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Abstract. Within the linearized theory of heat conduction with fading memory,
some restrictions on the constitutive equations are found as a direct consequence of
thermodynamic principles. Such restrictions allow us to obtain existence, uniqueness,
and stability results for the solution to the heat flux equation. Both problems, which
respectively occur when the instantaneous conductivity kQ is positive or vanishes,
are considered.

1. Introduction. This paper deals with the asymptotic behaviour of the solution
of the heat flux equation with memory. We restrict our attention to a homogeneous
and isotropic rigid heat conductor with linear memory occupying a fixed bounded
domain Qcl3 with smooth boundary dD.. Moreover, if we consider only small
variations of the temperature d(x, t) from a reference value 60 and small temper-
ature gradients V0(x, t) we may assume that the internal energy e(x, t) and heat
flux q(x, t) are described by the following linearized constitutive equations:

roo

e(x, /) = e0 + q0w(x, t) + / a (s)u'(x, s) ds,
0 (11)

rOO \ 1 ' x /

q (x,t) = —kQVu(x,t)- / k'(s)S7u (x, s) ds,
Jo

where u(x, t) = 6(x, t) - dQ is the temperature variation field, and u'(x,s) -
u[x, t - s).

As usual in material with memory, a fading memory principle for the relaxation
functions a and k! is required. Following Day's argument [8] we may state the
principle in a weak form, which is equivalent to

a', k' e l'(M+). (1.2)
Hence, the heat capacity and thermal conductivity are defined respectively by

a(t) = aQ+ f a(s) ds, k(t) = k0+ [ k'(s)ds, (1.3)
  J o Jo
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and the values = lim^ a(f) and k = lim k(t) represent respectively the
equilibrium heat capacity and the equilibrium thermal conductivity.

Moreover, we impose the a priori condition

a0>0, (1-4)

which follows from the physical evidence that, if the temperature of a body is constant
up to a certain time t = 0 and increases instantaneously at / = 0, then the internal
energy of the body increases too.

The ensuing evolution problem with mixed boundary conditions and initial history
data is given by

o+e(x, t) + V • q(x, t) = r(x, t) on Q x
q(x, t) ■ n(x) = 0(x, t) on 9Q x »+

q f 1 51
6{\, t) = dQ on d£lu x M+ ,
6{x, t) = d0 + m0(x, t) on x 1" ,

where r, 4>, and u0 represent respectively the heat source, the heat flux on the
boundary d£lq , and the temperature variation field up to the time t — 0, while £2
is a bounded domain with boundary dQ = dQu U dQ.(j (OO.u fl = 0) and n(x)
is the outward normal on .

Problems such as (1.5) have been studied by several authors. For instance, Nun-
ziato [7] and Grabmueller [19] proved existence and uniqueness for generalized so-
lutions; Miller [11] has studied stability and continuous dependence on parameter.

This paper differs from the previous ones in its investigation of the connection
between the complete set of thermodynamic restrictions on the relaxation functions,
a and k, and the solvability and stability of the problem (1.1), (1.5). In essence
we prove that the fading-memory principle, stated by (1.2), condition (1.4), and the
Second Law of Thermodynamics, in the form of the Clausius property, are sufficient
conditions to obtain existence, uniqueness, and stability for the solution. Finally,
we stress that a Neumann boundary condition involving the heat flux, instead of the
temperature gradient flux, is considered. Such conditions, in fact, are not completely
equivalent in materials that satisfy (1.1)2 •

The complete set of restrictions imposed on the heat capacity and thermal con-
ducivity by the Second Law of Thermodynamics is derived in Sec. 2. It is interesting
to compare such results (especially Corollaries 2.1 and 2.3) with the set of assump-
tions required by Miller to prove existence, uniqueness, and stability in [11]. In
fact all these sufficient conditions turn out to be thermodynamic consequences. In
order to study the evolution problem (1.5), we discuss separately the cases k0 > 0
and k0 — 0. In effect, these cases are quite different because the positiveness of kQ
leads to a parabolic problem, whereas when k0 vanishes the problem might become
hyperbolic.

The parabolic problem, when A:0 > 0, is considered in Sec. 3. Existence, unique-
ness, and asymptotic behaviour of the solution are proved, and a stability result is
given. Moreover, under suitable regularity hypotheses on the data, the solution turns
out to be asymptotically stable. Similar results are obtained when kQ = 0 in Sec. 4,
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whereas in Sec. 5 we discuss the meaning of some functional spaces and restrictions
on the initial-history data introduced in the previous section.

As a concluding remark we emphasize that weaker conditions than those of Miller
are needed here, and nevertheless more accurate stability results are obtained when
k0 is positive or vanishes. In particular, our assumptions allow k'(t) to have an
integrable singularity at t = 0 whereas Miller implicitly assumes that k'(0) is finite.
More importantly, in the case k0 = 0 Miller's assumption (S') (see [11, p. 325]) fails
to be valid, as proved by Corollary 2.3, so that no stability property follows from his
argument. Thus, in that case, our stability results are new.

Next we give some notation for Laplace and Fourier transforms and convolution.
For later convenience we denote by / the (formal) Fourier transform of any scalar-
or vector-valued function / defined on QxR, namely

/OO
/(x, s)exp(-icos) ds, (x,co)efixI.

