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Abstract. A mid-latitude flat ocean on a p-plane has characteristic oscillations
called Rossby normal modes, where the motion is governed by the quasigeostrophic
vorticity equation. Although the relevant eigenvalue problem differs from the usual
one of Hilbert-Schmidt type, a variational proof is obtained that the Rossby normal
modes constitute a complete orthonormal set for a basin with an arbitrary profile of
stable density stratification and an arbitrary form of side boundary. In particular, for
each fixed vertical mode, the set of the horizontal modes is complete and orthonormal
in a two-dimensional Hilbert space. General solutions are expressed in terms of
Rossby normal modes, not only to the initial-value problem, but also to the response
problem of the closed basin.

1. Introduction. On account of the unusual reflection of Rossby waves on nonzonal
boundaries (LeBlond and Mysak [10]), it has never been easy to understand and
predict the evolution or the response of a closed ocean even in linear cases (e.g.,
Lighthill [11]; Anderson and Gill [1]). The primary purpose of this paper is to provide
a general linear solution to the initial-value problem and the response problem of a
closed ocean at mid-latitudes through a study of the set of characteristic oscillations
of a closed basin on a /?-plane.

Those oscillations, known as Rossby normal modes, can be calculated rather easily
together with the associated characteristic frequencies (e.g., Longuet-Higgins [12];
Veronis [20]; Phillips [18]). They are defined, however, as the eigenfunctions for an
unfamiliar kind of eigenvalue problem, to which the ordinary completeness theory
of Hilbert-Schmidt type is not applicable.

No strict argument therefore has been made, so far as the author knows, for the
completeness of the whole set of Rossby normal modes, except for general conjectures
based on physical intuition (Greenspan [8, 9]; Rhines and Bretherton [19]; Miller
[15]). Recently an elementary proof was given of the completeness theorem for a
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special case of a rectangular basin (Masuda [13]). In that case, the eigenvalue problem
was reduced to a one-dimensional problem by virtue of the simple rectangular form of
the basin. Later the one-dimensional problem was generalized to a Sturm-Liouville-
Rossby eigenfunction problem (Masuda [14]); it should be remarked that Mishoe
[16] already studied a similar problem, though in a different way (see also Brauer
[2]; DiPrima and G. J. Habetler [5]). Moreover, close relations turned out to exist
between the Sturm-Liouville and the Sturm-Liouville-Rossby systems (Masuda [14]).

In the previous investigations, however, discussion was restricted to a one-dimen-
sional problem or to the special case that can be reduced to a one-dimensional prob-
lem. This paper deals with an ocean with an arbitrary form of side boundary. The
next section formulates the problem, and the third gives some preparations. In the
fourth section we provide a proof of the completeness theorem for Rossby normal
modes. Then, by virtue of the theorem, general solutions to the initial-value and the
response problems are presented explicitly in terms of Rossby normal modes.

2. Formulation. We consider a closed ocean with a uniform depth H, where
the (stable) density stratification and the side boundary may be arbitrary if they are
appropriately smooth. The slow motion of the ocean at mid-latitudes is governed by
the linear quasigeostrophic equation

L/vV+»-(i)
at \ 8z \N\z) Sz J J p dx 1 '

in a bounded region R x (-H, 0), where is the quasigeostrophic stream function,
(x, y, z) the (eastward, northward, vertical) coordinates, V the horizontal gradient
operator, f0 the characteristic value of the Coriolis parameter /, /? the meridional
gradient of /, N(z) the positive buoyancy frequency belonging to C (-H, 0), and
R the two-dimensional area of the basin. The stream function must vanish at the
side boundaries dR x (-//, 0) and satisfy the surface and bottom conditions:

¥ = 0 ondRx(-H,0),

d2x¥ _ curia
at z = 0,

N\0)dtdz pQ ' (2)

~T^ 7T7r = 0 at z = -H,N (-H) dtdz

where a denotes the wind-stress on the sea surface and p0 the characteristic density
of sea water. The side boundary dR is appropriately smooth; for example, it is
sufficient that OR be composed of finite smooth curves (Courant and Hilbert [3];
Wloka [21]). Also, the stream function must satisfy the initial condition

xV = 0(x,y,z) at t = 0. (3)

