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GLOBAL LARGE SOLUTIONS TO INITIAL BOUNDARY VALUE PROBLEMS
IN ONE-DIMENSIONAL NONLINEAR THERMOVISCOELASTICITY

By

SONG JIANG

Institut fur Angewandte Mathematik der Universitat Bonn, 5300 Bonn 1 , Germany

Abstract. Initial boundary value problems in one-dimensional nonlinear thermo-
viscoelasticity are considered, and the existence of global classical solutions is estab-
lished by means of the Leray-Schauder fixed point theorem.

Introduction. In this paper we study the existence of global smooth solutions to
initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity.
The conservation laws of mass, momentum, and energy for one-dimensional materi-
als with the reference density p0 = 1 are

u,-vx = 0,

Vt ~ °x = 0 '
/ 2X <L1)
ye + Y) -(CTU)* + 4* = 0'

and the second law of thermodynamics is expressed by the Clausius-Duhem inequality

1, + (§),>«. (1.2)
where subscripts indicate partial differentiations, u is the deformation gradient, v is
the velocity, e denotes the internal energy, a is the stress, rj stands for the specific
entropy, 6 for the temperature, and q for the heat flux.

For one-dimensional, homogeneous, thermoviscoelastic materials, e, a , rj, and q
are given by the constitutive relations (see [1])

e = e(u,6), a = a(u, 6, vx), ri = r)(u,6), q = q{u,6,0x), (1.3)

which in order to be consistent with (1.2), must satisfy
a(u, 6, 0) = \j/u{u, 6), fj(u, 0) = -&e(u, 0),

(a(u, 0,w)-d(u,9, 0))w >0, q(u, 9, g)g < 0,
where y/ — e - 9t] is the Helmholtz free energy function.

(1.4)
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Here we consider that the reference configuration is the unit interval [0,1] and
that the initial values of the deformation gradient, the velocity, and the temperature
are the given functions

u(x, 0) = uQ(x), v(x, 0) = v0{x), d(x, 0) = 60(x), ie[0, 1]. (1.5)

As boundary conditions we consider

f cr( 1 , t) = -yv{l, t), <7(0, t) = yv(0, t), t> 0,
\ 0(1, 0 = 0(0, 0 = ^0, t >o, ( ' ]

where y = 0 or y = 1 , and T0 > 0 is the reference temperature. The boundary
condition (1.6), with y = 1 , boundary damping, represents that the endpoints of
the interval [0,1] are connected to some sort of dash pot.

Recently, Dafermos [2], Dafermos and Hsiao [3] considered the following bound-
ary conditions (stress free and thermally insulated):

<7(1, t) = <7(0, t) = 0, <7(1, t) = <?(0, t) = 0, t> 0, (1.7)
and established the existence of global smooth solutions to (1.1), (1.5), (1.7) for
a class of solid-like materials by applying the Leray-Schauder fixed point theorem.
The techniques in [2] work when only one end of the body is stress-free while the
other is fixed, say u(l, /) = 0, er(0, t) = 0. For the initial value problem to (1.1)
Zheng and Shen [16] proved the global existence of smooth solutions provided that
the initial data are sufficiently small, and Kim [9] established the existence of global
weak solutions in L1 n BV. When the material is an ideal gas or a real gas, there
are independent investigations on the existence of global classical solutions of (1.1)
(see [5-8, 11-14] and the references cited therein).

The purpose of this paper is to show the existence of globally defined classical
solutions to (1.1), (1-5), (1.6) for the same class of solid-like materials as in [2]. Our
paper is mainly based on techniques in [2, 3], subject to the necessary modifications
in the proof.

As in [2] we consider the problem of existence of solutions to (1.1), (1.5)—(1.6)
for a class of materials with constitutive relations

e = e{u,6), a =-p(u, 6) + fi.(u)vx, q = -k{u,6)dx, (1.8)
where the viscosity ju(u)u satisfies

fi(u)u > n0 > 0, 0 < u < oo (1.9)
for some constant n0. We assume that e(u, d),p(u, 6), fi{u), and ic(u, 6) are
twice continuously differentiable for 0 < u < oo and 0 < 6 < oo , and are interrelated
by

eu(u, 9) = -p(u, 6) + dpg(u, 6) (1.10)
so as to be consistent with (1.4). Moreover, we will be concerned with solid-like
materials, so we require that p{u, 6) be compressive for small u and tensile for
large u, at any temperature, i.e., there are 0 < u < U < oo such that

p{u,9)> 0, 0 < u < u, O<0<oc,
~ ~ (1.11)

p(u,6)< 0, U<u<oo, O<0<oo.