-OO

Similarly, letting the subscripts s (c) denote the half-range Fourier sine (cosine) trans-
form, for any function g defined on Qxl+ we have (formally)

roo roo

g(x,co) = / g{x, s) cos cos ds, g(x,co) = / g(x, s) sin cos ds.
Jo Jo ;i,6)

If g{x, •) belongs to V, where V = L*(R+) or V = L2(!+), then its Laplace
transform, defined by

r OO

g(x,p)= g(x,s)exp{-ps)ds, {x,p)G Q x C+
Jo

(C+ = {p e C; Re(/?) > 0}), is analytic on C++ = {p e C; Re(/?) > 0}. Un-
less otherwise stated, we identify a function g with its causal extension to R, i.e.,
g(x, /) = 0 when t < 0 . In this way the Laplace transform g(x, p), when p — ia>,
can be considered as the Fourier transform, i.e., £(x, ia>) — g(x, co). Moreover, we
have

£(x, CO) = gc(x, co) - igs(x, co). (1.7)

Finally, given any pair (/, g) of scalar- or vector-valued functions defined on
Q x M, let and "*F" denote respectively the Laplace and Fourier time-convolution
products, namely

r + OO

f(s)g(t - s)ds.f*g{t)= f f{s)g{t-s)ds and / *F g(t) = [
Jo J-<

2. Thermodynamic restrictions. Let the thermal history A' be defined as A1 =
(u', g'), where g' = Vu' and u'(s) = u(t-s), i£l+, and let the set of all periodic
thermal histories be denoted by & . Then the Second Law of Thermodynamics for
rigid heat conductors in the Clausius form is stated as follows (see [15]).

Second Law. For each periodic thermal history A1 = {u , g') e with period d
and for each I06R, the following inequality holds:

r e(x,t) q(x, t) • g(x, t)
d0 + u(x,t) (6 +u{x,t))2

dt < 0.



346 C. GIORGI and G. GENTILI

Under linear approximation (i.e., small variations u(x, t) with respect to a given
reference temperature 0Q and small g(x, ()), the quantity 0~'(x, t) = (dQ+u(x, t))~l
can be substituted by its linear Taylor polynomial, thus yielding the approximate
inequality

6~2 f [e(x, t)(80 - u(x, t)) + q(x, t)-g(x, t)]dt < 0, (2.1)

where e and q are given by the linearized constitutive equations (1.1). Moreover,
because of periodicity, (2.1) is equivalent to

rd

*o2 [ [e(x, t)u{x, t) + q(x, t) ■ g(x, t)] dt < 0. (2.2)
J o

The complete statement of the Second Law, however, specifies that the inequality
refers to an irreversible process, whereas the equality occurs in reversible processes
only (see for instance [18]). Actually, for a heat conductor satisfying (1.1) a process
is reversible if and only if it holds the temperature constant in time (6(t) = 60) and
uniform in space (g(t) = 0), so that the ensuing thermal history A' = («', g') e
vanishes identically. Thereby, the inequality (2.2) is verified as an equality only if
u = 0 and g = 0.

Summarizing and putting (1.1) into (2.2), the Second Law for hereditary rigid heat
conductors under linear approximation can be reformulated as follows:

Second Law. Relative to rigid heat conductors satisfying (1.1)—(1.2), for each d-
periodic thermal history A' = (u , g') e not vanishing identically, the following
strict inequality holds:

rd r roo

L [Jo 5)"(x' t)ds-k0g(x, t)-g{x, t)
r oo

/ k'(s)g'(x, s) ■ g(x, t)ds
Jo

dt < 0. (2.3)

In order to exploit the consequences of this statement we consider a thermal history
A' generated by the function

A(x, t) = A, (x) cos a>t + A2(x) sin cot (2.4)

with A.(x) = (m,(x) , g;(x)) depending only on the spatial variable. Such a history is
periodic with period d — In/w.

Theorem 2.1. For a rigid heat conductor satisfying (1.1)—(1.2), the Second Law of
Thermodynamics holds if and only if the relaxation functions k! and a satisfy:

kQ + k'c(a>) > 0 Vwel, (2.5)

a>as(a)) >0 Vw / 0. (2.6)
Proof. Substituting A(x, t) as expressed by (2.4) into (2.3) and taking into ac-

count that
A'(x, s) = A(x, t - s) = A(x, t) cos cds - co~1 A(x, t) sin cos,

A(x, t) = wA,(x) cos cos - coAAx) sin cos,
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it follows that

Ld ^ j f 2
[a (co)u{\, t)u{x, t) a(co)u(x, t)L CO s

(/c0 + ^(ft>))|g(x, t)\2 + —k't(Qj)i(x, 0- g(x, *)]<** (2-7)
CO

2= -J ^d[(fi>)M(x, 02 + (^o + ̂ c(W))I8(X' ?)l dt < 0.

Now if Aj = (0, g) and A2 = (u, 0) from (2.7) we have
rd t 2 2 ~/ 2 2/ [<yds(a>)w cos tuf + (fc0 + A: (<w))|g| cos

Jo

= ~[coas((o)u2 + (fc0 + £g(<a))|g|2] >0 Vco e E

and by the arbitrariness of m and g relations (2.5)-(2.6) follow.
Paralleling the argument explained in [15], it is easily shown that (2.5)-(2.6) are

also sufficient conditions for the validity of the Second Law for rigid heat conductors
in the form (2.3). □

As a consequence of Theorem 2.1 we have the following corollaries.