For the above equations, the reader can refer to Gill [7] or Pedlosky [17],
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In order to solve the problem defined by (1)—(3), we can expand the stream func-
tion in terms of the vertical mode hk(z) as

OO

4'(x,y, z,t) = J2hk(z)gk(x,y,t), (4)
fc=o

where gk indicates the Fourier coefficient for hk . Here the vertical mode is defined
by the differential equation

2where v, denotes the eigenvalue that is nonnegative. The boundary conditions are

-j-h.(z) = 0 at z = 0 and -H, (6)
ctz

and the normalization is made so that

f° \hk{z)\2 dz = 1. (7)
J-H

Since (5) and (6) generate a Sturm-Liouville problem with the second kind of bound-
ary condition, {hk(z) | k = 0 or k e N} is a complete orthonormal set of the Hilbert
space Hq(—H, 0), where N is the set of positive integers. Hence the expression (4)
is valid. The eigenfunction h0 associated with the zero eigenvalue [vk = 0) is called
the barotropic mode, the first eigenfunction h{ the first baroclinic mode, and so on.

Multiplying (1) by hk(z) and integrating over z from -// to 0, we find that

9 rvr2 2 1 adgk curl a

where the boundary conditions (2) have been used. To solve (8), we have another
eigenvalue problem defined by

2 2 ..dys  ~ ' (9)

y/ = 0 on dR,

V <// - uky/ + /A— = 0 in R

where i denotes , A the eigenvalue, and y the eigenfunction. Note that the
eigenvalue X is multiplied by a derivative of the eigenfunction rather than the eigen-
function itself. This difference makes it impossible to apply the usual completeness
theory of Hilbert-Schmidt type. If the basin is rectangular with its two sides directed
eastward, (9) can be reduced to a one-dimensional form, to which the theory of the
Sturm-Liouville-Rossby equation is applied to assure the completeness of Rossby nor-
mal modes (Mishoe [16]; Masuda [13, 14]). For the other forms of basins such as
a circular one, however, access to the completeness theorem by the methods used
in the previous papers is hard. We therefore adopt a different approach; the proof
obtained here, by the use of a variational principle, is of mathematical interest in
itself (Courant and Hilbert [3, 4]).
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3. Eigenfunctions and their orthogonality. Let D^R) be a space of C°°-class
complex-valued functions that have compact supports in R . We define

(.f,g) = J J f(x,y)g*(x,y)dxdy, (10)

</.«),-i/. «)+(££.§<»>

M-tir. *)+(!£ 4f)+(§fdf dl
dy (12)

2where an asterisk denotes the complex conjugate. The constant / is zero for the
barotropic mode and positive for the baroclinic modes. The corresponding norms
are written as

= ((13)

,=(.f,f)\'2, (14)
«/)> = </!/>1/2 ■ (15)

Hilbert spaces H0(R) and H{(R) are defined as the completions of D^R) with
respect to the norms (13) and (14), respectively. As is well known, if / is a function
in (R), we have inequalities

£fmraPIMil|}£f|l/l1'- (16)
<F((f)) (17)

for a positive constant F .
We return to the eigenvalue problem (9). For the convenience of the following

description, we rewrite (9) as

rtvV -/V) + iff = 0 in R, (18)
i// = 0 on 8R,

where we regard the inverse of the original eigenvalue A as the present eigenvalue n .
Our concern is the completeness of the set of all the eigenfunctions of (18) in HQ(R)
and H^R).

Let B be a bilinear functional on HX(R) defined by

B(f, g) — —i JJj^dxdy (19)
for / and g belonging to Hx (R). It is easy to confirm the following relations:

l|5(/;(?)||<||/||(^»<F((/)>(U)), (20)
B{f, g) = B(g, /)*, (21)

B(f*, g*) = —B(g, /), (22)
B(f+g,f+g) = B(f,f) + B(g, g) + 23i{5(/, ^)} , (23)

B(f+ig,f+ig) - B(f, f) + B(g, g) - 23 {£(/, g)}, (24)
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where 5? and 9 denote the real and the imaginary part, respectively.
The following two simple lemmas for the bilinear functional B are frequently

referred to later.

