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Abstract. This note deals with the parabolic inverse problem of determination of
the leading coefficient in the heat equation with an extra condition at the termi-
nal. After introducing a new variable, we reformulate the problem as a nonclassical
parabolic equation along with the initial and boundary conditions. The existence of
a solution is established by means of the Schauder fixed-point theorem.

1. Introduction. Recently, considerable effort was made in dealing with inverse
problems in partial differential equations. These inverse problems not only have the
intrinsic mathematical interests, but also have a variety of applications in industry
and engineering sciences. It is known that an inverse problem is not well-posed in
general. An important task is to formulate the problem properly and to find the
conditions that ensure its well-posedness. In the present work, we study the inverse
problem of finding a(x) > 0 and u{x, t), which satisfy:

ut = a{x)Au, (x,()efip (1.1)
u(x, t) = g(x, t), (x, t) € ST = dQ x [0, T]\ (1.2)
u(x, 0) = u0(x), xefi, (1.3)

along with an extra condition

u(x, T) - w,(x), xefi, (1.4)

where T > 0 is fixed and QT = flx(0, T], where £2 is a bounded domain in R" .
When an unknown coefficient appears in the lower-order terms, various results are

obtained in [1, 2, 4] (also see [7] and the references therein). The uniqueness of
solution of the problem (1.1)—(1.4) was studied in [8]. In the present work we shall
follow the idea of [4] to establish the existence for the problem (1.1)—(1.4). After
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introducing a new variable, we have a nonlinear parabolic equation with the involve-
ment of a trace-type functional as the leading coefficient. To avoid the degeneracy of
the equation, we construct appropriate auxiliary functions and deduce some a priori
estimates. The Schauder fixed point is used to prove the existence.

2. The assumptions and the main result. Let v(x, t) = ut(x, t). Then the extra
condition (1.4) implies that

= v(x,T)
AMj(x) '

provided Aw,(x) ± 0.
Now we differentiate Eq. (1.1) with respect to t; then v(x, t) satisfies:

W<= Aw' (x,t)eQT-, (2.1)

v{x, t) = gt{x, t), (x,t)eST; (2.2)
v{x, 0) = k(x)v{x, T), xeQ, (2.3)

where
k{x)'W>-

Because of the nonlocal term v(x, T), Eq. (2.1) is nonclassical. Moreover, the
initial condition (2.3) is not known. In the sequel a solution of problem (1.1)—(1.4)
or (2.1)—(2.3) is always understood in the classical sense.

Property. The problems (1.1)—(1.4) and (2.1)—(2.3) are equivalent if Aw, ^ 0
in £2.

Indeed, we have seen that if u(x, t), a(x) is a solution of problem (1.1)—(1.4),
then v(x, t) is a solution of problem (2.1)—(2.3). Conversely, assuming that v(x, t)
is a solution of problem (2.1)—(2.3), we easily verify that

[' v(x T)u(x, t) = uJx) + / v(x,x)dx, a(x) = ——:—-
Jo A

is a solution of the inverse problem (1.1)—(1.4). Therefore, we shall investigate the
problem (2.1)—(2.3).

Throughout this paper the following conditions are assumed:
H(l) The functions u0(x), u^x) e C4+a{Q.),

Amq(x)>0, 0<Aul(x)<M0 in Q.

H(2) The function g(x, t) € C4+a'2+a/2{ST), and

0 < g0< g,(x,t) <G0, gt{x,0) = k(x)gt(x,T) forxedQ

d2 2g0and — < ,
T M0eV2

where d = MD(f2) is the minimum diameter of Q, i.e., the infimum of distances
between pairs nt, n2 of parallel planes such that Q is contained in the strip de-
termined by n, and fl2.
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H(3) The function k(x) satisfies

0 5 Hx) -exp (Mr;2*) ■
The essential difficulty lies in that Eq. (2.1) may be degenerate, i.e., v(x, T) may

become zero at some points in Q. This would easily be avoided by using the maxi-
mum principle if the initial and the boundary data were uniformly positive; however,
our initial condition is given by a relation between the initial and final states. The
condition H(2) is physically reasonable since we require that a(x) is positive, which
is equivalent to saying that v (x, T) > 0 on Q. This is the case if the surrounding
temperature is high enough.

The main result is

Theorem. Under the conditions H(l)-H(3), the problem (1.1)—(1.4) admits a solu-
tion.

3. Proof. We shall use the Schauder fixed-point theorem to prove the result.
Proof of Theorem. Without loss of generality, we may assume that 0 G dQ and

that Q lies in the strip 0 < xl < d. Let

K = jiu(x) G Ca(Q): kQ < w(x) < G0(e2d -/')forxeQ ,

w(x) = sM, o)for x G and IMI^^ < k{ jk(x)
where the positive constants k0 and k{ will be specified later.

Obviously, each w(x) in K is bounded from above. For each w(x) e K, we
consider the problem:

v> = ' (x, t) 6 Qr; (3.1)
w(x)

Amj(x)*
v(x, t) = gt{x, t), (.x,t)eST, (3.2)
v(x, 0) = k(x)w(x), x e Q. (3.3)

The standard theory of parabolic equations (cf. [6]) implies the problem admits a
unique classical solution

v{x,t;w)€ C(QT)nC2+a'Ua,2(QT).

