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0. Introduction. In elastic-plastic models for granular material, it is common that

the governing partial differential equations become ill-posed as plastic deformations

are accumulated. In dynamical formulations, ill-posedness occurs if the governing

equations lose their hyperbolicity. Equivalently, ill-posedness occurs if wave speeds

become complex. Ill-posedness due to wave speed becoming zero and then pure

imaginary has been studied extensively [M, S], It was believed that this type of ill-

posedness is related to the formation of shear bands. In our paper, we shall investigate

the case that wave speeds become equal (the equations are not strictly hyperbolic)

and then complex with nonzero real part. Following Rice [R], we call it flutter ill-

posedness.

For two-dimensional models, An and Schaeffer [A, A-S] investigated the same

problem. It was found that, even in the simplest of elastic-plastic models, the condi-

tion for the onset of flutter ill-posedness—wave speeds being equal—may be reached.

By a topological argument, it was shown that a generic perturbation leads to equa-

tions with flutter ill-posedness in a neighborhood of a certain hardening modulus. In

these papers, a readily applicable criterion for the occurrence of flutter ill-posedness

is derived. It is demonstrated that flutter ill-posedness occurs in widely accepted

models.

Recently, Loret [L] extended the results to three-dimensional models. It was shown

that, whatever the hardening modulus, the dynamical equations of motion are never

strictly hyperbolic; that is, in some direction, two wave speeds are always equal.

Moreover, for some discrete values of the hardening modulus, the three wave speeds

become equal. By algebraic calculation, he showed that, when the flow rule de-

viates from deviatoric associativity, the governing equations could exhibit flutter

ill-posedness in a neighborhood of the discrete values of the hardening modulus.

In our paper, we continue to discuss flutter ill-posedness in three-dimensional mod-

els. For the case of three wave speeds being equal, we employ a topological argument,
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which is different from Loret's approach. By studying the change of topological de-

gree of a certain mapping, we conclude that, generically, deviation from deviatoric

associativity in the flow rule leads to equations with flutter ill-posedness in a neigh-

borhood of the discrete values of the hardening modulus. A sufficient condition is

given for the occurrence of flutter ill-posedness.

For the case of two wave speeds being equal, we investigate more general per-

turbations (in fact, deviation from deviatoric associativity alone cannot cause flutter

ill-posedness in this case). We show that a small perturbation could lead to equations

with flutter ill-posedness over a large range of the hardening modulus. It is demon-

strated that nondeviatoric associativity in the flow rule and the rotational terms in

the Jaumann rate will cause flutter ill-posedness. In particular, for the yield vertex

model, flutter ill-posedness occurs near the direction of coincident transverse wave

speeds when the Jaumann rate is used.

Note that, in the latter case, the occurrence of flutter ill-posedness almost does not

depend on the value of the hardening modulus. Therefore, flutter ill-posedness is

more likely to occur in three-dimensional models than in two-dimensional models.

This paper is divided into four sections. In Sec. 1, the governing equations will be

given and the eigenvalue problem formulated. In Sec. 2, the acoustic tensor, derived

from the eigenvalue problem, is reduced in a moving coordinate; a preliminary lemma

from algebra is given and coincident wave speeds are analyzed. In Sec. 3, we study the

case of three coincident wave speeds under deviation from deviatoric associativity in

the flow rule. In Sec. 4, we study the case of two coincident transverse wave speeds

under general perturbations.

1. Formulation of the eigenvalue problem.

1.1. The governing equations. The unknowns consist of the bulk density p,

Cauchy stress tensor T, and velocity vector v , subject to conservation of mass

and momentum

dtp + pdjVj = 0, (1.1)

pdtvi + djTij = 0, (1.2)

where dt = dt + v)d) is the material derivative and the summation convention is

employed. In our formulation, compressive stresses are assumed to be positive.

To formulate the constitutive relation, we decompose the strain rate tensor

into elastic and plastic parts
V=V{e) + V(p). (1.3)

For the elastic part, we assume the linear strain-stress relation,

K? = cuuv,Tu- (I-4)
where C is a fourth-order tensor whose inverse E can be expressed through the

shearing modulus G and Poisson's ratio v by

Euki = T~Lsu3ki + WW, + W- (1 -5)
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To get an objective measure of the rate of change of stress, we use the Jaumann

co-rotational rate

v,Tij = d,Tij ~ T,kMkj ~ Tjk°hn

where

wki= 2{dkvi~divk)

is the spin tensor. Later on we take the rotational terms in the Jaumann derivative

as perturbation terms, since the magnitude of stress T is quite small compared with

the shearing modulus G, typically

|71/G~0.01.