Lemma 1. If / belongs to //,(/?) and ||/|| = 0,then H/H, and ((f)) are zero.
Proof. For / in D (R), we have

df
dx

< \ dJL dJ\ , idJ. d{<f~f)
- 1 <9* ' dx) \^«9x ' dx

^ ( r d fdf\\ df d(f-f)
- r ' dx I dx ) ) + dx dx

<
dx2

(25)

using the triangular and the Schwartz inequalities. Since ||/|| = 0 and / can be
approximated arbitrarily well in H{(R) by a suitable / in D^R), \\df/dx\\ must
be zero. Likewise \\df/dy\\ vanishes, whence ||/||, and ((f)) are zero.

Lemma 2. If / belongs to HX(R) and B(f, g) is zero for any g in H{(R), then
((f)) = 11/11, =0.

Proof. In the same way as in Lemma 1, we have

df 2
dx

< + «/»•«/-/»- 0 (26)

by choosing adequate / in D^R). Inequality (16) yields ||/]| = 0. Since / belongs
to Hx (R), Lemma 1 yields ((f)) = \\f\\, = 0.

Now we can consider the supremum of B(f, f) for any / with unit norm,
since B(f, f) is real and bounded from (21) and (20), respectively:

^,=sup B(f,f) (27)

for / in H{(R) and ((f)) = 1 .
First we show that nx is positive. If /u1 is negative, there is a function / in HX(R)

such that ((f)) = 1, and B(f, /)<//,. Eq. (22) shows that B(f*, /*) > > 0.
Hence n{ must be nonnegative. If equals zero, then B(f, f) — 0 for any / in
Hl(R). The identities (23) and (24) show that B(f, g) is zero for any / and g
in HX(R). Lemma 2 implies that any function in H^R) is zero, which is incorrect.
Thus, /x, must be positive.

There exists a maximizing sequence {fn \ n e N} of functions of unit norm in
HX(R) for which the sequence {B(fn, fn)} converges to /i, .

Proposition 1. Let {fn} be the above maximizing sequence. If {gn \ n e N} is in
HX(R) and «gn» < 1, then

}^J^fn\Sn)-B(fn,gn)\ = 0. (28)
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Proof. From the definition of /i, , we have

0 < nx«/„ + egn))2 - B(fn + egn , fn + egn)

= [^i((/„))' - B(fn , /„)] + e\nx ((gn»2 - 5(s„ , gj] (29)
+ 2e3?{/i1(/Jgn) -#(/„, gn)}

for any real e . From the definition of /i, , (17), and (20) we have

0 <Hx{(gn))2-B{gn,gn)<nx+F. (30)
For sufficiently large n , we have

0 < Hx{(fn))% - B(fn , fn) < e\^ + F), (31)
because {fn} is the maximizing sequence. Choosing the sign of £ so that
e5R{^,(/Jgn) - B(fn , gn)} is negative, we obtain from (29)-(31) that

m^(fn\gn)-B(fn,gn)}\ < \e\(fil+F). (32)
Since |e| can be arbitrarily small for large n , the left-hand side of (32) tends to zero.
Repeating the same argument with gn replaced by ~ign , the imaginary part also
vanishes as n —► oo .

Proposition 2. For the maximizing sequence {fn} above,

K - fn))' ' B{fm fn) I = 0. (33)
Proof. As in (29), the following inequality holds:

\fl((fn-fm))2-B(fn-fm>fn-fm)\

< 1^, «/„»2 - B(fn , /„)| + \nx ((fm))2 - B(fm , /J| (34)
+mwfn\fj-B(fm,fn)}\.

Since fn is the maximizing sequence, the first and second terms of the right-hand
side decrease to zero. Proposition 1 shows that the third term becomes arbitrarily
small as m and n increase to infinity, because the norm of fn is bounded by unity.

Proposition 3. There is a subsequence {gn} of the maximizing sequence {fn} such
that {gn} converges to a function g() in //,(/?).

