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1. Introduction. In the development of continuum theories of mechanics and ther-
modynamics, nonstandard formulations often are difficult to motivate and/or to jus-
tify. Even if it is possible to add the desired terms to more conventional theories
without violating physical laws, this usually raises questions regarding the implicit
exclusion of other, perhaps equally appropriate, terms or regarding the particular
choices of format of the terms. A straightforward way of dealing with some of these
questions is to rephrase the assumptions of the theory in global form, putting the
fundamental assumptions in terms that one hopes are closer to experience or exper-
iment. This line of development can be traced back to the beginning of continuum
theory but is traditionally associated with the name of Cauchy. Noll [N1] inaugurated
the modern approach, and he was followed in his study of conventional continuum
theory by Gurtin and Williams [GW] and Fischer and Leitman [FL]} and more re-
cently by Gurtin and Martins [GMa], Gurtin, Williams, and Ziemer [GWZ], Silhavy
[S1], and others. In the more controversial models, which include nontraditional
kinematics, there have been applications to various sorts of mixture theories and
structured continua. One area that involves only moderate structure and that seems
very appropriate to applications of this method is that of a continuum which carries
a moving surface having a distinct structure. Leitman and Fischer [LF] inaugurated
such a study in the case of surfaces that are material, that is, that move with the
motion of the continuum, and this was pursued by Gurtin and Murdoch [GMul].
The formal treatment of nonmaterial surfaces was considered in part by Williams
[W] and continued by Pfenning [P]. This paper is an extension of the last two works.
In both [W] and [P] only classical balance equations were considered, but this led
to a set of equations that clearly were inadequate to model such situations as phase
transitions; in [P] it was found that the notion of surface tension, central to many
physical models of phase boundaries, was not compatible with the notion that the
transition surface was nonmaterial. In this work we go further, considering, as in
[P], the three-dimensional body and the surface to be distinct objects and deriving
separate balance and interaction equations, but here allowing a more rich interac-
tion between the two than appears in [P], and we are led to a second set of balance
relations and the reintroduction of the equivalent of a surface tension. The idea of
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separate balances was suggested to us by the recent work of Gurtin and Struthers
[GS,G], who use a quasi-formal presentation of the theory. In that work the sec-
ond set of balance equations is introduced via a notion of frame-indifference of the
reference motion; we prefer to regard the corresponding equations as arising from
a principle of symmetry and believe that our derivation is more straightforward. In
fact, the physical quantities that we find (the material stress tensor, etc.) do not
correspond exactly to those of [GS], although there are obvious correspondences and
parallels, and the resulting balance equations are rather similar.’

We consider the situation in which a surface of transition traverses a body, with
possibly profound changes in the physical structure of the body occurring across the
surface, modeling the solidification of a crystalline solid from a melt or flow through
a shock wave. Formally, we choose to regard the body as a structured continuum: a
partial superposition of the two bulk bodies and of the two-dimensional surface. The
interactions among the three are modeled in standard ways, but we allow the power
function to depend upon all the various velocities. The classical force and moment
balance equations are derived based on a principle of frame-indifference [N2, GR],
and the nonclassical equations from a principle of invariance.’

While the significance of a formal theory such as this is that the axioms are com-
plete and the results derivable with no further assumptions, the mathematics involved
for the proofs and derivations is not difficult and follows from that in [W] and [Pf]
so that we feel justified in including at most sketches of proofs, emphasizing instead
the unique features of the representations.

2. Kinematics, structure. Our setting is 3-dimensional Euclidean space & with
translation space 7”. The material body % is a smooth region (regularly closed,
with piecewise smooth boundary), which is divided into two smooth regions %,
and % by a surface .. N, the normal vector to .%, is chosen to point from
%_ into & _. We consider collections of smooth closed subsets of %, and of Z_
and smooth closed subsets of .. We make the distinction that this is a structured
continuum by considering &, , %_, and % as distinct bodies, which happen to
coincide in position. In particular, if a part % includes a part % of % on its
boundary, we must distinguish between % as a part of 9. and % as an element
of the material universe which may interact with % . To simplify notation, we will
suppose that . shares no area with 0.9 .