GLOBAL LARGE SOLUTIONS 733

Hence, the assumption (1.11) implies that there is a constant rjQ with u <tl0<U
such that

P(%,T0) = 0. (1.12)
We impose the following monotone condition on p :

-pu(u,T0)> 0 for any u< u < Z7 if y = 0 in (1.6),,
-pu(u, T0) > pQ > 0 for any 0 < u < oo if y — 1 in (1.6),.

Here p0 is a constant, and

u:= M 1 | min
Ae[0, i]

M (min jii, (1 - A)f/0 + Aminw0(•) J) - 2ExJ2{X)

U := M 1 ̂ max^ M ^max j[7, (1 - A)?70 + Amax wQ( •) + 2£g'/2(2)

E0W:= (1 + ^1 I ^((l-A)»/o + AMo(jc),(l-A)ro + A0o(x)) + ^^

M(u) := [ fi(w)dw, E(u, d) := d) - i//(t]0, T0) - (6 - T0)\fre(u, d),
Jl (1.14)4

and (/>(«, 6) is the Helmholtz free energy function. In view of (1.9), M(u) is a
strictly increasing function that maps (0, oo) onto (-oo, oo). Using (1.11) we can
show that u is a priori bounded, u < u(x, t) < U (cf. Lemma 2.3), and hence
no restrictions are necessary on the behavior of e{u, 6), p(u, 6), and k(u, 6) at
u = 0+ and u = oo. As concerns the temperature, we impose the following growth
conditions upon e{u, 6), p(u, 6), and k(u, 6). There are positive constants u and
N possibly depending on u and/or U such that for any u < u < U, 0 < 6 < oo,

e{u, 0) > 0, v <eg(u, 6) < N{ 1 + 01/3), (1.15)

\pu(u,d)\<N(l + 64n), \pe(u,e)\<N(l + 6l"), (1.16)
v<k{u,6)<N, \ku{u,9)\<N, \ke{u,6)\<N, \kuu(u, 0)\ < N.

(1.17)
We use the familiar notations C°[0, 1] for the Banach space of functions on [0, 1]
that are uniformly Holder continuous with exponent a and Ca'a/2(QT) for those
functions on QT [0, 1] x [0, T] that are uniformly Holder continuous with ex-
ponent a in x and a/2 in t. The norms of C"[0, 1] and Ca'a^2{QT) will be
denoted by || • ||Q and ||| • |||Q , respectively. The main result of this paper is

Theorem 1.1. Let u0(x), u'0(x), v0(x), v'0(x), v^'(x), 0o(x), d'0(x), and 0q(x) be
in CQ[0, 1] for some a £ (0, 1). Let u0(x) > 0, d0(x) > 0 for x e [0, 1], and
assume that the initial data are compatible with the boundary conditions (1.6). Then
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there exists a unique solution {m(a:, t), v(x, t), 9{x, t)} to (1.1), (1.5), (1.6) on
[0, 1] x [0 , oo) such that for every T > 0 the functions u, ux , ut, uxt, v , vx , vt,
vxx> ^> ®xx are 'n Ca,a/2{QT) and u,t,vxt,6xt are in L2(QT). Further-
more, 6(x, t) > 0, u < u(x, t) < U for 0 < x < 1 , 0 < t < oo, where u, U are
the same as in (1.14).

We will apply the Leray-Schauder fixed point theorem to prove the theorem in Sec.
3. Section 2 is devoted to the necessary a priori estimates.

Remark 1.1. The techniques in this paper work for the boundary conditions:

o{\, t) =-v{\, t), cr(0, t) = v(0, t), t>0,
q(l, t) — q{0, /) = 0, t > 0

and for the boundary conditions that one end of the interval [0,1] is stress-free
while the other has the boundary damping, say cr(1 , t) = 0 , a{0, t) = u(0, t), and
an identical existence theorem can be obtained.