Proof. Since ((/„)) = 1, Rellich's selection theorem (Courant and Hilbert [3, 4])
assures the existence of a subsequence gn such that \\gm - gn || decreases to zero.
For this subsequence, we obtain

lim \B(gm — gn, gm - gn)\ = 0, (35)m, n—>oo 1 n 1 n

since
I B(gm ~gn,gm- gn) | < | B(gm -g„,gj | + | B(gm - gn , g„)|

< ll^-^„ll{((^m» + «^„)>} (36)
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Since /z, is positive, Proposition 2 and (35) give

((gm ~ gn»2 < ^-l^i((gm ~ g„»2 - B(gm -gn,gm~ gn)|H , (37)
+ —

Mi

as w and n tend to infinity. From inequality (37) {gn} is a Cauchy sequence in
the Hilbert space H{ (R), which is complete. Hence, gn converges to a certain g0
in H^R):

lim ((gn ~ g0)) = lim ||g - g0|| = 0. (38)
n—> oo n w n—> oo n u 1

Proposition 4. The function ^0(x, y) above is a weak solution of (18) and #0(x,y)
= exp{-/x/2/i,}g0(x, y) is a weak solution of

(V2-/2)#0 + -^o = 0. (39)
4/z,

Proof. For any / in Hx (R), we have

^(g0\f)-B(g0,f) = 0 (40)
since

\nMf) - B(g0 > f)I < IM#0 _ sn\f) - B(g0 - g„ > f)I
+ IMsJ/) ~B(Sn' /)! (41)

< + ̂ )((£0 - £„»«/» + 1^1 (*„l/> - £(.?„ . /)H 0
from (20), the Schwarz inequality, and Proposition 1. If / belongs to D^R),
integrating (40) by parts, we obtain

ILg° {a,(v2 ~ /2)~ i~5x\f*dxdy=° (42^
which shows g0 to be a weak solution of (18). Replacing f(x,y) by f(x,y) =
exp{-/x/2/i,}/(x, y) and g0{x, y) by g0(x,}>) in (42), we find

ILgo i (y2 ~ I2) +-K\ f* dx dy = 0. (43)* I 4^i
That is, g0 is a weak solution of (39), because / can be any function in D^R).

As is well known, weak solutions of elliptic equations can be regarded as genuine
solutions, which really satisfy the boundary conditions required, in the sense that the
norm of the difference between the weak solution and the genuine smooth solution
is zero in H0(R) (Weyl's Lemma, see, e.g., Wloka [21]). Proposition 3 indicates that
the weak solutions g0 and g0 obtained above belong to H{(R). Lemma 1 shows
that the weak solutions equal the smooth genuine solutions as functions in H{(R).
Therefore g0 and gQ are considered regular functions in //,(/?). Thus we obtain
the following theorem.
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Theorem 1. The maximum value /i, is attained by an eigenfunction ux(x, y) of
the partial differential equation (18).

Obviously the minimum value of B(f, f) subject to the condition ((f)) — 1 is
= ~H\ > and u-\ = u* minimizes B . Also we have the orthgonality relations

(ul\u_l) = B(ul,u_i) = 0. (44)

From (21) and (40) it follows that if a function / in HX(R) is orthogonal to u{
(i.e., (/|Wj) = 0), then B(f, u{) = 0 and vice versa; the same is true for w_, .

Next, we consider the similar maximizing problem with additional conditions

(/!«,) = </l"_i> = 0. (45)
Let n2 be the supremum defined above:

H2 = sup B{f, f) (46)

for / satisfying (45) and ((f)) — 1 . Then we can see that n2 is positive as follows.
The same argument as for //, shows that n2 cannot be negative. Suppose that
H2 — 0. This implies that B(f, f) = 0 for any function / satisfying (45). Then,
for any / and g subject to the above conditions, B(f, g) = 0 by virtue of (23) and
(24). Now, let / be a function satisfying (45) and let g be a function in //, (R). If
we define

g = g-{g\ul)ul-(g\u_l)u_l, (47)

then we have
<*h> = <#!«_,> = 0. (48)

Since Jr satisfies (45) and n2 = 0 from the assumption, it follows that

B(f,g) = 0. (49)
Hence we find

B(f, g) = B(f, g) + (g\ux)*B(f, ux) + (g\u_x)*B(f, u_x) (5Q)

Lemma 2 implies that / equals zero. In other words, the functions orthogonal to w,
and must be zero; this implies H{(R) is spanned by two vectors ux and m_, ,
which leads to a contradiction. Thus, n2 must be positive.

