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Abstract. The following investigation deals with surfaces governed by and extremal
for a free energy functional which is quadratic in the principal curvatures. The
associated Euler-Lagrange differential equations are derived, as are the corresponding
intricate natural boundary conditions. Pertinent boundary value problems—without
and with volume constraints—are formulated and discussed1 and existence proofs
are provided for certain situations. The discussion opens the view onto an arena of
rich mathematical problems which will also be of interest in engineering applications
where the surfaces in question are utilized frequently as idealized models for the
interfaces separating phases in real materials.

1. Let <5* = {x = \(u, v); (u, v) e P} be a differential geometric surface embed-
ded in Euclidean space R3. The position vector

x(w, v) = {x(u, v), y(u, v), z(u, v))

is defined over a prescribed parameter domain P—a connected set with or without
given boundaries. We wish to consider this surface not so much as a geometric
object but as an idealized model for the interfaces or middle surfaces occurring in
real materials—open or closed lipid bilayers and surfactant films, thin elastic plates,

2 Aetc. Thus, we associate with <5" a free energy O, per unit area, which incorporates
surface tension but also reflects elastic properties. The latter involve the surface
curvatures, and so <i> will have the form O = 0(«rx, k2) . Here kx = 1 //?, and
k2 = 1 /R2 denote the principal curvatures of S". As a consequence, the total
energy of S? becomes

= <T(^) = J J <!>(*!, k2) dA . (1)
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(dA denotes the area element.) There may be further energy terms attributable to
the boundary d5? of . Two universal structural conditions will be imposed on
the integrand in (1):

(1) 0(Kj , k2) is a symmetric function of its arguments.
(2) if is definite in the following sense: There is a constant c > -oo , possibly neg-

ative, such that IP ) > c for every connected orientable surface -T of regularity
class C2, with or without boundary. We allow the lower bound for i? to be negative
to reflect the fact that the free surface energy of an interface need not be positive;
however, disregarding possible extraneous information concerning the magnitude of
physical constants or the limiting influence of boundary conditions in specific appli-
cations (see, e.g., Sec. 10 and (34) below), we shall insist on the universal condition
C > —oo .

It should be stressed that our condition of definiteness is mathematical in nature;
it does not take into account the structural properties of the admissible comparison
surfaces J7" on the molecular level; see footnote 2.

Under mild regularity assumptions (for a polynomial , as a consequence of the
fundamental theorem on symmetric polynomials), condition (1) above implies that

can be written in the form 4>(Kr,, k2) = O(H, K), where H = (k{ + k,)/2 and
K = k{k2 are the mean and Gaussian curvatures of 5?, respectively. Moreover,
rather than working with general nonlinear integrands, it is consistent with standard
engineering practice, at least as a first step, that we limit consideration to the inclusion
of terms up to those of second order, so that <I> becomes <!>(//, K) — a0 + axH +
a2H + a}K . The second condition (2) of definiteness imposes specific restrictions
on the coefficients a0, , a}. In fact, an analysis similar to that given on p. 14 of
[55] shows that O must have the form

<P(H,K) = a + P(H-H0)2-yK, (2)

with material constants (surface tension, elastic moduli) a, /?, y satisfying the con-
ditions

Q> 0, 0 <y<p, (lyH2 <a{p - y). (3)
It is the integrand (2), as well as the complex relations springing from it, which

will be at the center of the discussion to follow. This integrand, or expressions
2 2 \ 2closely resembling it—invariably including O = (/c, + k2) — 4H~ , <]> = (jc, — k2) =

4{H2 - K), and O = k2 + k2 — AH2 — 2K—can be found in numerous sources
from the earliest times (see, e.g., S. D. Poisson [59, pp. 221-225], [60, p. 321], S.
Germain [21, pp. 12, 16], G. R. Kirchhoff [44, p. 63], F. Casorati [7, p. 109], A.
E. H. Love [48, p. 130]) and has attracted renewed attention through the work of
W. Helfrich [34] and fellow scientists (among others, [17, 28, 35, 37, 38, 58]; for
further references also [54, Sec. 11]). The case <J> = 1 leads to the venerable theory
of minimal surfaces (see [49, 51, 54]), and the case <J> = H2—to be sure, in all
investigations published so far exclusively restricted to closed surfaces, embedded or
immersed (i.e., surfaces with possible self-intersections)—has been of considerable
recent interest to geometers; references can be found in [6, 70, 71, 73, 77] and [54,
Sec. 11]. Generally speaking, there are today few mathematical treatments and no
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general existence theorems for the various physical boundary value problems arising
in connection with (1), (2).

The "natural" (or "intrinsic", "spontaneous") curvature H0 in (2) can often be
related to the initial state of the interface or to the fact that the two sides of a bilayer
may be chemically different; see, e.g., [34, 17, 28], The actual numerical values of the
constants a, ft , y , and H0 are of secondary importance at the moment. In many
applications, a is larger by orders of magnitude than ft and y, a fact which often
lets us approach the interface 5? as the perturbation of an interface governed by the
energy functional ff dA based on the integrand O = 1 , i.e., a minimal surface (or a
surface of constant mean curvature), depending on /? and y as control parameters.
In other cases, for instance for menisci and vesicles with a size in the range of a few
hundred A, the influence of a and that of /?, y become comparable.

2 3The case a = 0, H0 = 0, p = y > 0, i.e., O = H - K, is special. Here
the associated energy W has the value zero for all spheres and spherical caps. Thus
there may exist continua of solution surfaces for our Problem 1 below, and specific
solution surfaces will have to be characterized by their area or by the volume they
enclose.

2. One observation: The inclusion of terms of third order, that is, the addition of
a4H} + a5HK to the expression 0(//, K) in (2) above, leads to an indefinite energy
functional unless aA = a5 = 0. This can be seen as follows. For thin cylinders for
which K = 0, the term /H3 dA can be made dominatingly negative so that the
coefficient a4 must be zero. As for the other part, consider as comparison surface
the torus

= {x = (a + b cos u) cosv , y = (a + bcosu) sinw , z = ±6 sin u; 0 <u,v< 2nj,
(4)

where 0 <b < a . Set k = b/a. For this torus,

1 a + 2b + cos udA = b(a + 6 cos u) dudv, H = ±
1 cos u

2b a + bcosu '

K = b a + bcosu '
so that

JJ dA = 4n2ah, jj HdA = ±2n2a, J J KdA — 0,

ff H2 dA = -iL== , ff HK dA = ± -=—_ n"  
JJr Av 1 - X J J? ay 1 - A (1 + vl - A )

Obviously, the energy If (J7") can be made as negative as desired for a suitable choice
of the radii a and b . Thus we must also have a5 = 0.