Remark 1.2. The slower the growth rate of e(u, 8), the faster the growth rate
of p(u, 6) that can be treated by the same procedure here. Furthermore, if the
specific heat and/or the heat conductivity grows with the temperature, say ee(u, 6) >

\ + 8s) and/or k(u, 8) > v(\ + 8s), then higher growth rates of e(u, 8) and
p(u, 8) may be tolerated.

2. A priori estimates. Let T > 0 be arbitrary but fixed. Throughout this paper, A
will denote a generic constant which may depend at most on T, T0, is , juQ , N, u, U ,
and upper bounds of the C"[0, 1] norm of uQ, u0, vQ, v'0, v'Q , 80, d'0, and 8g . Our
aim in this section is to show the following.

Theorem 2.1. Let {u(x, t), v(x, t), 8{x, t)} be a solution of (1.1), (1.5), (1.6) on
[0, 1 ] x [0, oo) in the function class indicated in Theorem 1.1. Then u, v , vx, 8, 8x
can be a priori bounded in C]/i'i/6(QT), i.e.,

'1/3 + III v III 1/3 + HI Vx HI 1/3 + I" 0 III 1/3 + HI HI 1/3 - A"
Furthermore, Q(t, x) > 0, u < u{t, x) < U for any xe[0, 1 ] and / > 0 .

The proof of Theorem 2.1 is broken into a sequence of lemmas. The first obser-
vation is that using a in (1.8) we can write (1.1)2 in the form

vt+P{u, 0)x = (fi{u)vx)x, (2.1)

and utilizing (1.1)3, (1.1)2, (1.10), (1.8), and (1.1), we have

ee(u, 8)01 + 8pe{u, 8)vx - fi{u)v2x = (k(u, 6)8x)x. (2.2)

If we apply the maximum principle [15, III.3] to (2.2), recalling dQ(x) > 0, we infer

Lemma 2.1.
8(x , t) > 0 for 0 < x < 1, 0</<oo.

Now we derive an estimate on u, v , and 8 by exploiting some relations associated
with the second law of thermodynamics.
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Lemma 2.2. If u < u{t, x) < U for all x e [0, 1] and t e [0, t] , r > 0, then

?L T*','')~+r0' & + T:l ("^.')-i„)2<fa + ̂ /o Ax, i)dx
rl ( v2(x)\ (2'3)

< / £(wn(x), #n(x)) + ~— \ dx = en, V0 < t < x,

where <y)f = 0 for y = 0 and coy = p0 for y — 1 , E(u, 6) and p0 are the same as
in (1.14)4 and in (1.13)2, respectively.

Proof. Recalling the definition (1.14)4 of E(u, 6), making use of (1.1),, (1.1 )2,
(2.2), and (1.4), noting that -p(u, 6) = y/u(u, 6) and eg{u, 9) = -dd2ij/(u, 6)/d62,
we obtain after a calculation that

(£(„, eu'iy + = a, („ + eK
(2.4)

We integrate (2.4) over [0, 1] x [0, /] (0 < t < T) and apply the boundary conditions
(1.6) to arrive at

.2 \ ,t ,\
yE{u,d) + Yj(x,t)dx + T0J^J^ {^y-v2x + K^2 ̂ 02"j dxds

7Io ^ + V^°' S^dS = L d°^ +
2, .x (2-5)

+ 7 Jo(v (1 ,s) + v (0, s))ds = J^ ^(m0(x), 0o(x)) + 2~ J ^'

Recalling = -pu, if we use the mean value theorem (or the Taylor theorem),
(1.15), and (1.12)—(1.13), we see that

E(u, 6) - v(u, T0) + ,T0)>V-(* (2.6)

and
WV 2

^(". r0) _ ^o> ro) ^ -y("- %)

for u < u < U, which adding to (2.6) gives
2

+ + T("-"o)2 (2-7)

Inserting (2.7) into (2.5) yields the lemma. □
Next, we want to bound the deformation gradient u(x, t). To this end we rewrite

(2.1), using (1.14)4 , as follows:

Vt+p{u, d)x = M{u)tx. (2.8)

Lemma 2.3. We have

u < u(x, t) < U, 0 < x < 1, 0 < t < oo, (2.9)

where u and U are defined by (1.14) t and (1.14)2, respectively.