For the plastic part, we assume that

K? = ('•«>
The derivation of (1.6) is sketched as follows. Firstly, the flow rule gives

V(P)=M, (1.7)

where A is a scalar variable and ¥ is a symmetric tensor indicating the direction of

plastic deformation. Secondly, differentiating the yield function <f){T,y) = 0 gives

+ !£«/,, = o, (i.8)

where y is the total shearing strain defined by

d,y = |(f(p))°|' (L9)

and for 3x3 matrices > the deviator and the norm of A are defined as

A° = AM|2 = iz,..4.

It follows from (1.7)—(1.9) that

HI i* =-pp = «■ <110>

where h = —is the plastic hardening modulus which changes from +oo to

0 as plastic deformations are accumulated, and O = is the normal direction to

the yield surface. Finally, substituting (1.10) in (1.7) yields (1.6). For convenience,

we normalize and in the sense that

pp0! = |oD| = l.

Then, we can write and O as

= *¥D. -BS ., <&.. = ®D - uS...ij ij ij' ij ij " ij
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In practice, and O might depend on history as well as stress. The parameter ju

specifies the angle of internal friction of the material, and /i specifies the amount of

dilation. Typically, we assume that

1 > p > ft > 0.

The flow rule satisfies deviatoric associativity if and only if 4*° = . The reader

can consult [A] for deriving (1.6) in general cases and a physical description of its

terms in greater detail.

Combining (1.3), (1.4), and (1.6), we have

vii = (C«H + jVw) v,T*r

Since the fourth-order tensor C is invertible, the above relation can be rewritten (cf.

Lemma 1.3 in [A]) as

v,ru = (£w4£s-w*) n,. e n)

where E is given in (1.5) and H is defined as

where H > 0, an assumption that holds for a large class of materials.

1.2. The eigenvalue problem. In this subsection, we linearize the equations (1.1),

(1.2), and (1.11) first. Then by looking for exponential solutions, we obtain an

eigenvalue problem. The square of the wave speed is the eigenvalue of the derived

acoustic tensor.

Suppose that p^, v, and r(0) are the homogeneous solutions (see [S] for its

existence). We assume that the material undergoes continual loading beyond this

uniform deformation. In fact, only accumulated plastic deformations can cause the

governing equations to become ill-posed. Now we substitute

(0) , _ (0) , _ „ „(0) , ~p = p +p, v — v +v, T=T +T

into the equations (1.1), (1.2), and (1.11) and retain only terms of first order in the

incremental variables p, v , and T. Thus we have

d,P + />(0)div® + (divv(0))p + v • grad= 0,

p^dtv + div T + p^v ■ gradi><0) + pdtv(0) = 0,

TtJ + B,jkfiiT,k + &ijki Tkt + ' = 0 >

where Bijkl is not given explicitly because of its irrelevance and

Bijkl = Eijkl + Jijkl ~ Jj ^ijmn^mn^rs^rskl '

in which Jijkl comes from the Jaumann derivative

JiW = - iaTlk + SjkT„ - Sj,Tlk).
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Now we extract the principal part of the linearized equations and substitute the

following form of solution in it:

i(x-Z)+Xt „ _ . i(x-£)+At „ ™ i(x-{)+A.t rr /,
p = e p, v = te v, T = e T, (1-12)

where p, v, and t are constants, £ = (<!;,, £2, £3) is a vector in Fourier space,

(x • £) is the inner product of x and £, and X e C is to be determined. We obtain

the following eigenvalue problem:

'0 p(0)£T 0 \

0 0 \ U = (l + iv?)tj)U,

.0 M(i) 0 J

where U = (/?, v, (fn , t22, f33, Tn, t13, f23))

m =

and

(B\\\fil & 1121^1 ^113 fii\

B22\fil B222 fil ^2231^1

M(£\ _ ^331 fil B332fil B333fil

Buifii b\22 fil fil
Bmfii Bmfii fit

^"®231 fil B232 fil B233 fil '

Excepting for one zero eigenvalue, the rest of the eigenvalues will be determined from

a J 0 ->LK)V
\M(() 0 j

It is easy to see that Q has three zero eigenvalues, whose eigenvectors are

(0, 0, 0, r;)T (i = 1,2,3) where rj e R6 (/ = 1,2,3) form the kernel of L(£).