It follows that the next step toward greater generality in the selection of the inte-
grand 0(k, , k2) would have to include fourth powers of the principal curvatures.

3The combination (H2 - K) dA is invariant under conformal transformations of i?3 ; see [8, 74]. The
same is true for the differential equation (25); see [9],
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On the phenomenological level, there are suggestions of such integrands; see, e.g., [3,
17, 37, 38]. On the mathematical level, the attending problems are formidable.

3. The static equilibrium shape of our interface 5? is determined by the condition
that S' be energy minimizing or, more generally and less restrictive, that S? be an
extremal for the energy functional % , i.e., S? must be a solution of the variational
problem 8W = 0. This variational problem leads not only to the fundamental
Euler-Lagrange differential equation, but also to certain specific intrinsic, or natural,
boundary conditions. For the actual determination of these, we have to investigate
the change of the functional f associated with a variation of the surface 5?. Given
that the present discussion is not restricted to closed shapes (vesicles), as for instance
the walls bounding blood cells, but includes surfaces with boundaries, fixed or free,
the variations to be considered here cannot remain restricted to the special normal
variations customarily employed in the literature.

The surface S? will be regarded as the member of a one-parameter family of sur-
faces S"(t) = {x = x(u, v ; t); (u, v) e P), |f| < t0 , such that x(m , v ; 0) = x(u, v).
We set y(u, v) — xt(u, v ; 0); then x{u ,v\t) = x(u, v) + ty(u, v) + 0(t2). A subse-
quent stability analysis would involve a discussion of the second variation S % and
requires inclusion of the next term x[t(u, v ; 0) in the expansion for x(u ,v\t). Note
that the variation y(w, v) has a component y—(y-X)X tangent to 5? and a compo-
nent y [u ,v)' X{u, v) normal to S". Here X(u, v) — (X(u, v), Y(u, v), Z(u, v))
is the unit normal vector.

For any functional & = &(S?), we shall use the standard abbreviation

A rather lengthy computation leads to the following variation formulae:

Sff dA = -2 [f H(yX)dA- f (y,X,dx), (7)
J J 5* J J5* JdS"

S JJ *¥{H)dA= J J {AV H + 2{2H2 - K)^ H - 4H^}{y-X) dA-1
Jd2 JdS/ I dn dn

ds,

(8)

sff KdA = -f K{y,X,dx)+ [ {a
J Js? Jay Joy I

(l,3^-A<2)(yx)M^ (9)
on

For our present purposes, the role of the expression ¥(//) will be taken by
(.H-H0 f . Of course, AVH = VhhAH+ VhhhV{H , H). Here y¥fJ = dxV/dH etc.,
and V, A represent the first and second Beltrami operator on S?. If the surface S?
is before us in a nonparametric representation z = z(x , y) then the curvatures of S?
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take the form (p = zx , q = zy, r = zxx, s = zxy, t = zyy, W = \J 1 + p2 + q2)

IT C1 + <?V~ 2pqs + (1 + p2)t /imH = 2^ ' (10)

(11)
W4

Further, for functions f(x, y), g(x, y) defined on S?, we have

V(/, g) = +42)fXgX-P<l(fXgy+fygX) + (! +P2)fygy}. (12)

(i + q2)fx-pqfy\ d (~pqfx + (i +p2)fy
w dv w ,, {13)

- wii( 1 + 12)fxx - 2pqfxy + (1 +P2)fyy} - ^r(Pfx + qfy) ■

Observe that \x = -2pH/W, Ay = -2qH/W, as well as

A 2HAz = —. (14)

This is the nonparametric equivalent of the general relation

Ax = 2 HX. (15)

4. If 5? is a closed surface, then no boundary terms appear in the variational
equations (7), (8), and (9). In general, however, such terms will be present and
will have to be contended with. Therefore, a number of explanations as well as,
in particular, a geometric interpretation of the expressions A(1) and A(2) on the
right-hand side of (9) are called for.4

For any variation y parallel to the surface normal vector X, the triple product
(y, X, dx) is zero. Concerning the boundary terms, note that the boundary d5v
consists of one or several contours. Each of these contours has the double existence
as a curve in R and as a curve on S? . We denote by k and r the space curvature
and the torsion, respectively, of this curve and by kn and kg its normal and geodesic

i 2 2 2curvatures. Of course, k = kn+kg . With the help of these quantities, a computation
shows that the expressions A'1', A(2) take the form

A <"=*„, (16)

= + ■ (17)

Generally, the symbols d/ds and d/dn indicate tangential differentiations along
dS? and normal to dS?, respectively, according to the metric on 5? . If we denote

4In the various engineering applications, a physical interpretation of these expressions is of importance as
well. See also footnote 5.
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by # the angle between the principal normal of and the normal X of <5", then
(17) can also be written in the simpler form

,(2)_3r S20
A ~ds J?' ,l8)

Relations (17) or (18) are ambiguous for straight parts of the boundary where
k — kn= kg = x — 0. Along these parts, they become

A(2| = ^?, (19)
OS

where now # is to be taken as the angle which the surface normal X forms with a
chosen fixed direction.