736 SONG JIANG

Proof. If we integrate (2.8) over [0, y] x [5, r] and [y, 1] x [5, t], 0<y<l,
0 < s < z , respectively, and apply the boundary condition (1.6) j , we obtain
  ^ rr rx ry
M (u{y, t)) - M (u(y, 5)) = / p(y,t)dt + y v(0,t)dt+ (v(x, z)-v(x, s))dx

Js Js Jo
(2.10)

and

M(u(y, z))-M(u{y, s)) = f p(y,t)dt-yf v(l,t)dt-f (v(x, z)-v(x, s))dx,
Js Js Jy

(2.11)
where p(y, t) = p{u{y, t), 6(y, t)). We add (2.11) to (2.10) and take u( = vx into
account to deduce

M{u(y,z))-M{u(y,s))= f p(y,t)dt-^f ( vjx, t)dxdt
J s J s J 0

+ 5\/ I ) T) ~
, (2.12)fx y f= J p(y, t)dt - - J {u{x, z) - u(x, s)) dx

■(/;-/')
+ 2 I / -/ I (v(x> t) ~v(x> s))dx.

By Lemma 2.2 and the Schwarz inequality, recalling the definition (1.14)3, we see
that if u < u(x, t) < U for0<x<l,0</<T, then we have

v(s, x)) dx

1/2 /,i - N,/2 (2.13)

(u(x, z) - u(x, s)) dx + ~ | ^ - J j (u(t , x) -

[ft 2 y/2 (/•> 2 \
< y max / u (x , •) dx \ + max / v (x, •) dx \

io,t] \j0 j [o,t] yjo j

< y(2rjl + 4e0/p0f2 + (2e0)i/2 < 2((1 + 2 y2/pQ)e0 + y2rj20)l/2 = 2^/2(l).

In particular, (1.14), and (1.14)2 yield u < uQ(x) < U, 0 < x < 1. Thus, if
u < u(x, t) < U is violated on [0, 1] x [0, 00), then there are z > 0 and y e [0, 1]
such that

u < u(x, t) < U for x e [0, 1], 0 < t < z, but u{y, z) -u or u(y, z) = U.
(2.14)

Note that u < u. If u(y, z) = u, then either u(y, t) < u for 0 < t < z, or
u{y, t) < u for 0 < s < t < z, but u(y, s) = u. Recalling that, on account of
(2.14), ti ^ u(x 5 £) ^ U for 0 ^ x ^ 1 and 0 ^ t ^ t , in the former esse we apply
(2.12) with s = 0 and utilize (1.11) and (2.13) to deduce

M(u(y, t)) > M(u0(y)) - 2ElQ,2(l) - 1, (2.15)

while in the latter case (2.12) combined with (1.11) and (2.13) implies

M(u(y, z)) > M(ii) - 2El'\\) - 1 . (2.16)
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In either case, by (1.14), , M(u(y, r)) > M(u) which contradicts u(y, r) — u.
Hence, u < u(t, x), 0 < * < 1 , 0 < t < oo .

Similarly, we can show that u{y, r) = U is a contradiction. This shows u(t, x) <
U for 0 < .x < 1 , 0 < f < oo . □

As a result of Lemmas 2.1-2.3 one gets

lax [ 6(x,t)dx< A. (2.17)
,T] Jo

max
[0

By (1.15) and Lemma 2.1 we find that f0' e(x, t)dx >0. Using this fact, we integrate
(1.1)3 over [0, l]x[0, T] and apply the boundary condition (1.6), to infer

j^{q{\,t)-q{Q,t))dt< ^(w0(x), 00(x)) + (x)dx < A, (2.18)

where q{x, t) = -k(u{x, t), 9(x, t))6x(x, t).
We now proceed to get estimates. We have

Lemma 2.4.
-1

//Jo J0

l

e 4,3ol dx dt < A, (2.19)X

1
6S/3 dx dt < A, (2.20)

T
max05^3(- , t)dt < A. (2.21)

/ 0 to.']