Corollary 2.1. For a rigid heat conductor satisfying (1.1)—(1.2), if aQ > 0 the
Second Law of Thermodynamics yields

Re{k0 + k\p)} >0 V/> e C+, (2.8)
Re{p[a0 + a'(p)]}>0 V/>eC+\{0}. (2.9)

Proof. We first observe that the left-hand sides of (2.8) and (2.9) are real parts of
analytic functions on C++ . Then, by using the Hilbert integral representation for
Laplace transforms, that is,

roo •-) roo/* OO ^ /* oo

= - 2W 2fs(a>)da> > f(P) = - 2P 2fS0})dw> Pe C++,
n Jo pz + co^ 71 Jo p + co

we have
2 f°°Re{pa(p)} = - (oa{a))(p2l+pl + co2)(p{p.,p2,a>)dco, (2.10)
71 Jo
2 roo

Re{/c0 + k\p)} = - / (k0 + k'{(o)){p2 + p2 + ai2)(p{p. ,p2, (o)dco, (2.11)
n Jo

where p =pl + ip2 and (p{p{, p2 , co) dco = px((p] -p\ + co2)2 + 4p2pj)~] (/?, > 0).
Because of (2.5)-(2.6) both of the integrals (2.10) and (2.11) are positive. Then,
since aQ > 0 and Rep > 0, (2.8) and (2.9) follow. □

Corollary 2.2. Under previous assumptions, the Second Law leads to the following
properties:

(a) a0 < a(t) < 2ax - aQ (2.12)

and moreover, if a'(0) exists, it must be nonnegative;

(b) kQ> 0 and k^ > 0. (2.13)
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Proof. From the inversion formula
2 f°°

a (t) = — / a (to) sin tot dto a.e. on 1+
n Jo

and (2.6) it follows that
2 f°° —i /a{t)-a0 = — to~ (1 - cos tot)a (to) dto > 0 (2.14)
71 Jo

and, moreover,
9 r°°

aoc~ao = ~ / 03 &S.u>) dto > 0. (2.15)n Jo
Combining (2.14) and (2.15) we obtain

2 f°° —i / 2 f°° —i /
a(t) — a = — —to cos tos a[(to) d to < — to a(to)dto — a^-an

00 n J0 n J o °°

so that (2.12) follows. Finally, if a'(0) exists by (2.14) it must be nonnegative.
Furthermore, by taking the limit as to —> oo in (2.5) we obtain (2.13) t , whereas

taking to = 0 there we obtain

k0 + k'c{0) = kx > 0. □

Corollary 2.3. Under the previous assumptions, if kQ = 0 and k'{0) does exist,
then, as a thermodynamic consequence, we have

k\0) > 0 and |A:'(<)| < k'(0) a.e. on I+. (2.16)

Moreover, if k"(t) has Laplace transform on C++ , we have

k'0 + k"{p)^0 Vp e C+\{0} . (2.17)

Proof. When k0 = 0 and k'(0) exists, in the sense that lim(^0+ k\t) = k\0) e E,
then the inversion formula

2 f°°
k'(t) = — / k'(to) cos tot dto a.e. on M+ (2.18)

71 Jo
and inequality (2.5) lead to

2 f°°k'(0) = — k'(to) dto > 0. (2.19)
n Jo

Inequalities (2.16) follow from (2.18) and (2.19).
On the other hand, well-known properties of the Laplace transform lead to

k'(0) + k"(p) = pk'(p), p = px + ip2 € C+ . (2.20)

First observing that k'{0) = /0°° k'(s)ds - kx < oo, from (2.20) it easily follows
that

k'(0) + k" (p) = 0 when/7 = 0. (2.21)

Moreover, if p = ip2 then pk\p) = p2{k's{p2) + ik'c{p2)), so (2.5), (2.20), and k0 = 0
yield

k'(0) + k"(p) / 0 when p{ — 0 and p2 / 0. (2.22)
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Applying once again the Hilbert integral representation for Laplace transforms we
obtain

~ / 4 f°° 2 ~ /\m{pk\p)} = - / p2co k'((o)(p{p., p2, (o)da>.
n Jo

Thus, by (2.5) with k0 = 0 and (2.20), it follows that

k'(0) + k"(p) ± 0 when px > 0 and p2 / 0. (2.23)

Finally, if p — px> 0 then (2.18) and (2.5), with kQ = 0, lead to the inequality
/*oo ^ roo

pk'(p)-pl exp (~plt)k\t)dt = — p\(p] + w2)~lk'(a>) dco > 0
Jo 71 Jo

so that from (2.20) it follows that

k'(0) + k'\p) / 0 when p{ > 0 and p2 = 0. (2.24)

The collection (2.21)-(2.24) proves (2.17). □
Note that the conditions required by Miller (see [11]) to ensure the existence,

uniqueness, and stability of solutions to the heat flux equation when kQ ^ 0 are
exactly (2.8)-(2.13). Thus Theorem 2.1 and the ensuing corollaries allow us to give a
physical interpretation of these conditions; that is, the constitutive equations of the
model need to be compatible with thermodynamics. In the case kQ = 0, however,
in order to obtain stability results Miller needs a stronger condition for k(t) which
fails to be valid. In essence (see assumption (S'), p. 325 in [11]), he requires that
k'0 + k"(p) 7^ 0 Vp e C+ . Unfortunately, it is apparent from (2.21) that this cannot
occur if p = 0 and k' e L'(R+); so no stability property follows from his argument
when kQ vanishes.

3. Existence, uniqueness, and stability results when kQ is positive. Substituting
the constitutive equations (1.1) into problem (1.5) one obtains the following initial-
history boundary value problem:

d d
a0—u{\, t) + f0°° a'(s)—u'(x, s)ds-k0Au{\, t)

- /0°° k'(s)Au'(x, s)ds = r(x, t) onilxR+,
[/c0Vm(x, t) + /0°° k'(s)Vu'(\, s) ds] • n(x) = -0(x, t) on d£lq x R+ ,
m(x , t) = 0 on x R+,
w(x, t) = u0{\, t) on x R~ ,

where dQ is smooth and constituted by the union of d£lq and dQ.u . We exclude
the case dQ. = d£lq , when no temperature is assigned at the boundary. Then, by
setting

/OO

k'(s)Vi/'0(x, s) ds,

/°° / 0a\s)—u0{x, s)ds,

h{x, /) = r(x, t) - U0{x, t) + V • Q0(x, t),
if/(x, t) = -<f>{x, t) - Q0(x, /) • n(x),
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the previous problem is replaced by the following equivalent system:
d d

a0—m(x, t) + a * t)

- kQAu(x, t) - k' * Au(\, t) = //(x, f) on Q x ]R+ ,
[i0Vw(x, t) + k'* Vm(x, /)] • n(x) = ^(x, /) on5Q(JxR+, (^.1)
m(x, ?) = 0 on d£lu x K+ ,
u(x, 0) = m0(x) in O.