5. In view of the arbitrary character of the variation y(u, v), standard arguments
of the calculus of variations lead to the Euler-Lagrange equation of our variational
problem:

fi{\H + 2(H - HQ)(H2 - K + HH0)} - 2aH = 0, (20)
or equivalently,

0{\H + 2H{H2 - K)} - 2{a + pH^H + 2fiHQK = 0. (21)
It must be understood that solution surfaces of this differential equation need

not be energy minimizing. (21) is only a necessary condition; in fact, it does not
even contain the coefficient y. As a consequence, the differential equation (21), by
itself, generally can provide no clue regarding the energy level (J/") of its solution
surfaces. To wit, by the Gauss-Bonnet theorem, the integral ff 7, K dA has the same
value 47t(1 —g) for all closed surfaces of the same genus g (g — 0 for a sphere, g =
1 for a torus etc.). Thus <5 JJ^KdA — 0 for any closed surface, so that (21) clearly
will contain no contribution stemming from the term -yK in (2). The significant
fact that the coefficient y is absent in (21) also for surfaces with boundaries is, of
course, a discovery, of S. D. Poisson, more than 175 years ago and predating the
Gauss-Bonnet thoeorem; see [59, pp. 224-225], also [54, Sec. 11], [55, p. 16]. The
term -yK is nevertheless of consequence. As is apparent from an inspection of
(22), (23) below, it manifests itself in the boundary conditions and, of course even
more so, in the expression of the second variation. Thus, this term does influence
the value of the energy, particularly in the case of "crumpled" boundaries.5

The natural boundary conditions accompanying (21) can be obtained by grouping
the coefficients of the variational components (y • X), d(y ■ X)/dn , and (y, X, dx).
This leads to the following groups, in the same order:

V^-yA{2), (22)
p(H - Hq) - ykn , (23)

—a — fi(H — //n)2 + yK. (24)

5In connection with a discussion of lipid-water systems, S. M. Gruner [28, p. 7570] states an open question:
"The significance of the Gaussian term...is unclear. It is not known whether this term modulates the phase
behavior. The value of k [related to our —y] is not known."
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The question, which of these expressions must be equated to zero, depends on the
concrete problem before us. As for (24), it is possible that further contributions to
the energy functional attributable to the fixed boundaries must be considered. We
shall not pursue this here; see, however, Sec. 14 below.

6. Equation (21) is a nonlinear partial differential equation of fourth order for the
position vector of S?. It is a fortunate circumstance that this differential equation
can be written in the form of four differential equations of second order—three,
namely (15), for the components of the position vector x, and one, namely (21),
for the mean curvature H. For the case of a surface in nonparametric representa-
tion z = z(x, y), these equations reduce to two coupled highly nonlinear elliptic
equations of second order. The expressions in (22), (23), (24) establish the relation
between the position vector and the mean curvature of S? on the boundary 85?
and provide for the appropriate boundary conditions.

We note that the case of the special integrand 0(//, K) = H leads to the differ-
ential equation

AH + 2H{H2 - K) = 0. (25)

In nonparametric form, this differential equation was derived by S. D. Poisson [59,
p. 224], Its invariant form is due to W. Schadow; see [72, p. 56].

7. Often the interface separates two media of prescribed volumes. We denote by
'V(S?) one of these volumes. The admissible variations of 5? are now subject to
the volume constraint 'V (S*) = const, and our variational problem becomes

S J J 4>{H, K)dA + = 0, (26)
where ^ is a Lagrange multiplier. A computation shows that

dT = -[[(yX)dA-[ (y, Q(x), dx). (27)
J JS" JdS"

For a description of the vector function Q(x), see [52] and [53, p. 5]. Assume in
particular that the boundary 85? is required to lie on a prescribed surface; say,
assume that <5" spans the interior of a region 38 in R3 with fixed boundary 838 .
Then the vector function has the property that Q(x) is tangent to this boundary at
each point x e 838 .

In the same context, it is possible that the total energy of the system under con-
sideration contains a contribution that is proportional to the area of 838 wetted by
one of the phases. Let us describe this area by a functional W (5"). The change of
W under a variation of 5? comes to

"//.
(y, N(x), dx). (28)

ay
Here N(x) denotes the unit normal vector of 838 at the point x. The derivation
of the Euler-Lagrange equations involves yet another multiplier u :

(^) + uTiS?) + = 0. (29)
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In the presence of the functionals 'V and W, the differential equation (21) has
to be complemented, and it will ultimately take the form

fi{AH + 2H{H2 - K)} - 2{a + pH2)H + 20HOK - n = 0. (30)
Obviously, the boundary conditions will have to be complemented as well. The
multiplier v , which does not enter (30) explicitly, will appear in the new conditions.

8. While there are extensive numerical investigations of the solution surfaces of
(21) and (30), albeit, it must be said, generally restricted to surfaces with rotational
symmetry (a stipulation which reduces the problem to one of ordinary differential
equations!), very few analytical solutions are known today. As far as closed surfaces
are concerned, we have of course the spheres. Moreover, an inspection of (5), in
conjunction with the relations

1 d fa + bcosudH\ a b + acosuAH =
b{a + bcosu)du\ b du ) 2b2 (a + bcosu)2

and

H2 -K =
4b2 (a + b cos u)2

shows that the torus of (4) satisfies the differential equation (30) for the following
choice of the coefficients:

Ku u 2PH0 (a + /?//02)2
a = V2b, b=  —f-2 , » = jorr" , (31)

if H0?0\ see [57], The case H0 = 0 is possible only if a = 0 in (2); then also
the Lagrange multipler p. must be zero and we are led from (30) to (25). The fact
that an "anchor ring", i.e., the torus (4) whose generating circles have radii in the
ratio b: a = I: V2, solves the differential equation (25), is a discovery of B. Y.
Chen; see, e.g., [73, p. 18]. Of course, (25) is satisfied by all minimal surfaces. On
the other hand, the anchor ring is the image under stereographic projection in an
equatorial R3 of the "Clifford torus" {.x, + ix2 — (\/V2)ela , x3 + ix4 — {l/V2)e'^ ;
0 < a, (i <2nj lying in the standard sphere S3: x2 + x\ + + x\ = 1 . There is
an intriguing relation between minimal surfaces in S and solution surfaces of (25)
in R3. For details see, e.g., [43, 47, 71, 73, 77] and [54, Sec. 11],

9. The shapes of physical interest include closed surfaces, periodic surfaces, but
also surfaces with boundaries required to satisfy appropriate boundary conditions.
In view of their crystallographic symmetry properties, periodic solution surfaces can
often be obtained by repeated reflections from specific surface patches. The latter
appear as solutions of (21) or (30) whose position vector is defined over a polygonal
domain and subject to specific boundary conditions. [55] contains an existence proof
of periodic solution surfaces for the variational problem 5<£ + nd'V = 0 in certain
situations. Regarding the case 0(//, K) = 1 , i.e., periodic minimal surfaces and
periodic surfaces of constant mean curvature, see [16, 41, 42, 56, 65, 66],