This is emphasized by the fundamental assumption which we make, that the ma-
terial collection .# has associated to it a vector space F of velocity fields V :=
(v,,v_,v), where v is defined on %, respectively, and v is defined on ..
This is the field of velocities on which the power functions act. Note that v, is

'our presentation differs from that of [GS] in that we do not introduce reference configurations and mate-
rial description of the motion; we work only in the current configuration, which allows great simplification
of notation. To formulate constitutive equations for solid bodies it is necessary to introduce such concepts
and to connect them to the “Eulerian” kinematics, which we utilize. Cf. Sec. 9.

2This corresponds to the principle of invariance under change of lattice observers of Gurtin and Struthers;
there is no practical difference in this case, but in general our point of view, based on a notion of material
symmetry, may prove more restrictive in other situations.
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supposed to be defined on . as well as in the interior of %, . In the next section
we shall introduce the assumption that the power exerted on an element acts upon the
velocity defined on that element and, hence, that the power functions associated to
each of & and % may involve all of the three fields v, v, |, and v_| . Formally,

we require that each field be C' on its domain, including the boundary.3 Of course
it is essential to allow the bulk velocities to differ on the surface ., subject to the
law of balance of mass, in view of the applications we have in mind. In these cases,
there is a transfer of substance between the bodies, and thus velocities at the surface
may differ in any manner. It is worth noting that, since the normal vector N points
from &_ to &, _, positive values of (v—v_)-N correspond to loss of volume of
%, , and negative values to gain of volume; the opposite rule governs for &_. One
constitutive constraint that will enter into our considerations is that the surface will
be supposed to be nonmaterial, that particles on % have no physical identity, which
will require the effective part of v to be parallel to N. This requirement means that
the motion of the surface parallel to itself is only a mathematical construct: there
is no reason to identify apparent motion of the surface parallel to itself as having
physical significance, as there is no associated movement of particles and hence no
change of state of the system. Normal motion of the surface, on the other hand, has
a natural physical interpretation.4

We require, moreover, that the space of velocities includes all rigid velocity fields:
fields of the form (R(c, Q)3 ) where

Rx)=c+Q(x - 2)

with ¢ any given vector,  any given skew tensor, and z any point of & . Like-
wise we will require, for any (v,v, ,v_) € F and any rigid field R(c, Q), that
(v+ R(c, Q),v+,v_)e]F.

3. Mass, energy, entropy, heat, and power. In this section we shall find represen-
tations for these quantities (denoted M, E, S, H, and P, respectively) based on
bounds on additive set functions on the material universe .# . These follow imme-
diately from results in [W] and [GW], and so we will only discuss the aspects of the
results that are peculiar to the current formulation. In particular, we will present no
proofs; see [P] for verifications.

3.1. AssuMPTION. We suppose given
M. # >R,
E.- # >R,
S: #4 - R,
H:(# xHM)y—R, P:(MxM)y xF-R,

where M, E,and S are additive, H is biadditive, and P is biadditive in its first

3The choice is made for convenience; as with the smoothness assumed for the sets involved, one can
broaden all concepts to weaker formulations: the basic results will not change.

“The first systematic use of this observation apparently was by Moeckel [M].
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two arguments, linear in its last argument. Here the notation (-), indicates disjoint
pairs from the product.

These are standard assumptions for the mass, energy, entropy, heat flux, and power
functions. The representation of these set functions in terms of integrals follows
directly from bounds for them in terms of volume V , area A, and length L N

To save over-elaborate notation and quantifications, let us agree that & and &
are to be parts of %, , and # and 9 parts of . The statements below are
presumed to be valid for each choice of &, &, and %, unless other restrictions
are stated. The additivity assumptions made above allow us to specify bounds in
terms of these quantities alone, leaving aside compound elements which are unions
of sets from &, , &_,or & .

3.2. AssuMPpTION. There exist scalars «, B, y, ¢ such that for all admissible
values of the arguments

|M(P)| < aV(Z£),
|E(P)| < aV(2),
IS(P)| < aV(£),
|H(Z, @) < yA(P NE\F),
|H(P , B)| < yA(P NOB) + OV (P),
|P(P,@; V)| <yAPNE\F),
|P(P, B V)| <yA(P NOR) + SV (P),
|E(Z)| < BA(Z),
|H(Z , ) <y L(ZNT),
|H(Z , B)| < yL(ZNORB) + 0A(R),
|P(Z,T V) <y L(ZNT),
|P(Z#, B, V) <yL(ZNORB)+V(R),

and for the surface-solid interactions

\H(# , P)| <y AR NP),
H(P, B)| <y AP N R),
|P(9? P V)| <7AROP),
IP(P, V)| <7 APNF).