Proof. Define H{u,0) := /o0t~1,3ee(u, £)dt. By (1.15) and (1.10),

|H{u, 0)| < 2N(l + 6), Hg{u, 6) = 9~[,3eg(u, 6),

Hu(u,O) = 92l3pe(u,6)-G(u,0),
(2.22)

where

G(u,d):=lJoCinPg(u,Z)dZ. (2.23)
Multiplication of (2.2) with 6 1/3 and use of (2.22)-(2.23) yield

Ht + G{u, 6)vx - e~l/3fi(u)v2x - e~l/3(k(u, 6)6x)x = 0. (2.24)

Here H{x, t) := H{u(x, t), 6{x, t)). In view of (2.23) and (1.16), \G(u, 0)| <
2N(l + 6). So if we integrate (2.24) over [0, 1] x [0, T], integrate by parts with
respect to x , and utilize (1.6)2, (1.9), Lemma 2.3, (1.17), (2.18), (2.22), (2.17), and
the Schwarz inequality, we arrive at

H0U 1 [ [ d~xl3v2xdxdt- + ^ f f d~4/3d2xdxdt
Jo Jo 3 Jq Jo

<A+ [T C G(u, 6)vxdxdt + T~l/3 fT{q(l,t)-q(0, t))dt (2.25)
Jo Jo Jo

rT r\ 1 pT r1
< A + AN2UHq1 / / O1^3 dx dt 4- ' / / 6 ^3v2dxdt.

Jo Jo 2 Jq Jo
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r 1 , 1By (2.17), the Sobolev imbedding theorem W ' <-> L , and the inequality ab <
ap/p + bq/q (a,b>0,p,q>\, \/p + \/q = 1), we find

CT ,1 r J
/ / 9S/idxdt<A max 05/3( • , /) dt

Jo Jo Jo [0.11

< A [T [\d5p + e2p\ex\)dxdt (2.26)
Jo J0

<A +\ [ [ 6&/idxdt + a[ f d~4/id2rdx dt.
2 Jo Jo Jo Jo

This gives

4N2Ufi~] f [l dV3dxdt< A + ~ f f 6%/idxdt
Jo Jo 12A J0 J0

-T r\
<A+^ [ [ 6 Alid2dxdt,

6 Jo Jo

(2.27)

'o jo
which together with (2.25) proves (2.19). (2.26) thus implies (2.20) and (2.21). □

The following lemma can be proved by multiplying (2.1) with v , integrating over
[0, 1 ] x [0, T], and using Lemma 2.4; its proof is the same as in [2, Lemma 2.2] and
we shall not repeat it here.

Lemma 2.5.

/ / v2{x, t)dxdt < A.
Jo Jo

In a sequel we establish the higher-order estimates of solutions. Following [2], we
define

Y := max / 6"(x,t)dx, Z = max / v2(x,t)dx. (2.28)[0.7170 [01T] Jq xxK

It follows from the Sobolev imbedding theorem W1'1 <-► L°°, (2.17), and the
Schwarz inequality that

1/2/ \ 1/Z

03 (y, t) < A^maxffj +J 9l/2(x, t)\6x(x, t)\dx

i / \ 3/21 / „\ ' . -,1/2
(2.29)

<A+-^max0) + AY 1 , V0 < y < 1, 0 < t < T,

which yields
max6>(x, t) < A + A71/3. (2.30)
Qj

By virtue of the interpolation inequality and Lemma 2.2 one has

1 /2 / x 1/2
Jo v2x(x,t)dx<Ajo v2(x,t)dx + A (/: v2{x,t)dxj v2 (x, t)dx

<AZ1/2 + A, W € [0, T],



GLOBAL LARGE SOLUTIONS 739

which in conjunction with the Sobolev imbedding theorem and the Schwarz inequal-
ity implies

2
Vx (x, t) < A ( f v2x{y,t)dy+ [ \vx(y,t)\\v (y,t)\dy

\Jo Jo }
<A + A Z3/4, Vx e [0, 1], t € [0, T],

Therefore,

Lemma 2.6.

max\vx(x, 01 < A + AZ3/8. (2.31)
Qj

max / u2(x,t)dx<A + AY1^. (2.32)
[0,7"] Jo

The proof of Lemma 2.6 is completely the same as that of Lemma 2.3 in [2], So,
we omit its proof here.

Lemma 2.7.