There exists a maximizing sequence {fn} of unit norm subject to (45), for which
{B(fn, f )} converges to fi-,. Then Proposition 5 holds in the same way as Propo-
sition 1.

Propositions. Let {fn} be the above (second) maximizing sequence and {gn} be
functions in H{(R) satisfying ((gn)) < 1 . Then,

fen \»2(fn\gn)-B(fn,gn)\ = 0. (51)

Proof. First, note that, if gn is bounded by unity and is orthogonal to u{ and
u_. , (51) holds in just the same way as in the proof of Proposition 2 for //, . Let
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gn be defined by (47), which is orthogonal to w, and w_, . By the same calculation
as for (50), we have

^fn\Sn) ~ B(fn ' S„) = M2(fn\Sn) ~ B(fn , ~gn). (52)
Since 1 > ((gn)) > ((gn)) (Bessel's inequality), (52) guarantees the proposition.

Following the same procedure as for , we find that the second maximum n2 is
the second eigenvalue of (18) and that n2 is attained by the associated eigenfunction
u2. It is easy to confirm

(m,|m2) = (Mj|m_2) = 0, (53)

B(ul, u2) - B(ul, u_2) - 0. (54)

Thus we obtain the following result.

Theorem 2. There are sequences of {nn} and {«„}, where pin and un are the
eigenvalue and the associated eigenfunction, respectively, of the partial differential
equation (18). The following orthogonality conditions hold:

=Sm,n> (55)
= (56)

where Sm n is the Kronecker delta function.

Proposition 6. The dimension of the eigenspace associated with an eigenvalue is
finite and nn decreases to zero as n increases to infinity.

Proof. Suppose a positive eigenvalue has an infinite-dimensional eigenspace or /un
does not tend to zero. Then, there is a positive lower bound a for the sequence
{nn | n € N}. Since ((«„)) = 1 , Rellich's theorem guarantees the existence of a
subsequence {vn} such that

lim ||v -v\\ = 0. (57)
m,n—>oo 1

Hence we have

I B^Vm ~Vn'Vm- Vr>) I < II Vm ~ f
= 2\\vm-vn\\^0.

On the other hand, we have

B^Vm ~Vn'Vm- VJ = B(Vm > Vm) + ' VJ (59)
= Hm + K > 2a

from (55) and (56). This contradiction between (58) and (59) proves the proposition.

4. Completeness theorems and general solutions. By virtue of the preceding prepa-
rations, we can now prove the main theorems.

Theorem 3 (The completeness theorem for a specified vertical mode). The set of
the eigenfunctions of (18) is a complete orthonormal set in H{(R); any function /
in H] (R) can be expanded as

f{x,y)=limfn{x,y), (60)



434 AKIRA MASUDA

where
n

/„(*,>>) = E (Auj)uj(x,y) (61)j' jk

j=—n
m

in the sense that
lim || f-fn\\= lim ((/- f)) — 0. (62)

n—> oo ' n—►oo "

That is, {y^} converges to / strongly (norm convergence).
Proof. From the orthogonality conditions, we have

«/-/„»2 = «/»2- E l(/l"P|2>0, (63)
j=-n
j¥ 0

= ± \(f\Uj)\2Hj. (64)
j=-n

Eq. (63) shows convergence of the following two series:

E l(/l/;)|2, (65)
j=-n
JVO

£ I</I/,}|V,I < Kl £ K/l/,)|2- (66)
>=-« ;=-«
7V0 JVO

From the variational construction of the eigenfunctions u],

0 < |B(f /„)| < ^n+1 ((/ - /„» < H„+1 ((/))• (67)
Using (67), (23), and (24), we have, for any functions / and h in H^R),

\B(f ~fn,h - A„)| < |H(tf (/ -fn,h- hj) | + |3(5(/ A„))|
< W /„)| + |5(/ /„)|

+ jW-/„ + i(A -hn),f-fn + i(h - hj)| (68)

+ ^(/- /„ - i(h -hn),f-fn- i(h - hn))\

<2nn+l[((f))2 + ((h))2].