REMARK. Note that we require that regions on opposite sides of the surface ¥
exchange heat and power only by using % as a courier; under our structure such
elements are not considered to be in contact. Leaving aside the terms that enforce
this requirement, the bounds are in familiar form.

These bounds lead by standard arguments to integral representations for each

SAs proved by Silhavy in [S2], it is sufficient to assume that the bounds be expressible in terms of integrals
of integrable functions.
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quantity, as we illustrate by first giving those for M, E, S, and H:

M) = [ pav, M =0,
P

E(@):/ Edv, E(%)=/ gdA,
P &

S(.9?’)=/ sav, S(%’):/ n dA

P R

and
H(@,@’):/ Gppdd, - H(@,@S:/
OPNEG d.

H(.@,g@)=/ qgia'A, H(‘%,.@)=/ QyidA,

q dA+/ rdv,
g OF P

PNFK ANP
H(gg,y)=/ qmdL, H(R,Be)z/ qaydL+/ rydA.
ENT RNRB° K4

Discussion of the power functions is complicated by the dependence on the veloc-
ity field V. To simplify discussion we shall assume that the material is nonpolar,
anticipating that as a consequence the densities of the power function at a point x
will be linear functions of the value of the velocity fields defined at x rather than
more general linear functions of the germ of the velocities at x (cf. [W] and [P]
for details).6 Note also that we choose to replace each linear function F of the
absolute velocities by a linear function G, which is expressed in terms of the relative
velocities:

F(v,v,, v_)=G(v, v-v,, vV—v_).

Then we have for the power function

P.@,@,V:/ t v dd,
( ) Bﬂngag x

PP, %,V =/ tps V, + T+ -(V—v,)dA,
) g‘,nﬂﬂ* + & +)

P%’,.@,V:/ tot  V+Toz-(V—v,_)dA,
( ) g ot R ed ( :I:)

P(ﬂ,?,V):/ tag,-v+r;ﬂ~(v—v+)+1gﬂ~(v—v_)dL,
RENT

PP, B,V =/ t,, -V a’A+/ b-v, dv

( ) 5 oz Yt +

+/ b+ v, +B,+-(v—v_)dA,
e BETE Ba+ - ( +)

P(R#, B,V =/ t ~vdL+/b .y
( ) OFRNB® 87 %4 7

+Bor - (v=V, )+ Bo--(v—v_)dA.

o1t may occur that couple-stresses are significant in some applications. It is not difficult to add these effects
to the theory we present, although the expression of the energy equation becomes much more complex.
In [P] Pfenning develops such a theory.
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The choice of v, in these equations, of course, is to be in accord with the location
PCH,.

Some terms in these representations are relatively standard: the stress vector t,,
represents forces exerted by one part of the bulk body on another, and t,, is the
corresponding surface stress vector, representing forces exerted between parts of the
surface. Likewise, b can be the standard body force (e.g., gravity) on the bulk matter,
and b, the corresponding term on the surface. The other force terms are nonstan-
dard, and we will have to examine them in the context of the balance equations and
of the entropy inequality.

As remarked earlier, since we suppose the surface to be nonmaterial, the normal
part of v is the only part that has physical significance. Thus we shall require that
the working be the same for velocity triples (v,v,,v_) and (v,V,_,V_) for which

v-N=v-N,

and note that, as a consequence, the corresponding force terms t_ = ,t, ,, and b,
are parallel to N.

4. Time rates of change; balance of mass. We now assume that the above set
functions are specified as part of a (smooth) process parameterized by time ¢ and
examine the form that the corresponding derivatives take. All densities thus are
functions of position and of time, and the surface evolves in time as previously
noted. We will assume that the densities p, E, and S are smooth on %, and that
¢ and 75 are smooth. Then we consider typical terms

Y(@):/@\PJV, Y(%):L?wdA,

and take the derivative of each term with respect to time. Naturally, we suppose that
& is transported by the velocity field v, or v_ as appropriate, and since the surface
& does not have a material (standing) identity, we will compute the derivative as
following the normal velocity field v-N. (To use another velocity would introduce
spurious transfer terms, which then would be balanced with corresponding terms
introduced for the power and heat functions and so finally eliminated.)