In the present investigation, we are mainly interested in fixed and free boundary
value problems, that is, in the determination of minimizing or stationary surfaces
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for the energy functional, with boundaries on fixed curves or surfaces—the shape
assumed by a fluid membrane closing the opening of a glass tube when pressure is
applied in the tube, the shape of a film spanning a wire, etc. Two problems are
representative:

Problem 1. Given a collection of disjoint simple closed curves Tj, ... , Tm in
R . To determine a surface S" bounded by these curves which minimizes, or makes
stationary, the value of the energy £? in the class of all surfaces of a prescribed
topological type,

(a) not subject to a volume constraint (differential equation (21));
(b) subject to a volume constraint (differential equation (30)).
Problem 1 can be considered as a generalization of the Plateau-Douglas problem

which is based on the integrand 0(//, AT) = 1 , i.e., a > 0, /? = y = 0, and which
leads to minimal surfaces and to surfaces of constant mean curvature. For this case,
traditionally the most effective approach to the existence problems for energy min-
imizing (here: area minimizing) surfaces utilizes the direct method of the calculus
of variations. A similar, albeit by necessity far more complex approach, should turn
out to be useful also in the present context. As is well known, however, the ex-
istence proof for extremal surfaces which are merely stationary requires additional
arguments. Since the condition H = 0 for minimal surfaces can be interpreted
as an elliptic differential equation for the position vector of the desired surface—a
very special case of the differential equations (15), (21)—the direct methods may
be complemented by methods from the theory of partial differential equations, a cir-
cumstance that is particularly relevant for surfaces in a nonparametric representation
z = z(x, y). In all discussions to follow, we assume that /? > 0.

One of the most interesting special cases for Problem 1 is that of a single fixed
curve T bounding simply connected surfaces, i.e., surfaces of disc-type.

Problem 2. Given a fixed surface in R3. To determine an interface S? of least,
or stationary, energy with boundary lying on this surface,

(a) not subject to a volume constraint (differential equation (21));
(b) subject to a volume constraint (differential equation (30)).
A typical example of Problem 2 has been described in Sec. 7 above; for a further

discussion, see Sec. 14.
Finally, a combination of Problems 1 and 2 leads to the determination of surfaces

whose boundaries are partially fixed and partially free, in the spirit of [51, VI.2], We
have neglected here consideration of further forces and moments on the fixed and the
supporting boundaries of S? which would lead to a modification of the problems.

It is clear that Problems 1 and 2 require a discussion concerning the regularity
of the potential solution surfaces. Such a discussion has not yet been attempted.
For surfaces that are stationary, not necessarily minimizing, with respect to the area
functional (the special case a > 0, /? = y = 0), see [51, V.2.1, VI.2], [54, V.2.1],
and [13, 29, 30], If the bounding configuration has corners or edges, as will be the
case in actual experimental situations, then also the local behavior of the solution
surfaces near these boundary singularities needs to be elucidated. For surfaces in a
nonparametric representation z = z(x, y); see [27, 46, 75, 76]. As for surfaces in
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a parametric representation, an exhaustive discussion is so far available only for the
special case P — y — 0; see [54, Sees. 357-360, 382], [12, 33, 36, 66, 67].

10. Let us turn to Problem 1 in its simplest form, that of one contour T bounding
a surface of the type of the circular disc. Assume that T is given in a representation
T = {x = z(s); 0 < s < Lj in terms of its arc length 5. We denote the tangent,
principal normal and binormal of T by t, n, and b, respectively, and the curvature
and torsion by k and t . A potential solution surface may be before us in a represen-
tation S? — {x = x(w, v); (u, v) e P} . Here P denotes the closure of the unit disc

2 2P:u +v <1 in the (m, v)-plane. S? must satisfy the differential equation (21). As
for the conditions on the boundary dP , note that all admissible comparison surfaces
are required to have the same boundary curve, namely T. Then the variation vector
y must be parallel to dx in the points of dP, in particular y(u,v)-X(u,v) = 0
for (u, v) e dP. On the other hand, however, no restrictions can be placed on the
values of d(y-X)/dn on the boundary of P. (It is true that for a clamped plate also
this quantity would be zero.) As a consequence, in view of the remarks at the end of
Sec. 4, we find that we must have

fi(H-H0)-ykn = 0 (32)
for (u,v) e dP. Here kn = k(X • n) = X • (dt/ds) is the normal curvature of T
considered as a curve on 5?. If the surface 5? is known to us, then this normal
curvature can be computed, and (32) can be seen as a condition on the mean curva-
ture H of 5?. This is the requisite boundary condition for the partial differential
equation (21).

The following observation is in order. By the Gauss-Bonnet theorem, we have

f k ds + f f K dA = 2n .
JdS* S J JS"

(33)

Thus, even though the value of kg = /c(b • X) is not known, it follows from \kg\ < k
that

-k{T)-2n<-JJ KdA<k{T)-2n (34)
for any disc-type surface 5? bounded by the curve T. Here /c(r) = Jrkds is the
total curvature of T. By W. Fenchel's theorem [14], A:(r) > lit and k(T) = 2n only
for plane convex curves. Since any minimal surface bounded by T is a comparison
surface for our variational problem, (34) implies the following a priori estimate for
the value of the minimal energy for Problem la

^min<aA(Y) + y{k(r)-2n}. (35)

In this inequality, ^4(T) stands for the greatest lower bound of the areas of all disc-
type surfaces bounded by T (a property of T alone). At the same time, we have the
universal estimate

IT(^) >aA{S^)-y{k(X) + 2n}, (36)
and, of course, there may well be stationary solution surfaces with an energy level
higher than Fmin.
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In the application of the Gauss-Bonnet theorem above, it has been tacitly assumed
that the surfaces S' under consideration are differential geometrically regular. Even
for the special case of minimal surfaces (/? = y — 0), this is assumed a priori only
for the energy (= area) minimizing solutions. For minimal surfaces with isolated
singularities, equation (33) must be replaced by relation (156) of [54],

11. It will be of interest to determine the specific form of the boundary condition
(32) for the case of a surface S? in a representation z = z(x, y). Let us assume
that the function z(x, y), required to satisfy appropriate regularity conditions, is
defined on the closure D of a domain D in the (x, y)-plane. D may be simply
connected or have higher connectivity. Without loss of generality, we shall consider
the former case.