For later convenience we shall now give some notation for functional spaces,
norms, and scalar products. Set Q' = and define V0 = H(\ (Q') (see [13]).
Let ||u||j denote the norm in VQ, ||w|| the norm in L (Q), and ||| u ||| the norm in
L2{E+ x Q). Moreover, from now on we use the following notation:

(.a,b)= / a(x)b(x)dx, (a,b) — / a{x)b(x)do,
Jn Jdn_

aWa = a)q-
anq 9

In order to achieve a stability result relative to problem (3.1) we impose the fol-
lowing assumptions:

(HI) u0 e V0;
(H2) r € L2(R+ , L2(Q)), <t> e L2{R+ , L2{dQq));
(H3) u0{x,t) on QxE~ is such that U0 e L2{R+, L2(Q.)), Q0eL2(t+,L2(Q))

and V • Q0 e L2(R+ , H~l{Q'));
(H4) «0(x, t) on <9Q x R~ is such that Q0 • n e L2(R+ , H~xl2(d£lq)).

Remark 3.1. (H2)-(H4) ensure that

h e L2(R+, and y/ e L2{R+ , H~1/2(dQg)).

First consider the Laplace transformed problem of (3.1) which is defined for each
p € C+ as

p[a0 + a(p)]u(x ,p)-[k0 + k'{p)]Au(x, p) = F{x, p) on Q,
[fc0 + k'(p)]Vu(x, p) ■ n(x) = <j/(x, p) ondQ.q, (3.2)
u(x, p) — 0 on dD.u ,

where
F{x, p) = h{x, p) + u0{x)[aQ + a(p)]. (3.3)

Definition of weak solution. A function u e VQ is called a weak solution of
(3.2) if1

/ {p[a0 + a(p)]iiv* + [k0 + k'(p)]Vu • Vv*j dx = / Fv*dx + \
Jn Jq Js

holds for every v e Vn.

(j/v* dx
an,,

v* denotes the complex conjugate of v .



HEAT FLUX EQUATION WITH LINEAR MEMORY 351

Lemma 3.1. If a and k verify inequalities (2.8)-(2.9) and u0, 4>, and r satisfy
(H1)-(H4), then problem (3.2) has one and only one weak solution u{-, p) £ V0 for
every p e C+ .

Proof. First, note that h{-, p) and F(-,p) are well defined in //~'(fi), and
y/(-, p) is well defined in H~[^2(dQ.Q) for every p e C+ . Then, by virtue of well-
known theorems on elliptic problems, (3.2) has one and only one weak solution if
and only if the operator L(p) defined by

L(P) = ~P[a0 + a (/>)] + [kQ + k\p)\A

is coercive for every p € C+ , i.e., if and only if the associated bilinear form

a(u,v\p)= / {p[a0 +a (p)]uv* + [kQ + k'{p)]Vu-Vv*} dx
J £2

satisfies

\a(u, u■, p)\ > C(p)\\u\\] VmgJq, Mp e C+ , with CQp) > 0. (3.4)
If p ± 0 then

y(p) = Re{p[a0 + a{p)]) Re{[k0 + fc'(p)])[Re(p[a0 + a (/>)]) + Re([kQ + ^'(p)])]"1

turns out to be positive because of (2.8) and (2.9); thus,

|a{u, u\p)| > |Re(a(M, u\p))\ > y(p)(||M||2 + ||Vw||2) = y(p)||M||2 V/? e C+\{0}.

On the other hand, when p = 0 we recall that (see [13, Lemma 1.46])

IIVm|| > C(Q)||w||I V«eK0, (3.5)

and from (2.13)2 it follows that

|a(u, u \ 0)| = k^ [ |Vm|2 dx > C0||m||2 with C0 = k^C2^) > 0
J n

and the proof of (3.4) is complete. □
We can represent the solution u of (3.2) as follows:

u(x,p) = / T(x, x ■, p)F(x , p)dx + / T(x,x\p)\j/{x ,p)do', (3.6)
J n JdQ

where the Green function T for almost all xgfi and p e C+ solves the problem

p[a0 + d'(/>)]r(x, x p) - [kQ + k' (p)]A'T(x, x ; p) = d(x - x) x'eQ,
v'r(x, x!\p) -n(x') = 0 X£dnq, (3.7)
T(x, x'; p) = 0 x' £ 0Qu .