Since (/ - /„) is orthogonal to hn , B{f - fn, h - hn) = B(f - fn,h). Therefore
we find that for any h in //,(/?)

lim B{f - f , h) = 0, (69)
n—> oo

because nn decreases to zero as n increases to infinity by virtue of Proposition 6.
On the other hand, the absolute convergence of the series (65) implies

lim «(/-/„)-(/ -/m)»= lim ((/„ - fj) = 0. (70)m,n—> oo " "l m,n—>oo 1 '
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Since (/-/„) belongs to the complete space H{(R), (f-fn) converges to a function
g in H{ (R). Hence (69) is rewritten as

B(g,h) = 0, (71)

for any h belonging to Hx. Lemma 2 is applied to show that ||g|| = 0. Since g is
a function in HX(R), Lemma 1 shows that ((g)) = ||^||, = 0. That is,

g= lim (/-/„) = 0 (72)
n—>oo n

or
/= lim f. (73)

n—>oo 1

The following is an almost trivial consequence of Theorem 3, (55)—(56), and
Proposition 6. It corresponds to the converse of Theorem 1.

Proposition 7. Let h be an eigenfunction of the differential equation (18) associ-
ated with an eigenvalue n. Then, /i belongs to {/zn | n e Z'} with Z' being the
set of the integers except for 0, and h is expressed as a finite sum of un associated
with the same eigenvalue fi.

By combining Theorem 3 for the horizontal modes with the usual completeness
theorem for the vertical modes (Sec. 2), we obtain the completeness theorem for
Rossby normal modes as follows. Let hk(z) be the kth vertical mode eigenfunction
defined in Sec. 2 and let uk n(x, y) be the «th eigenfunction defined in Sec. 3
associated with the vertical kth mode. We define the k, «th Rossby normal mode
vk,n(x>y>z) by

Vk,n(X> y> Z) = uk,n(x>y)hk(z)- (74)

Suppose Dx(R x R) and D^R x (-H, 0)) are sets of C°°-class complex-valued
functions that have compact supports in R x R and R x (-H, 0), respectively, where
R is the set of real numbers. On these spaces we define three inner products:

(.f,g)D=[ [f [fg*]dxdydz,
J-HJ JR

(f\g)N = fffJ-HJ JR

(75)

dxdydz, (76)
N (z) dz dz

[ f,g]D = W,g)D + (f\g)N; (77)

the corresponding norms being written as ||-||D , ((•))N , and [[-]]0 > respectively. The
suffix N of (76) indicates the inner product relevant for normal modes; the square
of the norm ((f))N is the total energy (kinetic plus available potential) of the motion
"/". The Hilbert space D we use here is defined as the completion of D^R x R)
with respect to the norm . The two norms ((-))N and [[•]]£, are equivalent as
a distance, because inequalities like (16) and (17) are valid in D as well.

Theorem 4 (The completeness theorem and expansion theorem for Rossby normal
modes). The Rossby normal modes (74) make a complete orthonormal set in D
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with respect to (•!•)«. Any function / in D can be expanded as'N '
oo oc

E if\Vk,n)NVk,n(X>y>Z)> (78)
k=0 n=-oo

where the right-hand side converges strongly.
Proof. Suppose that / belongs to D and that (/\vk n)N = 0 for any k and n.

As is well known, it suffices to show ((f))N = = 0 for such a function /. The
orthogonality of / with vk n is rewritten as

f HffRf(x> y' z)dUk'Q*'y"> hk(z)dxdydz = 0 (79)duk (x,y)
I , y , ^,

-H J JR

since vk n(x ,y,z) is a Rossby normal mode (eigenfunction). The integrand of (79)
is absolutely integrable, so that Fubini's theorem can be applied to show that

r-0

gk(x,y)= f f{x,y,z)hk{z)dz
J-H

is significant for a.e. {x ,y) in R, and (79) becomes

du
dxIL

(80)

gk(x, y)^^1-dz = 0. (81)

