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1. Background. Rajagopal, Na, and Gupta have studied the flow of a viscoelastic
fluid over a stretching sheet [1]. The uniqueness of the solution of the problem
has been examined by McLeod and Rajagopal [2] and by Troy et al. [3]. Wen-
Dong Chang [4] recently claimed that the solution of the problem is not necessarily
unique. Motivated by the work of the above-mentioned authors, here the solution of
the problem is reinvestigated analytically through a simple mathematical procedure.

2. Mathematical procedure. The nondimensional equation with the boundary con-
ditions for the boundary layer model developed by Rajagopal, Na, and Gupta [1],
using similarity solution principles, is

(f/)2 _ ff// — f//l _ kl{zf/f/// _ (f//)2 _ ff/m} , (l)
f'O=1,  f(0=0, f(x)=0 (2ab,0)

where the nondimensional physical quantity k, is a positive constant and primes
denote differentiation with respect to 7. Equations (1) and (2) represent a two-point
fourth-order nonlinear differential equation having only three boundary conditions.
The fourth boundary condition is obtained by using Egs. (2a) and (2b) in Eq. (1) as

(1=2k) "0 +k {f" (O =1. (3)
By differentiating Eq. (1) with respect to n and applying the boundary conditions
(2a) and (2b), one gets

”n

(0
0= =gy (4)
It should be noted that f"”(0) in Eq. (4) becomes infinity for k, = 1. Thus, the limit
of the applicability of the solution of the problem with respect to the nondimensional
positive physical quantity k <1.

By assuming f=A-F (s)
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in Eq. (1) and substituting ¢™" for F, one gets

m*(k, Am* + m + 4) = 0. (6)
The nonzero roots of Eq. (6) are
~1+4\/1 - 44k}
my ;= 24K, . (7)
The solution of Eq. (1) can be represented by
f=A4—{Be™" + Ce™"}. (8)

By using Eq. (8) in Egs. (2a) and (2b), the constants B and C expressed in terms
of A are

A+1
B= myd+1 , _mAa+ . (9a,b)
m, —m, my —m,
By using Eqs. (6)—(9), f”(0) and f"(0) in terms of 4 can be obtained as
" A2—1 " 1—(1+k)A2
0)="——, 0)= ——1— | 10a,b
/(0 Ak, f7(0) (k) ( )

From Egs. (3) and (10), one gets

kA = (1+k, —k}H)A* +(1-k)=0. (11)
The roots of Eq. (11) are
1
k—l .
It is very interesting to note that for kK, = 1, the nondimensional velocity gradient
at the wall, f”(0) from the additional boundary condition (3), is found to be +v2.
This observation might give a clue for finding out the second closed-form solution
for k, = % [4]. Since there are two values for A%, two closed-form solutions are
found here for all values of k, € (0, 1).

First solution. For A* = (1 —k,), Eq. (7) implies
1 (I -k))

m|=—z, m2=—_AIT, (l3a,b)

A' = (1-k), (12a,b)

and Eq. (9) implies
B=4A4, C=0. (14a,b)

From Egs. (8), (13), and (14), the first solution of the problem is obtained as
f=Aa{1—e "y = | J(1 = k) {1 — e VITRY (15)
In order to satisfy Condition (2c), the positive value of A4 is considered in Eq. (15).
Second solution. For A = 1/k, , Eq. (7) implies

—14+V3i

m ,= 24K, (16a,b)
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and Eq. (9) implies

_Af =2k, _Af U2k,
B—2{1 7 z}, C—2{1+ 7 z}. (17a,b)
From Egs. (8), (16), and (17), the second solution of the problem is found as
_ ¢ (1-2k) . })
f=4 (1 e {cos(C) + 7 sin({) ¢ |, (18)
where
§= o (=13

n
=24k, T 2k, 24k, ~ 2k
In Eq. (18) the value of A is considered to be positive so as to satisfy the boundary
condition (2c).

These two solutions given in Egs. (15) and (18) are found to be quite different. It
can be verified from Egs. (15) and (18) that forall 0 <k, < 1,as n— oo, f"(n) —
0, whereas at 7 =0, f”(0) = -1/\/(T—k,) < 0 from Eq. (15), and f"(0) =
(1—k,)/k”* > 0 from Eq. (18). The values of f”(0) can be obtained directly from
Eq. (10a) by substituting the values of 4 as /(1 —k,) and 1/+/k,, respectively.

3. Validity of the solution. Equations (15) and (18) represent two solutions for Eq.
(1) with the boundary conditions (2) when k; = 0. Troy et al. [3] have found the
first solution of the problem as given in Eq. (15). Another solution of the problem
for the case k, = % , obtained by Wen-Dong Chang [4], can be found from Eq. (18).
It has been proved simultaneously by McLeod and Rajagopal [2] and by Troy et al.
[3] that Egs. (1) and (2) have a unique solution

finy=1-e" fork =0,

in which f"(n) <0 forall 0 <7< 0.

Though for k, # 0, two solutions exist for the present problem, the important
constraint needed to get the realistic solution of the physical problem, which was
missed in [4], is

f () <0 forall0<n<oco.
The requirement of f”(n) < 0 everywhere to get a realistic solution of the present
physical problem is explained below.

By physical intuition, one should expect that a slightly elastic fluid will produce
a boundary layer only slightly altered in its dimensions from a viscous one. For a
small value of k, (say, 0.0001), the dimensionless velocity gradient at the wall from
the first solution is f”(0) = —1.00005, and its value from the second solution is
obtained as 999900. For k, =0, f”(0) = —1. Such a drastic change in the value of
£"(0) for a small value of k, obtained from the second solution is not reasonable.
Since the first solution gives insight into the boundary layer for weakly elastic fluids,
in the sense that k, < 1, it is a realistic solution for 0 <k, < 1.

Rajagopal et al. [1] used a perturbation analysis by expanding the solution in
powers of k, and obtained numerical estimates on the behaviour of the solution of
equations. The function suggested by Troy et al. [3] {which is nothing but the first
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solution of the problem given in Eq. (15)} is in exact agreement with the approximate
solution of Rajagopal et al. [1]. Since the first solution gives the boundary-layer
behaviour for 0 < k; < 1, the velocity gradient f " < 0 everywhere for the present
problem.

Beard and Walters [5] have extended the Prandtl boundary layer theory for an
idealized elastico-viscous liquid. The boundary layer equations are solved numeri-
cally for the case of two-dimensional flow near a stagnation point. It is demonstrated
that the main effect of elasticity is to increase the velocity in the boundary layer and
also to increase the stress on the solid boundary. It is noticed from the first solution
that the magnitude of the velocity gradient at the wall increases with k, . From the
second solution, it is found that the velocity gradient at the wall decreases drastically
with k, .

Regarding the validity of small values of k , Surma Devi and Nath [6] and their
quoted references pointed out that the second-order fluid (i.e., viscoelastic fluid)
governed by Eq. (1) represents the behaviour of fluids with short memory and the
characteristic time scale associated with the motion is large compared with time
representing the memory of the fluid. Hence, the assumption of small values of k,
is valid especially for dilute polymer solutions.

Based on the observations above, the first solution given in Eq. (15) represents a
realistic solution for the present physical problem forall 0 <k, <1.
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