The boundary 3D is given in the form x = x(a), y = y(a) in terms of the
arc length a, and k = k{o) = x'(a)y"(a) - x"(a)y'(a) is its curvature. The
differential geometric relations x" = -Ky , y = kx are valid. For Problem 1,
the values of z(x,y) are prescribed on dD and will be denoted by <p = (p{a)
so that z(x(a), y(cr)) = (p{a). The contour T bounding S? has the coordinates
x(a), y(cr), <p(o). Of course, a is not the arc length for T. The unit normal vector
of S? is {-zrIW, —zJW, 1 /W). Here W = J\ + z\ + z\ . For points on 3D,x y y x y

2 2 2 2we can write zx +zy = (dz/do) +(dz/du) , where dz/dv denotes differentiation
of z with respect to the outer normal of D . Substitution into the expression of kn
gives

r" + *a*lav - (37)
x + <p \j\ + v'2 + (dz/dv)2

In its complete form, then, Problem 1 comprises the following: The differential
equations (14), (21) (for Problem 1(a)) or (14), (30) (for Problem 1(b)), to be satisfied
in the domain D , along with the conditions

z = (p, (38)
*("-«,) = , '" + "ailav . (39)

1 + '' tjl - <p'~ + laz/Hin'

to be satisfied on the boundary dD . For both differential equations, these are Dirich-
let conditions. (Recall that the structural requirements imposed on <!>(//, K) include
the inequality 0 < y < P according to which (1 = 0 implies y = 0.)

If we restrict the last condition (39) to the terms of lowest order, thereby neglect-
ing the contributions of higher powers of <p and its derivatives as well as those of
z, zx, , zyy, H, Hx, , Hyy , and if we set H0 = 0, then (39) reduces to

fiH = y(v" + K^j . (40)
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This relation can be found in the literature concerning the elastic theory of thin plates;
see especially [18, pp. 600-605], further [44, pp. 68-69], [61, 62, 64], It is obtained as
a consequence of the customary approach approximating the quantities dA , H , and
K in the energy functional by the expressions dx dy, {zxx + zyy)/2 , and zxxzyy-z .
As is well known, at this level of approximation, the differential equations (14), (21),
(30) become linear with a principal part which is effectively the biharmonic operator
A z = AAz (A denotes the Laplace operator). The boundary conditions generally
favored in the literature are z = dz/dv = 0; for these, uniqueness is guaranteed
in all cases; regarding existence, see e.g. [4]. The boundary conditions (38), (40) are
more intricate, and the question of nonuniqueness becomes pertinent.

The unabridged nonlinear theory is of course more complex. It should be noted,
however, that the correct problem (14), (21) or (30), (38), (39) can be solved com-
pletely in many situations provided the function cp(a) and the spontaneous curvature
HQ are sufficiently small. Assume that the boundary dD of the domain of definition
belongs to class C4'1, where the Holder exponent X is a number in the interval
0 < X < 1, and that the function <p(o) is of the same regularity class.

Theorem 1A. Assume that the quotient y/p is different from the eigenvalues of the
problem (53)-(56) below—for a disk D, that a2 + Hq + (/? - y)2 > 0. There is a
positive constant m depending only on the domain D, on the material parameters
a, P ,y and on a bound for HQ with the following property. If IHI^ < m and
l"ol < m, then the problem (14), (21), (38), (39) has a unique solution z(x, y) in
the regularity class C4'X(D) satisfying an inequality

+ (41)

Here the bound W depends on m, a, (J, y and on the properties of D, but is
independent of (p and H0 .

The norms in Theorem 1A are the usual Schauder norms.
As already mentioned in Sec. 5, our boundary value problem is decomposed

into two Dirichlet problems for a coupled system of second-order elliptic equations,
namely (42), (38) for the function z(x, y) and (43), (39) for the function H(x , y).
The coupling is strong because the functions z, H and their derivatives appear not
only in the right-hand sides of the differential equations and one of the boundary
conditions, but z also determines the principal part of the differential operators.
The first problem (42), (38) is of course the classical Dirichlet problem for surfaces
having prescribed mean curvature. It is well known that solvability and nonsolvabil-
ity of this problem lead to intricate questions and depend on specific conditions; for
details see [5, 15, 19, 20, 22, 23, 24, 25, 26, 31, 32, 54, 69], Given this situation,
it is a fair expectation that the general boundary value problems before us here will
pose many highly interesting new challenges.

In preparation for the proof of Theorem 1A, we shall write the differential equa-
tions and the boundary conditions for z and H in the form
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Az - 277 = f(zx , zy , zxx , zxy , zyy , 77), (42)

AH-2 ( - + Hi)H = g{zx,zy,zxx, zxy, zyy , 77, Hx, Hy, Hxx, Hxy, Hyy),J ' (43)
z = q>, (44)

/?//-y>c(cr)|^ = 0Ho + y<p" + h (<p', <p", \ , (45)

where
/ = 2H(W* - 1) - zjz„ + 2zxzyzxy - z2xzyy , (46)

_ 2
g = 2W(zxHHx + z HH ) - 2W2H* + 2(77 - HQ)"xx"yy "xy

w

- 4HXX + 2zXzyHXy - zlHyy + 2 (j + Hl) H{W2-\),
(47)

h = y (<p" + k^\ (—l—   1 = - l | . (48)
V dvJyi+tp + y'2 + (dz/dv)2

Here W = yj\ + z2x + z2y , as before, and A denotes the Laplace operator.
Note that the individual terms occurring in the right-hand sides f, g, h in (42),

(43), (45) are of second and higher degree in their respective arguments. We shall
designate these right-hand sides also by the abbreviated notation / = f(z,H),
g = g(z, H), h = h{<p, z).

Let us denote by z(0) = z(0)(x, y) and 77(0) = Hi0)(x, y) the solution pair of the
linearized coupled system of Dirichlet problems,

Az-2/7 = 0, (x,y)eD, (49)
z — (p, (x,y)edD, (50)

and

A/7 —2 (| + //n2)77 = 0, (x, y) £ D, (51)

PH-yK{G)^ = PH0 + y<p , (x,y)edD. (52)d z //
)— = -t- vr,
dv

12. It is important to establish that this solution pair is unique. For this, we have
to investigate the homogeneous linearized eigenvalue problem

Az- 277 = 0, (x, y) £ D, (53)
A77 - c277 = 0, (x , y) £ D, (54)

z = 0, (x, y) £ dD, (55)

H-Zk(ct)^ = 0, (x,y)£dD. (56)
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2 2Here c = 2(a + /3HQ)//3 >0 and the constant £ replaces the quotient y/p.
Integration of the difference HAz - zA// leads to the relation

lfD{,H2 + C2{zl + zl)}^^lD^) do, (57)
which shows that the eigenvalues £ must be positive, at least for convex domains D .
We have also the estimates ||z||, < ^'||//||0 and \\H\\0 < l^l^'HzH, , with constants
W' and W depending on the domain D and on the coefficient c. The estimate
|£| > is a consequence.