Lemma 3.2. Under the hypotheses of Lemma 3.1, for almost all x e Q and p e
C+ problem (3.7) has one and only one solution T(x, x'; p) with the following
properties:

(a) T(x, x ; •) is continuous on C+ ;
(b) lim!pHoo/n/?a0r(x, \';p)u(x)dx = u(x) V/i e C0°°(r);
(c) V T(x,x';-) is continuous on C+;
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(d) lim^j^/nPOoV^nx, x';p)u{x')dx = Vw(x) V/i e C0°°(r)
Proof, (a) follows from the continuity of a(u, v, •) with respect to p (see [10,

Lemma 44.1]). Now, multiplying (3.7), by <p(x) £ C^°(Q) and integrating over Q
we have

LpT(x, x'; p)[(a0 + a(p))<p(x) - p (kQ + ic'{p))A<p(x')] dx = <p{x)

so that the limit as p —> oo yields

(p{x) = lim [ pT(x, x ■ p)[{a0 + a\p))<p(x) ~ p~l {k0 + k'(p))Acp(x)]dx

= lim / paQT(x, x ; p)<p{x) dx

for every (p £ C^°(Q) and property (b) follows. Finally, by applying the operator
Vx to (3.7), we can easily obtain

p[a0 + d'(p)]VJcr(x, x'; p) - [fcQ + k'(p)]A'Vxr(x, x ; p) = d\x - x), (3.7)',

so item (c) follows directly from (a), while the proof of (d) parallels that of (b),
replacing (3.7), by (3.7)', and remarking that S' G [C^°(Q)]'. □

Theorem 3.1. Under the hypotheses of Lemma 3.1 problem (3.1) has one and only
one solution u € L2(R+ , V0).

Proof. Since Lemma 3.1 states that the transformed problem (3.2) has one and
only one solution u € VQ for every p £ C+ , our aim is to prove that, by virtue of
Lemma 3.2, this implies the existence and uniqueness of the solution to (3.1). In
order to do this, we have to investigate the properties of m(x, p) when p = ico. First
observe that

lim F(x,p) = a0«0(x) a.e. inO and lim ij/(x, p) = 0 a.e. in<9Q.
\p I *oo IpHoo

Then, from property (b) of Lemma 3.2 it follows that

lim pu(x,p)= lim
|p|-»oo |p|—oo L>

\p\
and property (d) of Lemma 3.2 leads to

pF{x , J9)r(x, x ; p)dx

+ pY{x,x \p)\j/(x ,p)da
Jon

lim / pT(x, x'; p)aQu0{x) dx — u0(x) a.e. in fi

lim pVti(x,p)= lim
|p|—<oo |p|-»oo

[ pF(y, p)VxT(x, y\p)dy

+ / pVxr(x, y; p)tj/(y, p)dar
Jon

= lim / pVS(x, y; p)a0uJx)dy = Vm0(x) a.e. in fi.
|p|—oo J n



HEAT FLUX EQUATION WITH LINEAR MEMORY 353

2Setting p — ia> and observing that that «(x, ico) = £t(x, co) and u e L, (K, VQ),
by (3.6) and previous lemmas, it follows that u e L2(R, K). Finally, by setting

v(x, t) =

Parseval's Theorem yields

0'

0, / < 0,
u(x, t), t > 0,

2n /OO /»00(|fi(x, a>)\2 + |Vm(x, a>)\2)da> = / (|u(x, t)\2 + |Vw(x, t)\2) dt
-oo J —OO

Loo

(|m(x, t)| + |Vm(x, 01 )dt.

Hence it follows that

j (ll»(x> Of + I|Vm(x, t)\\2)dt = ^ J (||m(x, o»)||2 + ||Vm(x, co)\\2)dt < oo

and the theorem is so proved. □
We now complete the treatment of the parabolic case by showing how the solution

is controlled by data. In particular, we are going to get a theorem that may be
considered both a control theorem, when sources r and 0 vary but uQ = 0 W < 0,
and a stability theorem in the usual sense, when r and </> vanish.

Let (H1)-(H4) be valid, so that we choose only initial histories belonging to

^ = u0 satisfies (HI), (H3), and (H4)}.

Consider problem (3.1) again and set

/(x, t) = r(x, t) - UQ(\, t).

Thus (3.1), can be replaced by

d . id
" + « *gja0—u(x, t)+a'*—u(x, t)-k0Au(x, t)-k'*Au(x, t) = /(x, r) + V-Q0(x, t). (3.8)

Remark 3.2. (H2)-(H3) yield / e L2(R+ , L2(Q)).
In order to obtain a priori estimates we lake the product of (3.8) by u and integrate

over fix[0, T\, yielding2

//'Jq J o
dxdt( ' ®U\ II A \ ,1> A Nj — u + I a * — I ii - (k0Au)u - (k * Au)u

= [ [ Uu + V • Q0u]dxdt,
Jq Jo

^a0{\\u{T)\\2 - \\u0\\2) + (a' , uj dt + J [kQ\\V u\\2 + {k' * V u, V u)]

= Jo [(/, u) - (Q0, Vm) - (0, u)q\dt. (3.9)

dt

2 In the sequel, for ease of writing, the dependence on x and t within the integral expressions is understood
but not written except for the dependence on w in the Fourier transformed functions.
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If we extend the solution u(\, t) as follows,

... / "(0, „V-rit) = { -rrvJt) =T I 0, ti [0, T], dt TV '
10, t<£[0,T],

~t u(t), re]0,r[,dt'
u(t), te[0,T], d \ 5{t)u0, t = 0,

—8{t - T)u(T), t = T,
,0, t£[0,T

(3.10)
by Parseval's theorem the third term on the left-hand side of (3.9) becomes

fT r+ oo
/ [k0\\Vu\\ +(k'*Vu,Vu)]dt= [k0\\VvT\\ +(k'*FVvT, VvT)]dt

J 0 J—oo
i r+oo

= 2-J (k0 +k'((o))\\VvT{co)\\ dco (3.11)
| r+oo

= ~ (kQ +k'{a)))\\S7vT{i
n Jo

(<y)||2 dco.