With this in mind we calculate that

Y(P):= %Y(g’)=/9,‘P+‘I’divvidV:|:/yny\lli(v_vi).NdA

and

Y(%#):= (%Y(ﬂ) = /g w—wKkv-NdA.

Here the superposed dot in ¥ denotes the usual material or transported derivative,
while the circle in t/°/ denotes the corresponding derivative of y following the normal
transport of the surface. ¥, denotes the trace of the function on the appropriate
side of the surface .. We use k to denote twice the mean curvature (cf. [GM]))
and recall that our convention has N pointing from % _ to &, .

We apply this first to the law of balance of mass:

d
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Since this holds for each element of the collection, we see that for V'-almost every
point in F\7,
p+pdivy, =0,
while A-almost everywhere on the surface, since the surface has no mass, balance of
mass flux takes the form
p,(v=v ) -N=p_(v-v_)-N.
Notice that only the normal component of the relative velocities enters. We shall call
the term
M:=p (v-v ) N=p_ (v-v_)-N

the mass transport across the surface.

To obtain compact representations for the densities of the derivatives, we shall
choose the traditional format for the energy and entropy functions. Assuming that
p 1is strictly positive, we may choose to write £ and S in the alternative form

ER) = /g)pedV,

S(P) =/9pst,

for the parts of %\, leaving the form for the parts of the surface as written. We
then obtain the derivatives in the form

E(g’)=/g"pédV¢ gnyMeidA,

S(@):/ psdV ¥ Ms, dA,
P PNSF

E(ﬂ)z/ ¢—exv-NdA,
4

S(%)=/gf7—mcv-NdA.

5. Forces due to momentum transfer. The formal structure that we have introduced
leaves the momentum terms of the force balance as part of the working effect of the
external world .Z° (D’Alembert’s principle). To analyze the other terms it is useful
to reintroduce the traditional notation for these. Since we do not introduce any
esoteric forms of mass, the momentum terms are traditional: the rate of change of
the kinetic energy for a general subbody & is

% [/Mn$+ %p+(v+)2 " /Mnﬂ?— %p_ (v_)z]

1 2 1
[ 306y ) N= g

Examining the cases & C &, and & C %_ and comparing to the representation
for P(&/ , B, V) suggests that

€ .
b=b -p,v,.

2(v—v+)-N.
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Here b° is to be the external body force. For the surface term in P(&/ , B°, V) we
7
assume

1 1
b, = ——2—p_(v —v_)v_= —:,Z—Mv_ ,

1 1
bg, = §p+(v—v+)v+ = §MV+.
The internal forces generated by the exterior, denoted by B+ and B.: , may have

an effect in the case of massy surfaces, but since it seems unlikely that they enter in
the current case we shall assume them to be zero:

Bz =0, By:=0.

6. Balance of forces. In this and the next section we come to the crux of our
discussion. To derive the balance of forces one need only invoke a condition of
invariance under change of frame for the working (alt. energy balance) over complete
systems, as first shown by Noll [N2] and Green and Rivlin [GR]. Thus, for example,
we shall require that the function

Vs PP, P, V) =P(P,B\P,V)+P(P, P, V)+P(P,B,V)
be invariant under superposed rigid motions (changes of frame). We also must treat
elements in ¥

VPR, R, V)=P(R, P\Z,V)+P(RE,B,V)+P(P,B,V)
and, in order that compound elements 2 U.% are also subject to a similar condition
we need to require invariance of

Vs PP, B, V)+P(R,P,V).

The resulting calculations deliver the equations of balance of force and of moment
for our system.
The significant terms with which we deal are

PP, PV =/ t.,-V dA+/b-v av
( ) 6.@\5’39 + P +

+/ tos V, +Tpe - (V=v ) +bgs v, + B+ -(v—v,)dA4,
PNS

P@,%,V+P£’,9",V=/ eV +Tos - (V—v.)dA
( )+ P( ) g Ve @t " ( +)

+/ tos V4+ T -(V-v, )dA,
ROP ‘
and

PR, F°,V)= /6ﬂtag,-v+t;g-(v—v+)+15%-(v—v_)dL,

+/g?by-v+ﬁy+'(v—v+)+ﬂy_-(v—v_)

tto, V+To, (V=V )+t vH+T o, -(V-V_)dA.