If D is a disk, a computation shows that the lowest eigenvalue has the value

„ _ ic J0(ic) _ 1 + c2 j4 h 
C' 2 Jj(ic) i+c2/8 + ...- 1 j

We see that > 1 for c > 0 and = 1 for c = 0. It follows that, for a disk
D, there is one situation—admissible on the basis of our structural condition (3)—
in which there is nonuniqueness for the linear boundary value problem (49)-(52),
namely, the case a = H0 = 0 and jJ = y or y/j! = ^ . This case leads to the
integrand O = P(H2 - K). Here

z = |(x2 + v2- 1), H = a (59)

with an arbitrary constant a, is a continuum of solutions for (53), (54), (55), (56)
for (j; = 1 . This fact has already been mentioned in the introduction.

2 2 2For an annulus ^^{(x,^);^ <x + y < 1}, that is, for an interface with a
circular hole, a computation for the case c = 0 shows for instance that no eigenvalue
£ of (53)-(56) can lie in the interval 0 < £ < 1 .

13. We now assume that the quotient y/P is different from the eigenvalues of
(53)—(56). Then the solutions z{0\x, y) and H[0\x, y) of the linear problem (49)-
(52) are unique and, by the theory of partial differential equations,

\\z,H\\<^(\wC^\Hq\). (60)
Here £rj is a bound depending only on the domain D, on the material parameters
a, P , y and on a bound for H0 (reflecting the presence of H0 in the coefficient on
the left-hand side of (51) and the abbreviated notation

\\z,H\\ = \\z\\D4^ + \\H\\lx (61)

is used.
The solution z(x,y), H(x,y) of the full system (42), (43), (44), (45) is now

sought in the form

z{x, y) = z(0\x, y) + z(1)(x, y), H(x , y) = H{0)(x , y) + H(])(x , y). (62)
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The functions z(l) and //(1) satisfy the conditions

Az(1) - 2//(1) = f(z , H), (x, y) G D, (63)

AH{1) ~ 2 (j + H{X) = g(z, H), (x, y) € D, (64)

z(1) = 0, (x,y)edD, (65)
r) ^

pH(X) -yK{a)-^ = h(q>, z), (x,y)edD. (66)

Assume for the moment that the right-hand sides /, g , and h in (63), (64), (66)
are functions of (x, y) and of a , respectively. Then the following estimate is true:

||z(1), /f(1)|| < ̂ (H/llf,, + \\g\\lx + ||A©. (67)
As a consequence of (60), we have of course

||z, H\\ < ||Z(1), //(1)|| + m\\<p\\Z + \H0\) ■ (68)
Given the nonlinear structure of the expressions /, g, h , the existence for the solu-
tions of the problem (63)—(66) can be proved with the help of an iteration scheme,
provided IHI^ < m an<i l^ol < and the positive bound m is chosen sufficiently
small.

This completes the proof of Theorem 1 A. For related proofs and details see, e.g.,
[54, pp. 360-364], [55, pp. 21-26],

As for the volume constraint problem, the following theorem holds.

Theorem IB. There is a positive constant m depending only on the domain D , on
the material parameters a, /?, y and on a bound for H0 with the following property.
If IHI^ < m > |ff0l < m ' ancl li"l < m ' then the problem (14), (30), (38), (39) has
a unique solution z(x, y) in the regularity class C4' (D) satisfying an inequality

\\z\\Zx<&{\\<P\\Z + \Ho\ + \»\}- (69)
Here the bound W is independent of <p .

14. To interpret the boundary conditions associated with Problem 2, let us con-
sider the situation described in Sec. 7 and assume that the extremal surface S" spans
the interior of a region 38 in R3 so that the boundary dS? is required to lie on
the boundary d3§ of this region. In this situation, the variation vector y must be
parallel to d3§ , but is otherwise arbitrary. An inspection of (7)—(9), (27) then shows
that, on the boundary dS?,

(y, qX + fi(H - H0)2X - yKX + ^Q(x), dx) = 0 (70)

for all such y. Given that dx is also parallel to and that the same is true for
Q(x), it follows that the vector {a + /?(// - H0)2 - yATX}X + /uQ{x) is tangent to

in all boundary points of S? . In other words: A potential solution surface must
meet the boundary of the region 38 at a right angle.
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If there is no volume constraint, the term fiQ(x) is missing in (70), but this fact
does not alter the conclusion (74).

In the presence of a wetting energy term, (70) leads to the condition

qX + — HQ)2X - yKX + fiQ{x) = i/N(x). (71)

Scalar multiplication with the vector N(x) results in the boundary condition

{a +p(H - H0)2-yKX} cos x = v. (72)

Here x denotes the angle at which the surface S? meets the boundary d38 (the angle
between X and N). Note that for the special case /? = 0, i.e., I?(<5"") = ff^ dA ,
(72) is reduced to the condition of constant contact angle x which plays an important
role in the theory of capillarity. For the time being, we shall neglect the wetting energy
term.

Regarding the boundary condition corresponding to the other conditions (22) and
(23), note the following. Now that we know that all solution surfaces 5? must
meet the boundary of 38 at a right angle, we can restrict our further discussion to
a consideration of variation vectors y which are parallel to the normal vector X
on the boundary of £?. The quantity y • X is arbitrary, but the normal derivative
d(y-X)/dn must vanish at dS?. Therefore, an application of (8) and (9) leads to
the boundary condition

p^ + yA{2) = 0 (73)an

which replaces (32).

15. To illustrate Problem 2 for surfaces in nonparametric representation z =
z(x, y), let D be a domain in the (x , y)-plane, as in Sec. 11 before, and consider
the cylinder Z erected over the boundary dD with generating lines parallel to the
z-axis. The boundary of an admissible surface £7 is a curve which must lie on Z,
but is now not otherwise restricted; it will have a representation x = x(o), y = y(a),
z = z(x(a), y{a)) = <p{a). We shall denote this curve again by Y; it is not fixed
now.