Note that the relation (3.11) defines a norm for Vw(x, t) because of (2.5), so

II|Vm|||J t= fT[k0\\Vu\\2 + (k' *Vu,Vu)]dt
Jo

and with the aid of (3.5) we can define

L2k(0, T- V0) = {u: (0, r)-» VQ, ||| V« |||J>r < oo} . (3.12)

Now, by assumption kQ + k'c(co) — kQ > 0 and by (2.5) we obtain

y = inf (/r0 + k'c(co)) > 0

which implies
m€R ' 0

1 r + OO

v" 1IU t = ~ (kQ + ^(<y))||Vf)r(<u)|| dco
n Jo

2 dt.>1 [ \\VvT(a>)\\2 daj — y f || Vu\\
n Jo Jo

Since (k0 + k'c(co)) is bounded and (3.5) holds we can conclude:
2Remark 3.3. If kQ > 0, the norm of Lk(0, T; VQ) is equivalent to the usual

norm of L2(0, T\VQ).
Applying (3.10) again, the second term of (3.9) becomes

OO

T

/ d v y \ ,
a ,, , vT ) at

dt 7 '

- f (a'u0,u)dt+ f (a (t - T)u(T), u) d t.
Jo Jo

But a (t - T) = 0 a.e. in (0, T), so Parseval's theorem yields

J * ̂ 7 ' "} C*t = n J ~ J *(u0,u)dt. (3.13)
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Finally, substituting (3.11) and (3.13) into (3.9) we obtain

i i i r°° -> i r°°
2aoll"(r)ll +- JQ (oas((o)\\vT(o))\\ dco + - J (k0 +k'c((o))\\VvT((o)\\ doj

1 2 fT= 2Qoll"oll +J [((/ + a'"0)> M> " (Qo> Vm> ~ <0,
(3.14)

On the basis of (3.14) we can state the following theorem.

Theorem 3.2. If the thermal conductivity k and the heat capacity a are such that
(a) k0 > 0 and aQ > 0,
(b) (1.2), (2.5), and (2.6) are satisfied;

then, under assumptions (H1)-(H4), the problem (3.1) has one and only one solution
u € L°°(R+ , L2(t2)) nL2(M+ , VQ) and, moreover, the corresponding norms of u are
bounded by the norms of the data in their respective spaces.

Proof. We have just observed that

-/ (k0 +k'{(0))\\VvT{(D)\\ d(L> = \\\Vu\Wk T > C. \\u\\,dt
71 Jo 'Jo

and moreover, by virtue of (2.6), we have

/+°o ^ ^<x>as{a>)\\vT(to)\\~ did > 0
-OO

so (3.14) leads to

\a0\\u{T)\^ + Cx^\\u\^dt<\a0\\u0t

rT
+ j l((/+ «'«„), u) - (Q0, Vw) - (</>, u)q\dt.

Because of (H1)-(H4) for any positive constant s we can set

|||VW||2 + J_||Q0||2, \{f, U)\ < £-\\u\\2 + 1

\(<f>,u)q\<l\\u\\l + ±M\l,
and by Theorem 3.1 there exists a constant C2> 0 such that (see [13, Lemma 1.48])

\\u\\2q<C2\\Vu\\2. (3.15)

Thus, if we choose e such that is = (Cj - e(l + C2)/2) > 0, from (3.14) it follows
that

"(Till2 + \\u\\]dt < ^\\u0II2 + ^ [\\\Q0W2 + ll/ll2 + M])dt2 o
fT+ / (a'u0 , u) dt

Jo
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so that

\\u(T)\\2 < ||w0ll2 + [ (\\Q0\\2 + \\f\\2 + \m])dt + -™. f \a'\Mdt>
a0 ■'O a0 Jo

rT i /* T rT

"J l|w||2dt < y||m0II2 + Je J0 (IIQoII2 + !I/II2 + W^^KH/o W\\\u\\dt.
Applying Gronwall's generalized Lemma (see [17]) the following inequalities hold for
any 7'el+:

„2.1 ^ 1/2
ll«mil< IKH +—1C(Q0,/,^) + Poll / — dt, (3.16)OH r n P ^ vv<0 ' J ' r/ I -> II»o

"0 / "o
T

JO «n

v[ \\u\\]dt <^-\\u0f + ~C(Q0, f, (l)) + \\u0\\ sup ||u(0|| [ Ia'\dt,
J o ^ ^ /G[0,r] J o 17)

where C(Q0, /, 0) = /0°°(||Q0||2 + ||/||2 + ||</>||2) dt < oo by assumption. Finally,
since u0 € V0 and |a'(f)| € l'(E+) , taking the limit in (3.16) and (3.17) as T —> oo
the conclusion follows. □

Observe that, if the data are suitably regular, (3.1) has a solution belonging to //'
with respect to time; therefore Theorem 3.2 yields asymptotic stability.

4. Existence, uniqueness, and stability results when kQ vanishes. Assuming kQ = 0 ,
problem (3.1) becomes

d d
a0—u(x, t) + a' * — u(x, t) — k' * Au{x, t) = h(x, t) on Q x !+ ,

k' * Vm(x, t) ■ n(x) = y/(x, t) on 9^ x l+ , (4 ^
u(x, t) = 0 on x 1+ ,
u(x, 0) = Mq(x) in £1.

Remark 4.1. In the case k0 = 0 a compatibility condition between the data
arises, i.e., lim;^0- q(x, t) • n(x) = <j>(x, 0+), and yields the following restriction on
the initial histories:

fJo
k'(s)VuJx, -s) ds ■ n(x) = -0(x, 0) on d£l

Nevertheless, by using the method of the previous section, with slight modifications
we can still obtain existence and uniqueness results. In order to avoid repetitions,
we give only the statement of the theorem.