Proof. Let

y<A + AZ3/4, (2.33)

C T f1
/ / d](x, t)dxdt< A + AZ3/4. (2.34)
Jo Jo

re
Q(u, 8) := / k{u,t)d£. (2.35)

Jo
Setting Q(x, t) — Q(u(x, t), 6(x, t)), we multiply (2.2) by £2,, integrate over
[0, 1] x [0, /] , 0 < t < T, and integrate by parts with respect to x to get

(2.36)
[ [ (*ee, + °Pevx ~ i*vl)Qt d*dT+ f j kdxQxt dx dx
Jo Jo Jo Jo

- [ (K0 <2 )(1, x)dx + f (K0 Qt)(O, x)dx = 0.
Jo Jo

We now have to estimate every term in (2.36). Note that

Qt = Quvx + *d,> Qxt = (kex), + Quvxx + Quuvxux + kuuxef

It follows from the fact that, in view of (1.17), | QJ, \QUJ < NO, the assumptions
(1.15) and (1.17), (2.31), and (2.20) that

neg6tQtdxdx > v2 [ [ 02dxdx- f [ ee6lQuvxdxdx
Jo Jo Jo Jo

>~ [ [ d2 dx dx - Amaxv2 [ [ (l + 6S,3)dxdx (2.38)
2 Jo Jo Qt Jo Jo
2 /> i /»1

>^-/ / 6>2 dx dx - (A + AZ3/4).
2 Jo Jo

rt /-i
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Making use of the inequality ab < ap/p+bq/q (a, b > 0; p, q > 1, l/p+\/q=l)
and following the same arguments as those used for (2.51)—(2.53) in [2], we obtain

[ [ kd (kd ) dx dx > Kr [ 62(x,t)dx- A (2.39)
J0 Jo 2 J0

and
rt r\ „ I I rt rlf f 2 ^ \ \ f f 2

/ / (ePevx~ fivx)Quvxdxdi: + / / {0pgvx- fivx)kdtdxdx
Jo Jo | \Jo Jo

[ [ kexQuvxxdxdt
Jo Jo

+ 1/ f kdMuuVrUrdxd^ (2.40)

2 rt rl 2
'3/4 , V f [ Q2,.V< A + AZ +tz / 0,dxdx+—Y.lo Jo Jo

By the Schwarz inequality,

< tt f [ 92 dx dx + A [ [ (kdY)2u2dx dx
lb Jo Jo Jo Jo

2 r' /■' 2 ( r' r{ \3/4
£T6 7o /„ »>A + A+54K + A /0 L IW,f« .

/* 1

/0 ^0
kdxkuiixe, dx dx

(2.41)

/o Jo ' 24 yy0 Jo " y '
where we have used the following estimate, which follows from the Sobolev imbed-
ding theorem W['[ •-+ L°° , Lemma 2.6, (2.19), and (2.30):

A f [ (k0r)2u2dxdx < A [ ma\(k6)2 f u2dxdxJo Jo x Jo [0,1] x Jo

(A + AYU9) ^ f\*0xf + fQfQ \*0X\ \{kdx)x\dx dx^j<

I , ,t ,i \1'2/ r< /•> V/r|
'/9J a / f a-VlaA / f u,->a n i2< (A + Ay )|Amax0 +max0 J, ^ J, IW,

<A+^Y + A^J^[{kdx)x]2dxdx^J
(2.42)

We now estimate the boundary terms in (2.36). Let £ = 1 or £ = 0. In view
of (2.9) and (1.6)2, we have that \Qu(u(C, t), 6(C, 0)1 < A. So by virtue of
(1.6)2, (2.37), (2.31), (2.19), and (2.30), we find that (cf. the proof of (2.42))

r'(kGxQM, x) dx
o

<

[ (*9xQuVx)tt> T)dxJo

Amax^j' + A ̂  mzx(k6x)2 dx {2.43)

2 / fl ,i \3/4

0 Jo
<A + AZ3/4 + ^r + A( / / [(k0x)x]2dxdx
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Note that by (2.30)-(2.31), (2.20), and Lemma 2.5,
rt r\ . - rt /•!