As we have seen, a potential solution surface must meet the bounding cylinder at
a right angle. This is equivalent to the boundary condition

|^ = 0, (x,y)edD. (74)
ou

(As in Sec. 11, d/du denotes differentiation with respect to the outer normal of D .)
As for the boundary condition corresponding to (73), it is necessary to work out

the form of A(2) in terms of the function z(x, y) and the geometric properties of
the domain D.

Using the notations of Sec. 4, a computation gives, in addition to (37), now with
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the relation dz/du = 0 incorporated,

k = . 1 vV'2 + *;(l + y'2). (75)•JT77
/// i ii 3 i

_ K(p — K (p K (p
T = -To—^27 ' (76)(p + K (1 + <p )

//
cos d = £ (77)

\//'2 + ic2(l + /2)

It follows from these relations that (18) is

and the boundary condition (22) becomes

3H+ 8 yflz/aj =0
ai/ a<71 + (dz/do)2

2 / 2 2Recall that els = (1 + cp )da . As a consequence of (79), we have

[[ AHdxdy — [ ^-da = 0.
JJd Jod dv

In view of (74), an integration of (14) gives also

SSDHdxdy=\L^da"°-

(80)

(81)

Both relations (80) and (81) are obviously necessary conditions for the solvability of
the nonparametric free boundary value problem.

In its complete form, Problem 2 comprises the following: The differential equa-
tions (14) and (21) (for Problem 2a) or (14) and (30) (for Problem 2b), to be satisfied
in the domain D, and the boundary conditions (74) and (79), to be satisfied on the
boundary 3D. For both differential equations, these are Neumann conditions. Note
that the quantity H0 is not contained in the boundary conditions. This quantity
appears only in the (negative) coefficient of H on the left-hand side of (43) and as a
factor of the quadratic term (zxxz — z2y)/W4 in the function h on the right-hand
side of (43).

The differential equations are thus (42) and (43); they are complemented by the
boundary conditions (74) and

,dH d ( , ,dz\ r(dz d2z

where

' (82)

-r(dz_ d2z\ _ d (Kiojjdz/da)3}
n{da>d(Ti) da \ \+(dz/do)2) ' 1 j
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For the present situation, the linearized boundary value problem corresponding to
(49)-(52) is

Az - 2H = 0, (x,y)eD, (84)

AH - c2H = 0, {x,y)eD, (85)

^ = 0, (x,y)edD, (86)

§7+ (*<">£) =0' <87>
2 2Here we have again set c = 2(a + PH^)/and £ = )>//?.

Integrating the difference HAz - zAH, we find

JJd{ 4H2 + c2{z2x + z2)} dxdy + 2£ J tc(a) da = 0. (88)

It follows from this that the problem (84)-(87) has only the trivial solution z =
const, H = 0, at least for a convex domain D.

Note that neither the differential equations nor the boundary conditions contain
the function z(x, y) explicitly, so that z(x, y) + const is a solution of the boundary
value problem if z(x, y) is. We can therefore stipulate that any solution surface
should satisfy the condition z(xQ , yQ) — 0 for an interior point (x0 , y0) of D .

As a consequence of the foregoing, we have

Theorem 2A. Assume that the domain D is convex or that the problem (84)-(87)
has no nontrivial solutions. There is a positive constant m depending only on D,
on the material constants a, p , y and on a bound for the spontaneous curvature H0
with the following property. The only solution z(x, y) of Problem 2(a) of regularity
class C4'A(D) satisfying the inequality

IMlf,, < m (89)
is z(x, y) = 0.

It is remarkable and somewhat surprising on physical grounds that Theorem 2A
is valid regardless of the value of H0 . Of course, the spontaneous curvature enters
the energy expression which, for solution surfaces with sufficiently small norm

(Ml4,a < w), is
= (a + Hq)\D\ + O(m). (90)

Here \D\ denotes the area of the domain D. At the present stage, the situation for
nonconvex domains is not decided. It would be of interest to study the solvability of
the homogeneous system (84)-(87), as well as the possibility of solution surfaces of
Problem 2(a) for general domains.

Regarding the volume constraint free boundary value problem, the differential
equation (21) or (43) has to be replaced by the differential equation (30) or

\H-2(^ + H2)H=^ + g(z,H), (91)
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and equation (85) becomes
A H-c2H=^. (92)

r

The Lagrange multiplier p assumes the role of a control parameter, leading to a
one-parameter family of solution surfaces.

Theorem 2B. Assume that the domain D is convex or that the problem (84)-(87)
has no nontrivial solutions. There is a positive constant m depending only on D,
on the material constants a, p , y and on a bound for the spontaneous curvature H0
with the following property. If \fi\ < m, then Problem 2(b) has a unique solution
z(x, y) in the regularity class C4,/l(Z)) satisfying an inequality

||<A<g>|. (93)
Here the bound f is independent of p..

The proof is similar to those of Theorems 1A, IB and follows again the lines of
the proof given in [55, p. 21-26].

16. The Theorems 1A, IB, 2A, 2B of the preceding sections are local in nature.
Further extremal surfaces may well exist; obviously, if they do, their norms must be
sufficiently large. To see this clearly, let us consider the simplest one-dimensional case
of Problem 2(a), namely a stationary solution surface S? bounded by two vertical
walls, say, the planes x = 0 and x — xx > 0. The plane portion with the position
vector (x, y, 0) for 0 < x < xx , -oo < y < oo is always a solution. The free energy
associated with it is the smallest possible. But there will be other solution surfaces.
For these, the position vector x has the form (x(s), t, z(s)), where the parameter
5 may be taken as the arc length of the profile curve x = x(s), z = z(s), so that 5?
is defined over an infinite strip 0 < 5 < Sj , -oo < t < oo of the (s, ?)-plane. Also
the mean curvature of <9* will be a function H(s) of s alone, while the Gaussian
curvature of S? is zero, given that S? is a ruled surface. We still define the functions
p(s) = dx/ds and q(s) - dz/ds so that p2(s) + q2(s) — 1 . The differential equations
(15) and (21) can now be reduced to the simple system

p'(s) = -2H(s)q(s), (94)
q'(s) = 2H(s)p(s), (95)

H"(s) = -2h\s) + c2H(s). (96)
2 2Here, as before, c = 2(a + (3H0)/(3 . The boundary conditions become

x(0) = 0, x(sl) = xl; p(0)=p(Sl)=l

q(0) = g(sl) = 0-, H'(0) = H\sl) = 0.
Moreover, we shall assume that H(0) = -a, where a is a positive number still to
be chosen. (This is no restriction since equation (96) is invariant under the change
H —> -H.) For small positive values of 5, the mean curvature has an expansion

v
H{s) = -a + a I a - \ I j" - £ I a - I I a - I 5" + • • • . (98)

(97)
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A first integral of (96) is

H'\s) = (a2 - H2{s)){a - c2 + H2(s)}. (99)

Once the function H(s) has been found, its values can be substituted in the equations
(94), (95) for a determination of the functions p(u) and q(u).

