,(c). This case is
qualitatively identical to case (i).

(iii) ¢* < ¢ < c™: When d = d,(c), a separatrix, on which y = 0, lies in the
flow region p < 1 and is tangent to the boundary at P, near which it is described
approximately by

p—1 :‘%[V’ppw(" )/Y,,,(1, M6 - 1) (4.4)

Hence, as d decreases through d,(c), the attached eddy that exists for d,(c) < d <
¢ — 1 “splits”; this results in two smaller eddies which shrink and eventually vanish
as d continues to decrease. Also, as d — db(c)Jr , the fixed point inside the attached
eddy changes from elliptic (where , has a maximum) to hyperbolic (where y; hasa
saddle), and the two free eddies bounded by the homoclinic orbits associated with the
hyperbolic fixed point grow until they fill the entire attached eddy when d = d,(c).
(The existence and growth of the free eddies is required by the continuity of the flow
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(a) (®) ©

FiG. 3. Schematic sketches of streamlines near P, for n = 1,
¢" <c<c" and (a) d greater than and sufficiently close to d,(c),
(b) d =d(c), (c) d less than and sufficiently close to d,(c) .

with respect to variations in a parameter near a value at which an attached eddy
splits.) Figure 3 depicts the flow schematically for values of d near d,(c).

(iv) ¢ =c™ : When d =d,(c), ¥,,,(1, 1) =0but y (1, 7)<0;two parts
of a separatrix, on which y = 0, meet at a sharp corner at P,, making an angle of
60° with each other and the boundary. Otherwise, this case is qualitatively identical
to case (iii).

(v) ¢ < c < 4 : Sufficiently close to P, in the flow region p < 1, ¥ >0 when
d = dy(c), but ¥y < 0 when d < d;(c). Thus, a small attached eddy begins to
grow at P, beside the existing larger attached eddy as & decreases through d,(c).
As d continues to decrease, the separatrices bounding these eddies eventually touch,
splitting the larger eddy into two smaller ones; let d (c) denote the value of d at
which this occurs. Free eddies like those of case (iii) develop as d — d s(c)+ , and, for
d values less than and sufficiently close to 4 (c), the hyperbolic fixed point persists
and is associated with a tiny free eddy. Figure 4 depicts the flow schematically for
values of d near d (c). It should be noted that the flow studied here is the first
example (known to this author) of a Stokes flow with an eddy at the peak of a
smooth ridge. This eddy is very small; e.g., for ¢ = 0.48 and d = —0.8688, its
width is about 0.3% of the distance between P, and P,; Fig. 5 accurately shows
all the separatrices (delimiting the attached and the free eddies) and the boundary
near P, for these parameter values. Also, d,(c) and d (c) differ by very little; e.g.,
d,(0.48) ~ —0.8683, d,(0.48) ~ —0.8689.

(vi) ¢ = % : In this case, t//pp(l , ) vanishes for all values of d. Moreover, when
d=dc), l//ppp(l , ) = y/pppp(l ,n)=0,but u/ppppp(l ,m)>0 and ‘Ppp¢¢(l , ) >
0; this implies that a separatrix, on which y = 0, has a cusp at P, (where the
boundary itself has a cusp oriented in the opposite direction) and the attached eddy
that exists for d,(c) <d < c—1 splits into two smaller ones as d decreases through
d,(c) . Free eddies like those of case (iii) develop as d — db(c)+ . When d < d,(c),
y/ppp(l ,m)>0, and y/pp¢¢(l , ) > 0; hence, a separatrix, described approximately
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| 2 )
(@ (b)

©

*

FIG. 4. Schematic sketches of streamlines near P, for n =1, <
¢ < 3 and (a) d(c) < d < dy(c), (b) d =dc), (c) d less than
and sufficiently close to d (c) .

<P

F1G. 5. Exact plots of all the separatrices (for both the attached and
the free eddies) and the boundary near Py, for n =1, ¢ =048,
and d = —0.8688 .

by (4.4) near P,, lies in the flow region p < 1 and is tangent to the cusp of the
boundary at P, [as in Fig. 2(d)]. The existence of this separatrix implies that eddies
exist on each side of P, for all values of d less than d,(c). These eddies shrink as
d decreases and vanish in the limit as d — —oc.