Theorem 4.1. If a and k, when k{) = 0, satisfy inequalities (2.8)-(2.9), and
data u0,(f>, and r satisfy (H1)-(H4) then (4.1) has one and only one solution
u 6 L2(M+ , VQ).

On the other hand, investigating how the norm of the solution is controlled by
the norms of the data, in the case kQ = 0 we are no longer able to obtain results
close to the previous ones. In essence, when kQ > 0 Theorem 3.2 states that the
norm of u in L2(K+, VQ) is controlled by some L2-type norms of the data, whereas
if k0 = 0 we can hardly control the norm of u relative to L2(R+, VQ) and, what
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is more important, by stronger conditions on the data. To clarify this assertion we
make some remarks.

Let L2,,(R+ , L2(Q)) denote the Banach space defined by the normM/fc
r+OO

x!k 2 n
1 r+OO

— J (k0 + k'c((o))~l\\f((o)\\2d(o.

Remark 4.2. The spaces L^(M+, L2(ft)), L2(M+ , L2(Q)), and L2(M+ , L2(Q))
are equivalent when kQ > 0. On the contrary, when k0 vanishes they are not
equivalent anymore, but their norms are ordered as follows:

III * III, < III " III' < III • \\\],k ■
In the following section we shall scrutinize L{,k in detail.

Some conditions on the data involving norms of the L2/k-type have to be assumed
in order to achieve a stability result in the case k0 = 0. In particular we impose

(H5) m0(x, t) on Q. x is such that U0, Q0 G L2/(t(R+, L2(Q)),

(H6) <\> G L2/k(R+ , L2(dQq)), r G L2/;t(R+ , L2(Q))
2 +2so that / = r - U0 e L^k(R , L (Q)). Choose uQ varying in the set

%?k — {u0: iixl —> E; uQ satisfies (HI), (H4), and (H5)}.

Theorem 4.2. If the thermal conductivity k and the heat capacity a are such that
(a) k0 = 0, a0 > 0,
(b) (1.2), (2.5), and (2.6) are satisfied,

then, under the assumptions (H1)-(H6), problem (4.1) has one and only one solution
u G L°°(M+, L2(Q)) n L2(R+, V0); nevertheless only the norms of u in the spaces
L°°{R+ , L2(£2)), and L2k(R+ , VQ) are bounded by suitable norms of the data in their
respective spaces.

Proof. By working out (4.1) t we are led to the following equation:

r-T
n <\\u(T\\\Z - lit? lli^ J- I dtIa0(||W(D||2 - ||«0||2) + J * |y , u} + (k' * Vu, V«)

= J [(/, ") - <Q0, Vw) - (</>, u)q\dt

and after some manipulations

i -> i r°° i i r°°
j<*0\\u(T)\\+- (oa {co)\\vT(co)\\ dw + - k'{(o)\\VvT{(o)\\ dco
1 It Jo Tt Jo

1 1 fT I= ^oj"oll + [((/ +a'wn), w> - <Qn, Vi/> - ((/>, u)a\dt,2

(4.2)

1 1 /* 7"

yll"(7-)H2+2 IIIVM|||J,r < 2aoKH2 + J [((/+«"o). "MQ0> Vw)-(</>, u)q\dt.
(4.3)
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Note that (H5)-(H6), (3.15), and Poincare's inequality yield the following:3
I 1 r~rOO ^

Jo (Q0,Vu)dt =— J (Q0M, VvT{w))dt

fT 1 I /•+«>\J {<t>,u)qdt = — J (4>{a), VT((0))

— 2s HIQollli/, +2 HI Hlfc, t '

Qdt S ^ Mil?/*., +c2| llivulllj r,

C1 1 I r~^°°
j (f,u)dt =-\J {f{co),vT(co))dt<2illl/lllU+C3f lllVMlllr ■

(4.4)
Thus we obtain

yll"(^)H2 + ̂  II|Vm|||^7-< ^||m0||2 + ^C'(Q0, /, 0) + J \\a u0\\ \\u\\dt

with n= l-£(l + C2 + C3)/2>0 and C'(Q0, /, 0) - (|||Q01||^ + ||| 0 |||^;9 +
2 ~f~1 -.). Applying again Gronwall's generalized lemma, for any T e R it follows

ll"(nil < (ll"ol|2 + —pc'(Qo > /. 1/2 + ll"oll [T 7T >>
V 0 ' ^0 0

ll/A:/
that

t'KH2 + ic'(Qo</><£) + sup MOII [ ll"'«0ll^-
^ te(o,T) Jo^ III lllfc T —

te(0,T)

Thus taking the limit as T —> oo and taking account of Poincare's inequality, the
theorem is proved. □

Remark 4.3. If a'(0) >0, we can control the norm of the solution in L2(R+, L2(Q)).
In fact, by substituting Poincare's inequality into (4.2),

||£r(a>)|| < 2C(a>)||Vi)r(a>)|| with C(to) > 0 Va> 6 R

and by setting P(a>) = coas((o) + C(a>)k'c(a>) > 0 (and lim^^ 0(a)) = a (0) > 0),
we see that

2^ J p(w)\\vT(w)\\2 dw > J \\vT(co)\\2 dw = p ||w(/)f dt,

where /? = /?(w) > 0 • Moreover, in this case we do not need the requirement

f=r-U0eL2l/k(R+,L2m.