Moreover, that for any t0 >0 (t0<T),

v(x, t;w) G C2+a'l+a/2(QT ),
l iQ

where QTt = QT D {(x, t): x e Q, t0< t < T) and

||f ||c2+o,l+a/2(Q ) < CQ , (3.4)

where C0 depends only on kQ, kx and known data. Also, by Krylov-Safanov's Ca-
estimate, ||i>||c<>,a/2(g ) < Cx, where C, depends only on k0 and known data and

is independent of k{. Hence we can take kx = C,.
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Now we define a mapping M from K into C2+a(fi) as follows:

M: w e K ^ v(x, T; w) e C2+a(U) c Ca(Q),

where v(x,t\w) is the solution of problem (3.1)—(3.3).
We first show that M is a continuous mapping from CQ(Q) to Ca(Q). Let

{it>„(x)} c K with wn(x) —► w(x) in Ca(Q) as n tends to infinity. Let vn(x, t)
and v(x, t) be the corresponding solutions of Eqs. (3.1)—(3.3), respectively. Then
the function U(x, t) = v(x, t) - vn(x, t) satisfies

U(x,t) = 0 onS^; U(x, 0) = k(x)[w(x) - wn(x)] on Q.

By Green's representation, we have

U(x,t)= f G(x,y;t,0)k{y)[w{y)-wn(y)]dy+[ [ G^f-[w - w ]dydz,
Jn Jo Ja AMi

where G(x, y; t, r) is the Green's function corresponding to the operator L. It
follows by Eq. (3.4) that

max \U{x, 01 < Cx\\w -wn||0 + C{\\w - it;J0 -> 0
Qt

as n —> oo. Using the Schauder estimate on QT. , we have1 *0

||t/||C2+a,,+a/2(Qrio) < C[||t/||0 + \\w - wJ|c«(Q)] -+ o

as n —♦ oo . In particular, as n —> oo ,

\\v{x, T) - vn(x, r)||c„(n) — 0.

The compactness of M is clear since the embedding operator from C2+a(Q) into
Ca(fl) is compact. In order to apply the Schauder fixed-point theorem, it remains
to prove that the mapping M maps K into itself.

Note that for x e dQ, v(x, 0) = k(x)w(x) = gt(x, 0), it follows by H(2) that
for x e dQ.

t T\ I T\ £t(X>0)v(x,T) = g, (x,T) = -L-(-r.
We shall next construct a subsolution for v{x, t) = v(x, t\ w). Let A = M0/k0 .

For x = (xpx2,...,xn)en,we introduce an auxiliary function

/ G* ( A(Xj - £,)2\y/{x, t) = —F exp 1  — 1ft " V 4t J '
where £ = (^ , 0, ... , 0) is a fixed point, which lies in the outside of R"\Q and
C* is a positive constant to be determined later. Then

Vt{x, t) = C* 1 . Afr.-g,)2
2 At

1 (1——.
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We choose £ such that for all x = (x,, ... , xn) e Q,

D < |jCj — £,1 < 2D\
this is possible if we choose D such that D > d. With the above choice of £,
we have y/t(x, t) > 0 on QT if we choose D such that D X = 2T. By a direct
calculation, we see

1 . ACx,-£,)2
2 41At// = XC

It follows that
A i// = x= \yrt > 0.

Hence
W(X) A ^ ^0 A

= V, - jA** = o.

Moreover, since £ ^ £1, we have, for all xefl,

^(x, 0) = lim ij/(x , t) — 0.

Furthermore, on ST, as |Xj - | > D, we have

C* ( W2\> 0 < ~r exPft " \ 41

IL
' y/TV t exp --

ID2 r'
y/TV t 4T t J

<4= sup |\/Iexp(-|)
V 7 0<j<oo L \ Z/

C* 1

<<?0'

if we choose C* = \feVTg0 . It follows that
V(x, t) < gt(x, t) on ST.

By the comparison principle, one obtains

v(x, t) > i//(x, t), (x, t) e Qt.
In particular, on £2,

v(x, T) > y/(x, T)

> s/eg0 exp
xd2S

> So-
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Therefore, if we take k0 = e~2/2g0 , then we have, on £2,

Mw = v(x, T; w) > k0 for all x e Q.

With our choice of the constants D, X, and kQ and also using assumption H(2), we
get

IT [2T\ I 2Tg0
D A V M0 yM0e3<2~d'

which is exactly what we assumed in the proof.
2d xTo show v(x, T) < G0(e - e '), we introduce another auxiliary function:

<p{x, t) = G0ey(r t][e2d -ex'].

Then
w(x) a ^ y(T~<)~ = G»f , 2d jc.s , W(X)

-y<e ) + AMif
y(T-t) ( 2d k0 x

{~ye +M~oe

, ko

0,

. ^ yyi -t) I la ,> G0e ( -ye + -jy-
M0

if we choose y = (kQ/MQ)e 2d . Recalling the definition for kQ, we conclude that
eyT = exp((g0T/e3^2MQ)e~2d). Thus, for x e Q,

<p(x , 0) = eyTGQ(e2d — ex')

> eyTw(x)
> k(x)w(x) [by assumption H(3)]
= v(x, 0).

On the boundary ST ,

<p{x, t) > G0(e2D - ex>)

>G0 = max |^|
> v(x, t).

Again by the comparison principle, we have

v(x, t) < (p{x, t) on Qt.

It follows that
v(x, T) < G0(e2D -eXl).

Thus, the mapping M is from K into itself. By the Schauder fixed-point theorem,
the mapping M admits a fixed point, which is a solution of the problem (2.1)—(2.3).
This completes our proof.
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