7Formally there is another option: to presume that this term acts via v—v, in the form of the interaction
force B g+ 5 but this would imply that the momentum transfer vector must be normal to the surface, which
in general is not reasonable.
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Considering the invariance of total power for &% C %, one finds

t dA+/ ¢ dA+/ b dA+/de=0
/ag’\y 07 apny 2t spny 2t P
and

XAt dA+/ XAt dA+/ xAb dA+/x/\de=0.
/39\5/’ 0% sony 2t 0PN Bt P

For parts &, which intersect . at most in zero area, assuming the needed smooth-
ness, this leads to the usual results (cf. [N1, GW]) via hatbox and tetrahedron argu-
ments: there exists a symmetric stress tensor T on % * that satisfies

divT+b=0, Tn=t,,,

whenever n is the exterior normal to 9. One may also show (cf. [W]) that the
stress tensor may be defined A-ae on . and, by a hatbox argument, that A-almost
everywhere on the surface .

-T N=tg,, +bg,
and
T N=tgz_ +b,_.
The two equations on ¥ combine to create the jump condition:
(T_-T,)N=—(tg_+tgz, )+ (bgy_+by. ).

For parts of the surface we get8

t dL+/t +t,,_ +b_,d4=0
/agm P s

and may apply arguments of Gurtin and Murdoch ([GMu], also cf. [P]) to show
results similar to the above result: there exists a stress tensor field T. , which is
symmetric and tangential (defined on tangent vectors and tangent-vector valued),
such that
divo Ty +t,, +t, +b, =0, Tov=t,

where v is the exterior normal to % (in the tangent space) and div, is the surface
divergence. However, as we have remarked (cf. [P]), the forces acting on v are all
normal, so T, is both normal and tangential, and thus

Ty = 0 .
Hence the surface force balance reduces to
ty+ +t(5p_ +b(5p =0.
The interaction-workings between %, and & yield

8The fact that we require the velocity v to be normal to the surface does not affect Murdoch and Gurtin’s
computations, as is shown by Pfenning [Pf, pp. 66-68].
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which can be combined with the other balance equations to yield the equation
[T+ bl T_]N + b(sp = _b‘g+ - b(@

or
9
[T, -T_IN+b, =M(v_-v,).
This is the jump-equation for the stresses. Leaving aside the body force on the surface,
the last equation expresses that the jump in the stresses across the surface balances
the momentum transfer. This result arises because the surface stress is zero and is
exactly that predicted in the classical formulation [W, p. 234]. Surface stress effects
can enter through the other interaction terms, as we shall see in the next section.

7. Material balance of forces. The interaction terms involving relative velocities
are novel. Their presence here formally is due to our modeling the surface-bulk
aggregate as a structured continuum. Physically, they represent the power expended
to change the shape of the surface and, thus, are central to the theory. Since these
terms do not fall into the traditional form of continuum mechanics, there is no guide
to the construction of the corresponding interaction forces. ' Gurtin and Struthers
[GS] re-express the representation in the reference configuration of one of the bulk
phases, e.g., gg+ , and assume that the working is invariant under superposition of
rigid motions on v —v_; they refer to this as lattice frame indifference. We prefer
to take another point of view, regarding any such requirement of invariance under
modification of the relative velocities as an expression of material symmetry. We
consider a thought-experiment to illustrate our argument: suppose that the body % _
consists of a crystalline solid phase, say in a simple cubic lattice, while the body %,
is a liquid phase, and that the surface of separation moves parallel to itself into the
liquid so that deposition is occurring on the solid. After a certain time consider the
situation: the surface has exactly the same form, the only change in energy being the
cost of attachment of a particle to the crystal. This energy expense may be regarded as
an exchange of energy between the phases; in particular, neither P(%,, %, V) nor
P(#_, %, V) need be zero, but the net exchanges P(#,, %, V)+P(&F, %, , V)
and P(Z_,.%,V)+ P(¥,% ,V) will be zero. Also, there is no power required
to change the shape of the surface; it has not changed; hence, P(%7, . ¢, V) is zero.
We might consider also a rigid rotation: if the surface is rotated thereby in its own
plane, then there is no essential change in the surface, but if the rotation is out of
this plane then the orientation of the surface relative to the lattice is changed, and we
must say that the surface has been altered. In particular, it is clear that the structure
of the lattice is very significant in this argument: if each phase were amorphous, we

% In the interaction balances involving elements % of the body and .# of the surface, one might wonder
at the absence of terms representing the transport of area of # through the boundary of &% [FDW, GSW].
In formulating the balance it suffices to consider first % for which no such terms occur: the resulting
detailed balance then ensures that the transport terms in the general case will be zero. The only exception
is the case in which & = & , which generates new boundary terms.