[ I elrfdxdz+ [ f (6pev - £iv2)2 dx cIt
Jo Jo Jo Jo

< (A + AY2'9) [' [' e2 dx dx + A + AZ3/4,
Jo Jo

which together with (2.2) gives
3/4.A. / ' * ' 1 ^(rl r\ ^ 2 2 rl r\

JJoWeX]2<t«t*) < A + ̂  1- + ̂  I | d* dxth + AZ3'4. (2.44)

Combining (2.36)—(2.41) and (2.43)-(2.44), we get
2 /*? /* 1 2 <• ] 2

^- / / d2dxdT+^~ e2(x,t)dx<A + AZV4 + ^-Y, Vte[0,T],
4 Jo Jo 2 Jo 4

which shows (2.33) and (2.34). □
Differentiate (2.1) formally with respect to t, multiply by , and integrate over

[0, 1] x [0, t], ( e (0, I], Integrating by parts with respect to x, we infer by the
same procedure as in [2, Lemma 2.5] that

Lemma 2.8.
/* 1 /* T r 1

iax / v2(x,t)dx+ / / v2dxdt<A + AZu/n. (2.45)
■ T\ Jo Jo Jo

max
[0

The proof of the following lemma can be found in [2, Lemma 2.6] and will thus
be omitted here.

Lemma 2.9.
rl 2 fT C1 2 f ^ 2

v,(x,t)dx< A, / / vv.dxdt< A, max / v^.(x,t)dx< A.
7o ' 7o 7o *' [0,717o

(2.46)
We now want to bound derivatives of 0 . We have

max
[0,7-]

Lemma 2.10.

max
[0,7-]

[ d2(x,t)dx< A, [ [ d2 dx dt < A, max f d2 (x,t)dx< A.
Jo Jo Jo 10,T]J0

(2.47)
Proof. With the help of (2.28), (2.46), (2.31), (2.33), and (2.30) we have

max|v |<A, max#<A. (2.48)
QT ' QT

We differentiate formally (2.2) with respect to t, multiply by eg0t, and integrate
over [0, 1 ] x [0, /], 0 < t < T. Keeping in mind that 6t vanishes on the boundary,
we integrate by parts with respect to x . Utilizing (2.48), after a lengthy calculation,
which is recorded in [3, Lemma 3.6] and thus need not be reproduced here, we obtain
(2.47). □

Proof of Theorem 2.1. We use (2.47) and the Schwarz inequality to see that 6(x, t),
respectively 6 (x, t), is uniformly Holder continuous in t, respectively in with
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exponent 1/2. A standard interpolation property [10, II, Lemma 3.1; or 3, Lemma
3.3] implies that 8x(x, t) is also uniformly Holder continuous in t with exponent
1/6; hence, ||| 9x |||1/3 < A. This immediately yields III 9 |||1/3 < A. Similarly, using
(2.46), we conclude that ||| vx |||1/3 < A and thereby ||| v |||1/3 < A, ||| u |||1/3 < A.
□

3. Proof of Theorem 1.1. In this section we prove Theorem 1.1 with the help of the
Leray-Schauder fixed point theorem which we recall here for the reader's convenience.

Theorem 3.1. Let 38 be a Banach space and P: [0, 1] x 38 —> 38 be a map with
the following properties:

(i) for any fixed X e [0, 1], P{X, •): 38 —► 38 is completely continuous;
(ii) for every bounded subset of 38 , the family of maps />(•,/): [0, 1] —► 38 ,

X 6 is uniformly equicontinuous;
(iii) there is a bounded subset of 38 such that any fixed point in 38 of

P(X, •), X € [0, 1], is contained in ^# ; .
(iv) P(0, •) has precisely one fixed point in 38 .
Then, P{ \, •) has at least one fixed point in 38 .
For our purposes, 38 will be the Banach space of functions {u(x, t),v(x, t),

d(x, ?)} on Qt with u,v,vx,9,6x in CX^'X^(QT) with norm

III {u, v, 0) HIgg := HI u IHj/3 + HI v |||,y3 + HI 6 |||^3 + HI vx |||^3 + HI 6X |||,^3 .
For X e [0, 1] we define P(X, •) as the map that carries {u,v, 6} e 38 into
{u, v , 9} e 38 by solving the (linearized) system

Uf — V x = 0 '

Vt - fi(u)vxx + (Pu(u, d) + fiu(u)vx)ux = -pg(u, 9)6x,

eg{u, 8)8t - k(u, 9)8xx - ku(u, S)9xux = -9pg(ii, 9)vx + fi{u)v2x + kg(u, 9)92x
(3.1)

with boundary and initial conditions

{-p{u, 9) + fi(u)vx)( \ , t) = -yv{ 1 , t), (~p(u, 9) + ft{u)vx)(0, t) = yt)(0, t),
9(l,t) = 9(0,t) = T0,