5. Restrictions on the data. In the sequel (H.5)-(H.6), imposed on the data when
kQ = 0, will be considered in detail. As an introduction we remark that, as k' e L1 ,
k'c is bounded, continuous on R+ , and goes to 0 as co —» oo . Then, by (2.5) k! is
a positive definite kernel, that is (see [20]),

f [ k\t - s)u(s)u{t) ds dt > 0 w^O MT e R+ ,
Jo Jo

3||| • III,/k q denotes the norm in L]/k(R+ , L2(dQQ)).
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and, moreover, k\0) = £ /0+o° k'c(a>) dco ■, so k'(0) is finite and positive if and only
if k'c£ Ll . Finally we recall (see [20]) that k' is a strongly positive definite kernel if
k'(s) - rje s is a positive definite kernel for some tj > 0 . It has been shown that if
k' e L1 then k' is strongly positive definite if and only if

k'jco) >——y, rj > 0, Vwe[0,oo). (5.1)
1 + co

In order to examine some properties of the functional spaces L2/lc(R+ , V), where
2 2V is L (Q) or L (dQq), we distinguish three cases:

1. k' is singular at the origin (k'c £ Ll) and

  f "y3a < 1, y> 0, W such that kjco) > —„ Vco > co. (5.2)
0 co

By the continuity of k'c and (2.5), there exists a positive constant e- such that
k'c{co) > e— > 0 V<y e [0, cZJ], and letting rj = min{y, e-} > 0 we get

^^I0'00)- (5-3)

Theorem 5.1. When (5.2) holds there exists a real index 5 e (0, 1/2] such that if
Q0 e HS(R+ , L2(£l)) and cfi e HS(R+ , L2(d£lq)) then (H5)-(H6) are satisfied.

Proof. Let / belong to HS(R+, V), 0<s < 1/2, where V is L2(Q) or L2(dQ.q)
and || • || denotes the norm on V, and let ||| • |||^s denote the norm on HS(R+ , V).
Then, by (5.3)

2 i r+°° _i - 2= 2^ y ^ (fc>)) ii/mii ^l/k

<

t —oo
r» + 00J r + OO

- (1 S)l~l\\f(o})\\ dco = rj~l |||/|||^ . □
J — OO

For instance let us consider a singularity of "log" type, i.e., k'(s) = -/?logs/E(s)-
0 - Xe(s))k'(s) where

( 1 s < e, k'ie)Xe(s)= <1 .7 . and ft —0 s>e, loge

In this case (5.2) holds with a = 1 and
r OO

= / [~P\ogsxE(s) + ( \ - xE(s))k\s)] cos cvs ds
Jo

- (1 - x.(s))k"(s)
/J o

fiXe(s) sin cos , ds.
co

Taking into account that k'c{co) ~ O{co~l) as co —> oo, there exist y > 0 and co
such that

k'(co) < -—-— Vco>co.c 1 + co
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On the other hand, there is a positive constant M such that k'ico) < M
and in particular k'c(co) < M(l+a>)/(l + co), Va> g [0,a>]. So letting £ =
max{y, M( 1 +W)} it follows that

K(u>) < i—~— V«e[0, oo). (5.4)c 1 + 0)

Corollary 5.1. If k! has a singularity of "log" type at t = 0, then (H5)-(H6) hold
if and only if Q0 g HS(R+ , L2(Q.)) and (j> g H'\R+ , L2(dClq)), with s = 1/2 .

In fact, by (5.3)-(5.4) we obtain
1 1
£ III • III//'/* < III • III,/* < - III • |||//'/2 . □

2. k\0) < oo . By an analogous procedure we can establish the following:

Theorem 5.3. If k (0) < oo then there exists a positive constant Sj > 1/2 such that
(H5)-(H6) imply Q0 g HS'(R+ , L2{Q)) and </> g Hs'(E+, L2(dQq)).

Proof. As k'Qe L there exist 5, > 1/2, y > 0, and W such that

k'c(co) < y(l + <y2i|)~' Vw > To

and, as before, the inequality k'c(a>) < M{ 1 + co2j|)(1 + cu2S|)~' , g [0, To], holds.
Therefore, if C = max{y, M(\ + co2s')} then it follows that k'c(a>) < C(1 + w25')^1 ,
Vw g fO, oo) and the conclusion follows by comparing the norms as in the previous
theorem. □

3. k' is strongly positive definite.

Theorem 5.4. If A:'(0) < oo and k' is strongly positive definite, then there exists a
positive constant s2 < 1 such that if Q0 g Hs\E+, L2(Q)) and <j> g HSl(K+, L2(<))
then (H5)-(H6) hold.

Proof. In view of (5.1) we can find s2 < 1 and rj > 0 so that (5.3) is satisfied for
a = 2s2 . The conclusion follows by comparing the norms as in previous theorems. □

Finally, we suggest another condition on the initial history that permits the con-
clusion in Theorem 4.2 to be true.

Theorem 5.5. The conclusion of Theorem 4.2 is valid if (H5) is replaced by

Vw0 g lJ(R_, L2(Q)). (H5')

Proof. Consider
r h0(x, t), t< o,

vJx, t) = <
0 I 0, t >0,

so that Q0 may be represented as a convolution product Q0 = k' Vv0 for every
t > 0. Let k! be the even-extension on M of the kernel, namely k'(s) = k'(-s),
and set

/+o° (k' *F VwQ)(x, t)e "°'dt = 2k'c(co)Vv0{x, to). (5.5)
-OO
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'o III?/*Thus inequality (4.4) is valid even if ||| Q0 III?,* is replaced by

q, mi/* = i 'iiq.mii2^
.*r

n Jo
da)

,.,2— 2 HI Vw0 ni£ .

Added in proof. Although Theorem 3.1 and Theorem 4.1 state existence and
uniqueness in L2(K+, V0), this kind of result is not crucial to prove stability. In-
deed, one can build Theorem 3.2 and Theorem 4.2 starting from the weaker condition
u e L (0, T\ VQ) that easily follows from Lemma 3.1.
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