The remaining six eigenvalues of Q can be found by studying the following matrix

jmuvmn = C-13)

Suppose that (1.13) has eigenvalues pi (i = 1, 2, 3) with eigenvectors et (i =

1,2,3). Then Q has eigenvalues ±^/Wi (i — 1,2,3) whose corresponding eigen-

vectors are

, i'=l,2,3

(summation convention is not used here).

The eigenvalue problem can also be derived in the following way. Substituting

(1.12) in the linearized equations, we obtain

Pm{). + ivf)(r)ij+(tt,l = 0, (1.14)

(l+iv'X)T:l = Buu(,vk. (1.15)
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Substituting (1.15) in (1.14) gives

/>(0)(A + iv'Xfvj + ̂ Bijkfifik = 0. (1.16)
2 /qi 2

To obtain nontrivial solutions v , it is necessary that fi- = (Aj + ivr %r) (j — 1,2,3)

are eigenvalues of —.

In the engineering literature y£,®,,£/£/) in (1-13) is called the acoustic tensor.

The wave speeds are actually equal to nf /1£|. Since n{ (i = 1,2,3) are homoge-

neous of degree two in £, the wave speeds depend on the direction of £ but not on

the magnitude of £ . Let

S2 = {£eR3:|£| = l}.

Then the acoustic tensor is a function of cj; and h , defined on S2 x R+ .

2. Analysis of the acoustic tensor.

2.1. Reduction of the acoustic tensor. To study the eigenvalues of the acoustic

tensor, it is convenient to formulate the tensor under a moving coordinate and then

to subtract the obtained tensor by a multiple of the identity.

Choose two unit vectors t], £ that are perpendicular to £ and also are perpen-

dicular to each other. Let

/*> M
R = u2 r,2 C2 . (2.1)

V^3 ^3 C3 /

Multiplying the acoustic tensor left by R and right by R , we have

jci {£.u. + JUJ,(T) - M

where T = RJTR, 'F = RJxVR, and 4> = RJ<t>R. During the calculation, we use

the fact that E satisfies the isotropy condition

Subtracting

Emnrs ~ EijklRmiRnjRrkRsl-

from (2.2), we obtain (p(0)) 1 times

( y -i_ I  _Lhe T1   J-hC T — — he \' 2 11 Hu 1C1 1 12 Hu lc2 13 Hu 1L3

Aud,h)

\

——he — T^ — — h c — T — —heHu21, 2122 // "2 2 2 23 Hu 2L3

——he —T — — h e — T — —he jHu3C1 2123 H 3 2 2 7 33 Hu3C3 /

(2.3)

where y = -A- and Tf. is the (i, y')-component of the deviatoric part of T. Let

k — . We have

bi = EUmn^mn = -2G{KpSu-^Du),

Cj = *rsErsjl = -WK^j-K)> ^

H = h + 2G(3Ktip + 4^<D°).
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Remark 2.1. Under this moving coordinate, when A is diagonal, we actually have

longitudinal and transverse waves. In fact, it follows from (1.16) that

-jiT) K («/*««*<) *K« = f1 (*T«) •

When A is diagonal, RJv — Xet, where A is a constant and et is the zth column of

the identity matrix. It follows immediately that

v = XRer

So the eigenvector v is either parallel to t, or perpendicular to <H. But this is not

true in general if A is not diagonal.

2.2. Preliminary lemma from algebra. Since the eigenvalues of a matrix A are

roots of the characteristic polynomial of A, we shall review some knowledge about

the discriminant of a third-order polynomial and the relation between the discrimi-

nant and the invariants of A .

For a 3 x 3 matrix A = j atj j , there are three basic invariants:

J\ — ̂ ii ^22 ^33 tr(/l) ,

J2 = #na22 + anfl33 + a22ail ~~ ai2a2l ~ fl13fl31 — a23U12 '

J3 = det(^).

The characteristic polynomial det(a;. - cd[/) of A can be written as

3 2
det(ajJ - cSij) = -c + J\c - J2c + /3

whose roots correspond to the eigenvalues of A . The discriminant of the character-

istic polynomial is equal to

disc(^) = j]j\ - 4J2 - 47,3/3 + 18/j J2J3 - 27j], (2.5)

Lemma 2.2. Two of the eigenvalues of A are complex conjugate if and only if

disc(/4) < 0.