(3.2)
u(x, 0) = (1 -X)t]0 + Xu0{x), v{x,0)=Xv0{x),

d(x,0) = (l -X)T0 + X90{x),

where tj0 is defined by (1.12). To solve (3.1 )-(3.3) for arbitrary u, 9 e C^3'^6(QT),
we have to define e, p, fi, k on R . Recalling that a smooth solution u(x, t) of the
original system (1.1), (1.5)—(1.6) will be bounded from below by u and from above

  2
by U (cf. Lemma 2.3), we construct C -smooth functions e(u, 9), p(u, 6), fi(u),
k(u, 9) on M2 which coincide with e{u , 9), p(u, 9), fi(u), k(u, 9) for u < u < U ,
0 < 9 < oo, and which satisfy the following conditions:

o>°, eg{u,9), ^
k(u, 9) > v > 0 for - oo < u < oo, -oo < 9 < oo.
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Under these assumptions (3.1)—(3.3) will have a unique solution not only in 38 but
in a better function space. More precisely,

Lemma 3.2. There is a unique solution {u(x, t), v(x, t), 9{x, ?)} of (3.1)—(3.3)
such that u, ut, ux, v, vt, vx, vxx, 9, 9t, 9x, 9XX are all in C/?'^/2(0r) with /? =
minja, 1 /3}, and the C^'^2(QT) norms of these functions can be a priori bounded
in terms of C (depending only on fi0, u, T, and on the C (QT) norms of the
coefficients) times the norms of the initial data and the right-hand sides of (3.1).

The existence of a solution to (3.1)—(3.3) can be established by the method of
continuity (see [4]) which connects (3.1) to a system without wx-terms in (3.1)2 and
(3.1)3. The uniqueness is obvious. The a priori estimate in Lemma 3.2 follows from
the classical Schauder-Friedman estimate (cf. [4, 10]).

Applying Lemma 3.2 we see that any solution to (3.1)—(3.3) will be in the space
indicated in Lemma 3.2. It then follows from the interpolation property [10, II,
Lemma 3.1; or 3, Lemma 3.3] that the solution {u, v , 9} to (3.1)—(3.3) is in a Holder
space which is compactly imbedded in 38 (in fact u, v , vx, 9, 6x e C1' 1^2{QT)).
Thus, P(X, •): 38 —► 38 is not only well defined, but also completely continuous as
required in (i) of Theorem 3.1. Using the a priori estimate in Lemma 3.2, we can
easily show that the family P( - , {u, v, 6>}): [0, 1] —> with {u,v, 9} in any
fixed bounded subset of 38, is uniformly equicontinuous, so that (ii) of Theorem
3.1 holds.

To show (iii) we note that any fixed point {u, v, 6} of P will solve the system
(l.l)j, (2.1), (2.2), (3.3), (1.6) with e, p, fi, and k replaced by e, p, fi, and fc.
Recalling that e = e, p — p, fi = fi, k = k for u < u < U and 6 > 0, Lemmas
2.1 and 2.3 imply that 9 > 0 and u < u < U; thus, e, p, fi,k coincide with
e, p, fi, k . Hence, any fixed point of P will be a solution of the original system
(1.1), (3.3), (1.6), where the assumptions (1.15)—(1.17) are satisfied, and (iii) thus
follows from Theorem 2.1.

To verify (iv) we easily see by virtue of (1.12) that u(x, t) = t]0, v(x, t) = 0,
9(x, t) = TQ is a fixed point of P(0, •). This solution is unique. The uniqueness
of any fixed point of P(X, •) for X £ [0, 1] can be shown in a standard fashion
which is outlined in [3, Lemma 3.8]. Hence, Theorem 3.1 implies that P(l, •) has
at least one fixed point; this point is unique, i.e., there is a unique solution of (1.1),
(1.5), (1.6) on [0, 1] x [0, T] in the function class indicated in Lemma 3.2. To
complete the proof of Theorem 1.1 it remains to show that the solution of (1.1),
(1.5), (1.6) has derivatives not only in Cwith p — min{a, 1/3} but also in
Ca'at2. This can be done by noting that u, v , vx, 9, 9X are in Cl'l^2(QT) and by
another application of Lemma 3.2 with /? = min{a, 1}. This completes the proof
of Theorem 1.1.
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