Again from Fubini's theorem and the Schwarz inequality, we obtain

//,
\gk(x, y)\2dxdyk

R

\f{x,y,z)\2dzxj \hk(z)\2 dz\dxdy (82)

which shows gk(x, y) is an element of H0{R) = L2{R). In the same way, we can
show that

ogt(*,y)=r° afQc.y.z) it
J-H OXdx (83)

dy
d8*{X>y) - f° df{x>y>Z)hk{z)dz (84)

J-H dy
are functions in H0(R), where d f /dx and d f /dy denote weak derivatives of /. It
remains to confirm that (83) and (84) express the weak first derivatives of gk(x, y).
Let 5(x,y) be a function in D^R). It is approximated by 5(x,y) • t(z) in
D^R x (-H, 0)) with t(z) an appropriate smooth function in R x (-//, 0) such
that ||j • t - s||D —> 0. Since st belongs to D^R x (-//, 0)) and / has weak first
derivatives in R x (-H, 0), we have

UL "V' hk(z)s(x, y)t(z) dx dy dzX (85)

= - f [[ f(x, y, z)hk(z)ds^ ' }'\{z)dxdydz.
J —// J J R
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As the limit of (85), (83) represents the weak derivative of gk with respect to x.
The same is true for (84).

Since / belongs to D, there is a sequence {fm \ m e N} of elements in
D^R x (-H, 0)) that converges to / in D. Let us define

,0
8km(x>y)= fm(x,y,z)hk{z)dz, (86)

J-H

which is an element of D^R). Obviously we have

lim II** «(*»y)-8k(x>y)Wi = 0> (87)
m—Kx> *»m * 1

which implies that gk(x,y) belongs to H^R).
From the use of Lemma 2 and Theorem 3 for each vertical mode, it follows from

(81) that HgJIj = HgJI = 0. Hence gk(x, y) is 0 for a.e. (x, y) in R. Since (80)
holds for any k, the completeness theorem for the vertical modes assures that, for
a.e. (x, y) in R, f(x, y,z) = 0 at a.e. z in (-H, 0); f{x, y, z) = 0 for a.e.
(x, y, z) in R x (-//, 0) and consequently \\f\\D = 0.

With respect to [[•]]£, {fm £ D^R x R) | m e N} converges to /. For each
m, there are sequences {f, m x |/eN}, {//,w>y I / e N} and {ft m z | / e N} in
D (R x (-//, 0)), such that

lim
/—>00

lim
I—+OO

lim
/—► OO

dLL_f
dx Jl ,m,x

dLm
dy
dL
dz

fI,m,

' fI,m.

= 0, (88)
D

= 0, (89)
D

= 0. (90)

Then, an argument similar to the one in Lemma 1 shows that {(f))N = [[/]]D = 0.
Now we write down the general solution to the problem given by (l)-(3). The

corresponding characteristic frequency of the basin becomes

co,:,n = ^k,n- ^

According to the usual calculation (Masuda [13]), we obtain the following general
solution to the initial-value problem and the response problem (l)-(3):

V(x,y, Z,t)=^T J2 Vk,n(X > y > z)
k=0 n=-oo

n± 0

(92)
In particular, the response of the basin to an instantaneous torque located at (£, rj)
at time t = t is found by setting 0 = 0 and curl a/p0 = d(x - <1)8{y - rj)S(t - t),
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where 5 denotes the delta function. That is, Green's function formally becomes

G(x,y, z,t-,£,t}, t)
00 In ( 00

= -£rm S ukJX,y)uk^,V)e-^K (93)
k=0 ^ n=—oo

n^O

5. Discussion. In this paper, a proof is obtained of the completeness of Rossby
normal modes in a basin with an arbitrary form of side boundary. This investigation,
however, is only a beginning of the study of completeness of characteristic oscillations
appearing in geophysical fluid dynamics (see LeBlond and Mysak [10], for a variety
of wave motions found in the atmosphere and the ocean). In fact, the present results
apply merely to quasigeostrophic dynamics in basins with a uniform depth. When
the bottom is uneven and the ocean is stratified, the problem becomes essentially
three-dimensional. If ageostrophy is taken into consideration, the problem becomes
that of vector-valued eigenfunctions (Masuda [14]). When the ocean has a boundary
of zero depth or an infinite domain, a careful analysis of singularities is required.
These are subjects to be studied in the future.
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