The nature of the solutions H(u) of (96) depends on the size of the initial value
a. For a — cj\fl, the mean curvature will have the constant value H - c/V2, and
S? is a circular cylinder (not a solution for our present problem).

Assume that a > c. In this case, we introduce a new parameter u with the help
of the substitution H = -acosh so that

s = s(u)= f fU ===. (100)
JO Vfl -c +a*cos «

The differential equations for p and q become
dp 2a cosu
du \/a2 - c2 + a2 cos2 u
dq 2a cosu
du yr2 „2 , „2 2

q, (101)

= p. (102)
a~ - c + a cos u

Now observe that

fJo
T, , . acosw , . -i / asinwI{u)= —=========== du = sin

Va2 - c2 + a2 cos2 u V n/2a2 - c2,
From this it follows that the solutions of (101), (102) are

2 2 2„,, , , ^ . 2 ,, . 2a cos u - cp = cos 21(u) = 1 - 2 sin I(u) = 5 5—
2a' - c

and
..... . . T. . ... 2a sin MV? — c2 + a2 cos2 u

q = sin2/(w) = 2 sin I(u) cos/(m)   ^ 
2a -

Thus, ultimately we find the following representation for the profile curve of 5^:

, , 1 f" 2a1 cos2 w - c2
=  2/ 7 7 , ? , dw, (103)

2a -c Jo \Ja~ - c +a cos w

z(u) = —^—y cosw, (104)
2a - c

H{u) = -acosw. (105)

We see that the boundary conditions (97) are satisfied if we let the parameter u
range over the interval 0 < u < n . Then

2 2 22a cos u - c*i = —T—if " du. (106)
2a -c Jo \Ja" - c + a" cos u

For a given value of the constant c, it is clear that x, —» 0 for a —> c+ and xt —> 00
for a-too.
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-1

Fig. 1. Profiles of two distinct solution surfaces for Problem 2(a)
2(Case c = 1/2 , markings indicate values of the mean curvature)

The corresponding surface S? meets the bounding planes x = 0 and x — x{ =
x(n) at right angles, and dH/dn = 0 at these planes. Thus, S? is a solution of
Problem 2(a) for our bounding configuration. In view of the reflection principle of
[55, p. 19], 5? can also be analytically extended by reflection on the vertical planes.
Fig. 1 shows the profile of the extended surface S? between the planes -xl and x{
for the case c2 = 1/2, a = 1 . Here Xj = 0.80574.

A repetition of the reflection process leads to a periodic undulating profile, and
any portion between two extrema is a possible solution of Problem 2(a).

It is clear from the symmetries of S? shown in Fig. 1 that S? is also a solution
surface of Problem 2(b), for the value // = 0 of the Lagrange multiplier in the
differential equation (30). Note that

H'\s) = {a - H\s)) - c2(a2 - H2(s)) + j(a- H{s)) (107)

is a first integral of the differential equation (96). Again, in addition to the solution
surface of Problem 2(b) with small norm stipulated in Theorem 2B, there may be
further extremal surfaces.

Equations (94), (95), (96) are equivalent to the differential equation for elastica
investigated by L. Euler (Opera omnia (1) 24, pp. 233-234, 263), and Fig. 1 is an
example of his fourth class (i.e., Fig. 7 on p. 248).

17. The foregoing discussion provides the outline for a theory of boundary value
problems connected with the energy functional If (J?7) of (1), (2). This theory leads
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to a variety of questions for which answers have yet to be found. The problems of
interest include:

(1) Solvability of specific boundary value problems for auxiliary linearized equa-
tions, e.g., (53)—(56), (84)-(87) in general domains, with or without corners;

(2) Compactness properties for minimizing sequences of surfaces;
(3) Existence of global energy minimizing, or energy stationary, solution surfaces;
(4) Analogies with Douglas's sufficient condition and Courant's condition of co-

hesion for the case of several boundaries;
(5) Regularity—interior and on the boundary—of these surfaces;
(6) Local behavior near a corner of the boundary;
(7) Stability and energy estimates;
(8) Number of solution surfaces;
(9) Isolatedness and rigidity (in the sense of [50; 53, pp. 7-9]) of the solution

surfaces;
(10) Geometric properties of the solution surfaces;
(11) Existence of unsymmetrical solutions for the case of symmetrical boundaries;
(12) Information about the topological type of embedded solution surfaces.
The situation is quite complex. This is of course not surprising if one considers

that many of the above questions have not yet found definitive answers even for the
boundary value problems associated with minimal surfaces and (in the presence of a
volume constraint) with surfaces of constant mean curvature. It is for physical rea-
sons that we are looking for embedded extremal surfaces, even though the existence
proofs often produce immersed surfaces, that is, differential geometric regular sur-
faces with possible self-intersections. For example, a knotted contour cannot bound
an embedded surface of the type of the disk.

Among the basic theorems of particular interest is the following:

Theorem. Let Y be an unknotted rectifiable Jordan curve of finite total curvature.
There exists an embedded disk-type surface 5? = {x = \(u, v); (u, v) e P}, P the
unit disc, bounded by T (in the customary sense; see, e.g., [54, Sec. 292] of minimal
energy £?. The position vector x(w, v) is analytic for (u, v) € P and continuous
for (u,v) € P. If r possesses higher regularity, say T e Cm'x, where m > 4,
0 < X < 1 , then x(u, v) belongs to the regularity class Cm'^(P).
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