10 See Capriz’s monograph [C] for a discussion of the form which such balances usually take in the theory
of continua with microstructure. In fact, we believe that our methods as presented here should prove
useful in these contexts.
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would expect invariance under the full group of rotations. (In addition, it is clear
that these arguments are to be applied only locally; the relation of the rotation to
the local tangent plane is what is significant.) It is clear, however, that invariance
under the group of translations is always to be expected. We treat the consequences
of that first, deferring the more involved discussion of invariance under rotations.
To summarize: under transformations, which consist of a rigid translation of the
surface relative to both bulk segments, we will suppose that each of

PP, R, V)+P(R,P,V), P(F,R,V)

is unchanged, for all parts % of & and % of %, .

Suppose that the velocity of the surface is modified by any rigid translation c
(equivalent, in light of the invariance under rigid motions, to allowing both v_ and
v_ to be modified by —c)

V = (v, v+, v_) Lans (v+c9 v_+_7 v_)’
and consider the effect on the terms

PP, R V)+P(R, P, V)= / tps ¥, +Tge - (v—v,)dA,
PR

+/ tos V4 Tox-(V—v,)dA
FNP
and

PR, R, V)= /agtag-v+t;ﬂ-(v—v+)+1gg~(v—v_)dL,

+/gby-v+ﬁ5,+-(v—v+)+ﬂy_-(v—v_)
tto, V+To, ~(V=V )+to -v+T, -(V-V_)dA.

Of course some terms vanish because of the balance of forces; those that remain are
c[/ ‘l'gd:"'tyi:'f'fyidAjI:O,
PR

c [/ ‘r;g+‘t;gdL+/ ty++r5,,_+ﬂy++ﬁy_dA} =0.
OR &
Since the first of these is required to hold for all ¢:
Te: ttox +Tox =0,

Similarly, using the arguments already mentioned in the previous section, we discover
that the second implies the existence of a material stress tensor field Y defined on
tangent vectors such that

. T + -
dive, Y+t +15_ =0, TVv=",,+T,,.

The material force balance equation reduces by use of the above relations and by use
of the corresponding balance of forces to

div, T +b, =0



570 N. M. PFENNING aND W. O. WILLIAMS

or
dive, Y- [T, -T_[N-15, —T5_ =M(v, —v_).
This forms our fundamental equation of balance of surface forces.
Finally, let us remark that if we assume that the surface is isotropic, so that the
local working is invariant under local tangent-plane rotations, it would follow that
the material stress tensor T would be tangential and symmetric.

8. Balance of energy. For use in the following equations we need to examine the
form that the net working takes in light of the various representations and assump-
tions of the previous sections. First,

P(P, P,V =/ T,n-v dA+/b-v dv
( ) AP\ O P *

+/ tps -V, +Tpe - (V=V, )+bgs v, + B+ -(v—v,)dA
PNS

= T, - Vv dV+/ T+ - (V—v,)dA.
/ + + o @&t ( :t)
Then

PP, R, V)+P(&,P, V)=/ tpe v, + T e (v—v,)dA
PR

+/ to: V+T o+ (Vv—v,)dA
P 7 +

= tpe -V, +tox-v, dA
/ﬁ hp FETVET Lo Vs
=0.
This means that under our assumptions, there is no net exchange of power between

the bulk and the surface elements.
Finally,

PR, E,V)= /8Qtag'v+‘t;ﬂ,-(v—v+)+‘r;9—j,-(v—v_)dL,

+/ by'v+ﬂ§”+'(v_v+)+ﬂ5"—‘(v"v_)
A

tto,  V+To -(V=V,)+t,_ “V+1T, -(Vv-v_)dA

=/ TT-Vy(v—v_)+1'y+.(v_—v+)dA+/ r;(gf(v_—er)dL.
x

Now we turn to the expression of the equation of balance of energy. We have
supposed that £ (and hence E) is additive and has bounds which ensure that the
representations

E(P) =/ pedvE [ Me, da,
P PN

E(%’):/ ¢ —exv-NdA
R

are valid. "'

Min fact, it is possible to show that the additivity of E follows from the requirement of balance of
energy, excepting only the cases U and % U& in which the two parts in question span the surface.
Thus our assumption of additivity can be regarded as being essential only for those cases (cf. [P, p. 23]).
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The governing balance equations now are
EP)=P(P, P, V)+HP,F),

E(R)=P(#, R, V)+HZ,F),
0=P(P, B, V)+P(R,P,V)+HP,R)+HZR,P).