5. The general flow. As in the previous section, the points at which F; intersects
the x-axis will be denoted here by P, and P,, and D will signify the distance
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between P, and the rotlet. From (2.1), (2.3), and (2.4),

D= (““‘4(‘”"16) <1+—1+(;1)nc). (5.1)

When n is odd, (5.1) reduces to (4.1). Now, the allowed values of ¢ and d are
given in (2.1) and (2.2), and suppose that the limit |d| — oo is one possible value of
d . Then, for any value of ¢, (5.1) implies that D takes each value between 0 and
1 (and so the rotlet takes each position between P, and P,) at some unique value
of d. However, as noted in Sec. 4, rotlet position and boundary shape cannot be
varied independently. For (n + 1)_2 <c< (n+ 1)*l and |d| sufficiently large, F;
has n smooth ridges that protrude into the flow region, and, when ¢ = (n + l)_l ,
F, has n ridges with cusps at their peaks for any value of 4. [These cusps occur at
¢o=n2m+1)/n, m=0,1,...,n—-1]

The special case of |d| — oo is worth examining. In this limiting case, the flow
becomes equivalent to the flow in the z-plane inside the standard (i.e., not inverted)
fluted column F due to a rotlet at the origin since, as |d| — oo, transformation
(2.3) uniformly approaches the composition of an isotropic dilation, a reflection in
the y-axis, and a translation parallel to the x-axis. (This can be seen approximately
even in Fig. 1 where d = —2.) Now, the uniform limit of y; as |d| — oo is

1= p = (1 = p*Y

2[1 = (n+ 1)c?]

Since the limiting stream function in (5.2) is independent of ¢, it represents a flow
for which p is constant on any streamline; hence, no eddies can exist. This result
was also demonstrated by Ranger [7] in his analysis of flow in a generalized fluted
column.

Another noteworthy case is that for which ¢ = 0. In this case, both the fluted
column and its inverse are circular cylinders. In [3], Ranger examined the flow due
to a line rotlet inside a circular cylinder; it was found that, for a cylinder of unit
radius, a single eddy exists if and only if the distance between the rotlet and the
cylinder’s axis exceeds v/2 — 1. This result is also true of the flow considered in this
paper when ¢ =0.

As stated in Sec. 4, separation points on the boundary p = 1 can occur only where
Yoy vanishes. Since (3.5), (3.7), and (3.9) imply that v,, at p=1 is a polynomial
of degree n+ 1 in cos(®), it is clear that the flow has at most 2(n + 1) separation
points. In Fig. 6 (see p. 340), the flow is depicted for n varying from 2 to 5 and the
values of ¢ and d chosen (partly) so that in each case the boundary has » ridges
protruding into the flow region. Generally, attached eddies are more likely to form as
the sharpness of the ridges increases (i.e., as ¢ approaches (n + l)"l from the left).
This is illustrated well by Fig. 6(c) in which three eddies are visible; in fact, there
are two more eddies, too thin to be visible, near the ridges farthest to the right in the
figure; for slightly larger ¢ values, these thin eddies join with the visible thin eddies
so that only three eddies exist. [Thus, the flow shown in Fig. 6(c) has ten separation
points, the largest number possible for n = 4.] When ¢ = (n + l)_l , separatrices

(5.2)

Idlli_r*noo w, =logp+
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(a) I
(b)

(c)

(d)

FIG. 6. Exact streamlines of the flow for (a) n =2, ¢c=0.2, d =4,
by n=3,¢c=025,d=-10,(c) n=4, c=0.198, d =4,
(dy n =5, ¢c =01, d = —1.8. The position of the rotlet is
indicated by “+”.

delimiting attached eddies are often tangent to one or both sides of some or all of
the cusps in the boundary, as in Fig. 6(b). Fig. 6(d) depicts a flow in which two
free eddies, like those discussed in Sec. 4, are bounded by a double homoclinic orbit
associated with a hyperbolic fixed point. When #n > 1, it is possible for more than
one hyperbolic fixed point to occur, but they lie very close to the boundary in all
cases of this examined by the author.
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