Proof. Let /(c) = det(aij-c5ij) . Differentiating /(c) with respect to c, we have

f\c) = -3c2 + 2Jxc — J2 ,

whose roots are

Cj 2 = j (^i ± ■

(1) In the case of Jf< 3 J2, roots Cj and c2 are complex conjugate. The derivative

/'(c) does not change sign, and /(c) = 0 has a pair of complex conjugate roots.

Since /(c) = /(c) where a means the conjugate of a, we have

/(c1)-/(c2) = |/(c1)|2>0.
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(2) In the case of Jj2 = 3 J2, we have c, = c2 and

/(c)— (c 2,J{) 27 + ^3"

disc(^) = /(c,) -/(c2),

3 3
When Jx = 27/j, all three roots are the same and /(Cj) = 0. When Jx / 27/3,

there are a pair of complex conjugate roots and

f(cl)-f(c2) = f\cl)>0.

(3) In the case of 7, > 3/2, the function /(c) achieves a local maximum at c, and

a local minimum at c2. The function /(c) has a pair of complex conjugate roots if

and only if /(c,) and /(c2) have the same sign, that is,

/(c,)./(c2)>0.

Combining these three cases, we have the fact that /(c) = 0 has a pair of complex

conjugate roots if and only if /(c,) • /(c2) > 0. It is easy to check that

1

27"

and the conclusion follows.

2.3. Coincident wave speeds. In this subsection we discuss the simplest case in

which the flow rule satisfies deviatoric associativity and the rotation terms in the

Jaumann derivative are not included. In this case, flutter ill-posedness does not

occur. But the onset of flutter ill-posedness is reached and wave speeds become

equal in certain circumstances.

Theorem 2.3. (1) The two eigenvalues corresponding to transverse waves are equal

if and only if <j; is one of eigenvectors of ¥.

(2) The three eigenvalues of the acoustic tensor are equal if and only if d; is one of

the eigenvectors of and the hardening modulus h is equal to one of the following

values:

hl = 2G [2( 1 - 2v)(kh - - pt) - 3khP ~ 2] , i= 1,2,3,

where pi (i = 1,2,3) are eigenvalues of 4*° .

In the proof, we shall see that when £ is one of eigenvectors of , the matrix A

is diagonal. From Remark 2.1 it follows that we have a natural decomposition into

longitudinal and transverse waves. In this event, one eigenvalue corresponds to the

longitudinal wave and the remaining two eigenvalues correspond to transverse waves.

Proof of Theorem 2.3. To find out when coincident eigenvalues could occur it

is sufficient to see when the discriminant is equal to zero. Without the rotation

terms in the Jaumann derivative (terms containing stress T are absent in (2.3)), the

determinant of A(£, h) is zero (J3 = 0) and

J\ = y- 77(Vi +b2c2 + b3c3),

J2 — yy (^2C2 + ^3C3)
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It gives

disc (/I) = /22(/j2 - 4 J2)

= jjl(b2C2 + bZclf | (j ~ ^(Vl + b2C2 + V3)) + %^b2C2 + Vs)} ^

When the flow rule satisfies deviatoric associativity = O0), it follows from (2.4)

that

b2 — c2, b3 — Cy

Therefore, we have disc(^) > 0 and it will be zero if and only if b2 = b3 — 0 or,

equivalently,

*12 = ¥13 = 0.

Lemma 2.4. Suppose that A is a 3x3 symmetric matrix and £, t], and ( are

three mutually orthogonal unit vectors. Then £TAt] = 0, £JA£ = 0 if and only if

£ is an eigenvector of A . Moreover, £ A£ is the eigenvalue of A corresponding to

c.
Proof. Suppose that R is the matrix whose columns consist of c,, rj, and (. If

rjJA£ = 0 and CTA£ — 0, then

At, = RRTA£ = R{?A£, r,TA£, ?AZ) = (<f^K.

If = Ag, then

ZTAZ = A, r]TAZ = Xrft; = 0, t? A£ = = 0.

The proof is complete.