Balance of all combined parts is ensured by these equations, the assumptions of
additivity, and the measure-bounds that we have assumed.

We now expand these equations, using all of the above representations. For the
first, balance of energy for &%,

edV Me dAz/T - Vv dV+/ T+ (Vv—v,)dA
/9’p PN * P * * PN a* ( i)

+ rdV+/ q dA+/ g+ dA.
/.9’ OP\S 9% PNS z

We can apply this to all . that do not intersect . and use standard arguments to
deduce the existence of vector fields q, on %, that satisfy

q,-n=g,, ondP\7.

Then we can see, as for the force representations, that q, can be defined on & as
well, where they satisfy

—q, N=gg, +Me +15, -(v-v,),
qQ_N=gqyz —Me_+71,5 -(v-v_),

and, as a consequence, the jump condition
4. —-9q,)"'N=gqgg +4q5_+M(, —e )+tg, -(V-V )+Tg -(V-V_).

This equation is of particular significance in the case of phase transitions; it relates
the heat loss across the surface to the heat accepted by the surface (changed into
surface energy, perhaps, or conducted away along the surface) and the latent heat of
the phase change, e, —e_

The usual smoothness assumptions applied to q lead to the equation

pé=divq, + T, -Vv +r,

which represents the local balance of energy in bulk.
Next we consider the balance for the surface element % ,

/ﬂg—sxv-NdA=/ﬂTT-Vy(v—v_)+‘ry+-(v_—v+)+q5p++q5,_+(5,dA

+
+/ T,p(V_—V,)+4q,,dL.
s OF + OR
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Requiring that this must hold for all choices of % and noting that the area integrals
are additive in % , we may apply the usual sort of limiting argument (cf. [GMu, P])
first to reduce the form of the boundary contribution

Tog (V. —V,) +dyy
to one that depends solely on the (in-surface) normal v to 8% and then to prove
that it is linear as a function of that normal. We choose to make a simplifying
assumption, that this reduction is separately valid for the two parts of the term. We
then obtain a heat flux vector y and a surface tensor I', with range the tangent space
but defined for all vectors, such that
+ T
o =V V> Typ =T V.

(We choose the transpose in the latter to make the final form more convenient.) Then
we have

/gg—sxv-NdAz/51,TT~V(7(V—V_)+1(7,+-(V_—v+)+qy++q(7_+r(7/dA

+ I(v_~v,)-v+y-vdL,
X
and, assuming the usual smoothness, it follows that
g—exv-N= 'I‘T~Vy(v—v_)+ry+-(v_ =v )+div  AT(v_—v ) }+qo, +q_+7+div_y.

This is our fundamental equation of balance of energy on the surface; it is interesting
to note that a working term enters which involves a “stress” that does not appear in
either the force balance or the material force balance.

Finally, we consider the equation of balance between % and % , obtaining

+q_+dA=0,
/900% A+ T 452
so that
et +qo+ = 0.
This can be combined with the jump condition for the heat flux and the balance
of energy for % to yield our first version of the energy balance for the surface:
e—exv-N=T1". Vo(v—v_)+div {I'(v_-v,)}
+To, < (v_ —v+)+1'£+ -(v—v+)+1"@_ (v—v_)
+(a, —q_) N+M(e, —e_)+r,+div,y.
We can also put this in a more symmetric, if less compact, form. We use the
equations of material balance of force and define
r,=-r, r =I'-7
in order to rewrite the work terms as follows:
YV (v—v )+ div {T(v_ v )} +7,, - (v_—V,)
+Ta - (V=V )+The -(v-Vv_)
= TToVyv+divy{l"+v+ +0 v } -t v, -t -V
+Tg, - (V-V )+Tgh_ -(V—-V_);
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but from previous calculations,
Tot +Ta —tgi =0,
and from the representation for T, we see that
—tg, 'V, —ty -v_=bg v +by v _+T N-v, +T N-v_.
The identification