According to Lemma 2.4, the facts of 4^ = £Tx¥Dri = 0, *P13 = ^ =

0 imply that £, is one of the eigenvectors of as well as of In this case,

the matrix A in (2.3) is diagonal and two transverse wave speeds are equal (two

eigenvalues with eigenvectors rj and C are equal). Note that the transverse wave

speed is nonzero since we subtract a multiple of the identity. When, in addition to

<j; being an eigenvector of ,

7~jjbici=0, (2.7)

the longitudinal wave speed is also equal to the transverse wave speed. In this case,

the second factor in (2.6) is equal to zero. The equality (2.7) holds when, from (2.4),

2 2

Ht = - tf,) = *L(Kp-p.)(Kp-p.), i= 1,2,3, (2.8)

or in terms of h ,

h( = 2G [2(1 - 2v)(kh -pt){Kp -pt) - 3k/j,0 - 2} , z'=l,2,3, (2.9)
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T D D
where pi = <!; *F £ (i = 1,2,3, <!; is one of eigenvectors of ¥ ) are eigenvalues of

*¥ satisfying

P] + p\ + p] = 2 > ^ + P2 + ^3 = °-

The proof of Theorem 2.3 is complete.

Remark 2.5. From the proof we also see that the equality J2 = 0 corresponds to

two coincident transverse wave speeds and that both J2 = 0 and Jl = 0 correspond

to three coincident wave speeds.

3. Deviation from deviatoric associativity in the flow rule.

3.1. Statement of results. In this section, we only allow deviation from deviatoric

associativity <I>D) and the rotational terms in the Jaumann derivative are

excluded. In this case,

disc(^) = -4J2).

The value of disc(yl) could become negative only if Jl - 4J2 becomes negative.

So flutter ill-posedness could occur near hi (i = 1,2,3) given by (2.9) where three

wave speeds are equal. This is the case analyzed by Loret [L], In this section, we

shall use a different approach to prove the following conclusion.

Theorem 3.1. Generically, the nondeviatoric associativity in the flow rule will make

the discriminant become negative in a neighborhood of the discrete values hl (i =

1,2,3) given by (2.9). In other words, generically, the nondeviatoric associativity

in the flow rule will lead to equations with flutter ill-posedness near hj.

The proof will be given in the next subsection 3.2.

In general, under perturbation, 7, - 4 J2 could become strictly positive. But our

topological arguments show that nondeviatoric associativity in the flow rule cannot

perturb jf - 4J2 away from zero in the positive direction and, in fact, that such

perturbations are likely to even make Jx -4 J2 become negative somewhere. In terms

of terminology from the dynamical bifurcation theory, this grazing of the stability

boundary is "structurally stable".

For those who may not completely trust generic arguments, we shall give a suffi-

cient condition for the occurrence of flutter ill-posedness in subsection 3.3. We also

compare our results with Loret's there.

3.2. Topological proof of Theorem 3.1. We derive from (2.3) and (2.4) that

J2-47 =1^*
J\ hj2 ft

1 H G{\ - 2v)

4y<7(l-2i/) V H

X ((^ - yf\){kP -<!>?,) + ^12o12 + 4»13<fr13)

+ ;U*i2 + *i2)2 + ;Uvi'>3 + V)2

4(*12-*.2)2-*(*13-*13)2}'
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Now we study the mapping FH : S2 R5 given by

y' = ^0(1-2^) " V (to - )to - <, ) + *,2®, 2 + *„*,3) •

J-2 = j (*12 + *,2) • >3 = J (*.3 + *l3) -

y< = \ (*.2 " 4.j) . ^3 = 1 (*,3 - *13) ■
(3-D

where and 4>^ are functions on S2 = {<£ € R3 : \£\ = lj . Note that J2 -4/2 <

0 if and only if yrNy < 0, where

w-l'fc 4 I (3.2)
and I2, I} are block identity matrices (subscript indicates its order). Let

r= [y e R5: yJNy < o}.

Flutter ill-posedness does not occur if and only if

Fh(S2) e M5 \r for all H>0,

where FH(S2) is the image of the mapping FH .

It is easy to check that

R5 \ T = R3 \ {0} = s2,

where = denotes the homotopy relation and T is the closure of T. Studying topo-
2 5 ~

logical properties of the image FH(S ) in R \T is equivalent to studying topological
_ 2 . ? - 2 2

properties of FH(S ) in S where FH : S —> S is the induced mapping defined

by

z,= , h =, 1=1,2,3.

\/y\ + yl+y\
For the mapping FH : S2 S2, we define a topological degree [Mi],

deg {Fh,z0)= si%n(dFH\0

y»£FH (z0)

where sign(dFH)y is the sign of the Jacobi matrix dFH of the mapping F[{ at y0 .

This degree is well defined since it does not depend on the choice of the regular value
2 2 2

zQ and is homotopically invariant. Specifically, if (zl + z2 + z3)(<j;, H) > 0 for

H e [H{, H2], then FH is homotopic to FfJ , i.e., FH ~ FH and

deg(^//i, z0) = deg(Fh, , z0).