bgi-:%MVi, M=p (v—v_)-N,

of the momentum transfer terms will complete the expression. We then insert that
form into the energy equation to find the final form of the energy equation
é—ekv-N=T" Vov+dive T, v, +T_v_} +(t5, +75_ )V
+ro+divgy+ T N-v, —T_N-v_+(q,—q_)-N
+p_le, —e_+ %vi - %vz](v —-v_)-N,
with
T+T, +I'_=0.
This equation is more symmetric than the previous one and brings into focus the
nature of the terms. The terms on the right-hand side express the work done to
reshape the surface:
TT-Vyv+div5,{l"~v+ +T_.v_},
the work done to translate the surface:
(Tg, +Tg_ )"V,
and the heat flux along the surface and the external heat supply into the surface:
ro+divey,
while the terms involving the bulk quantities and the surface effects, namely,
2 2
TN-v, —-T N-v_+(q,—q_)-N+p_[e, —e_+3v, = V]v-v_)-N,
represent the apparent loss of energy across the surface.

9. Entropy inequality. We shall not approach the entropy inequality at the same
fundamental level as the other equations: we shall introduce a (single) positive-valued
temperature field 6, presumed defined over the entire body, including %, and
express the entropy flux F in terms of the heat flux and this field by

F(.@,@):/ 4“n gy,
dPNG 0

F(@,@%:/ ﬂdA+/5dV,
OPNB° 0 0
F(gf,g)=/ d2* 44 F(%’,@):/ 9z* 44,
2oz 0 RNP
y-n
F(%’,Y):/ ymor,
ang 0

F(ﬂ,ﬁ”):/ Hdu/ 7 4a.
FANRBC 0 K4 0
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Then the complete expression of the entropy inequality is

SP)2F(P,P°), SR)2FZ#, %),
since the other appropriate inequalities, such as 0 < F(#, %) + F(#, %), are
guaranteed, as equalities, by the corresponding results that we obtained for the heat

flux.
Consider the first of the inequalities:

./mﬂ@j~ Mgmz/ LMLy @im+/iﬂc
P Pns o\ 0 ony 0 » 0

This inequality results in the local versions
ps > div (g) + g
in the bulk, and
0N gpe

9 T

on the surface. Combining the + and — versions of the latter inequality, we obtain
the jump relation

FMs, > F

- -N+ +
We will find it useful to rewrite this using the jump relation for the energy:
Me_-e )tz -(V-V,)—Tg_ -(Vv-v_)
A .
Looking at the inequality for the surface, we find

[e] . + -
/n—mcv-ndAZ/ udL+/ M_:+QdA’
K4 o 0 @ 0 0

which can be reduced to the local form

M(s_—s,)>

9o, tde_+Ty
0

%—nxv-deivy (-g) +

or
o divyy+r5p qy++qy)_ y'VyO
n—nkv-N2> 7 + 7 T
Since
9979y =4z, 49z

we may combine this with the jump equation to give
o divoy+r (a, -q_)-N y-vV_6
—nqev-N+M(s_—s,)> —Z < N - L
which is a combined entropy inequality for the surface.
The entropy equations can be combined with the energy balances to devise
Claussius-Duhem relations, which serve to determine constitutive relations. The bulk
equations follow the standard reduction and become

. 1
pv2+ps0§T-Vvi+§q-V0,

where y := e — 0s is the free energy.
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The jump equation can be re-expressed by use of the jump equation for the energy
OM(s_ —s+) >M(e_ —e+) T, (V=V,)—Tg -(Vv-V_)

or, finally,
My_—y,)Stg, (V=) +Tg5 - (v=v)).

For the surface equations, we can eliminate g, +¢q,_ +div,y +r, by using
the energy equation to obtain

;’]—mcv-NZg—mcv-N—'l‘T-Vy(v—v_)—1y+-(v_ -v,)
—divg{l'(v_~-v, )} - %y Vb,
which then becomes
(:)+77§—wKV-NSTT-Vy(V—V_)+‘ty+-(V_—V+)
+div {T(v_—-v )} + %y V0

if we set w := & — 0n to be the surface free energy. An alternative form is generated
by the second version of the energy balance for the surface

ci)+r70—wxv-N§ TToVyv+divy{l"+v++l"_v_}
+Tgz, V,+Tg_V_+T N-v. —T N-v_
2 2
+p_[%vJr - %v Jv—v_)-N+ 5]!‘V(90.
We recall as before that T+ I +T'_ =0.
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