Intuitively, the degree is like the times of FH(S ) encircling T. If the degree

changes as H passes H0, then FH (Hl < HQ) is not homotopic to Fff (H2 >

H0) and FH (S2) must intersect P. In the "best case", the image F(S2 x R+)
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might intersect F only at its vertex y = (0,0,0,0,0) at the origin, in which

case the governing equations would exhibit coincident wave speeds at isolated points

in parameter space. In fact, this is the case for the flow rule satisfying deviatoric

associativity.

For a small deviation from deviatoric associativity, when H is away from the

discrete values Hi given in (2.8), the degree does not change at all. So we only

carry out calculation of the degree for the case of the flow rule satisfying deviatoric

associativity.

Proposition 3.2. Assume that has three distinct eigenvalues px > p2 > p3.

Then when H passes Hi given in (2.8), the degree of the mapping FH will change.

F
H

_ 2 2
Proof. The mapping FH : S —► S is given by

r -  h  7 -  ^12  7 _  ^13L. .   .  , Lj      , jL *  

2 +1;2+' 3 ^;+T;2 + t:

where

j/2
13

<7(1 -2v) } H

H I 4(7(1 - 2v)

2
K , n\ 2 ,t«2 >t.2

Suppose that, in the reference coordinate, 4^ is diagonal,

Parametrize FH(S2) by z = (sin d' cos(/>', sin 8' sin 0', cos 8') where 0 < d' < n

and 0 < < 2n , and parametrize S by £ = (^(cos9 - sin 0 cos 0), ^(cos# +

sin 8 cos </>), sin 9 sin <f>) where 0 < 8 < n and 0 < <f> < 2n . In the latter, the singular

point of parametrization is moved away from the principal directions of . Under

this parametrization, t] — (^= (sin 8 + cos 8 cos (j>), =*= (sin 8 - cos 8 cos 4>), cos 8 sin </>)

and C = ^jsin^, cos </>) . Consequently,

" D P 2 P 2 2 2
Yjj = -y(cos# - sin 0 cos 0) + -^(cos8 + sin 8 cos^) + p3 sin 0sin cj),

1 2 2 1 2
¥,2 =--(p, -p2)(cos 8 - sin 8)coscf) --(/?, + p2 - 2/?3)sin0cos0sin 0,

^13 = [iP\ -P2)C0S^ ~ iPi -i^sinflcos^]. (3.3)

Choose z0 = z(d' = \ , </>' = 0) = (1, 0, 0). The F~l(z()) consists of at most

p..*.)=(*.«). (?■<>). (!•!)•

(3.4)
Whether (60,<t>0) belongs to FHl(zQ) depends on whether

y 1 =y^Q, <t>0'H)>



FLUTTER ILL-POSEDNESS 355

Without loss of generality, we assume that

(p3-|(a + £)) >(p2-j{h + P)) > (px - + ■

For H < H3, the set F~ (zQ) is empty and

deg(F„ ; z0) = 0.

For H3<H < H2, the set F~\z0) = {(§,§),(§, |?r)} and

a ft? ^ ■ fd(0',(t>')\ , • (d{e',<t>')\

+S18" (Wj(i.w

= 2sign [(/?, -pi)(p1-pi)l(yx\yx\)\ = 2.

Similarly, for H2 < H < Hl, we have deg(Fw, z0) = 0, and for H > Hx, we have

deg(FH, z0) = 2. Thus, when H passes H{ (i — 1,2,3), the degree of the mapping

will change. The proof is complete.

Generically, nondeviatoric associativity in the flow rule makes the image
2 4-

F(S x E ) intersect the interior of T. The discriminant will be negative in a

neighborhood of the discrete values of the hardening modulus. The degree of the

mapping FH will change as H crosses over the neighborhoods. Therefore, flutter

ill-posedness is unavoidable in this case.
2 5

3.3. A sufficient condition. Return to the original mapping Fn : S —► E given

by (3.1). We shall give a sufficient condition in terms of the mapping FH, which

guarantees the occurrence of flutter ill-posedness.

Proposition 3.3. Assume that 5 is the perturbation parameter and 6, <f> are para-
2 T T

metrization parameters of S . If y Wj>|J=0 > 0, y Ny\{0 ^ h 0) = 0 where N is

given in (3.2) and if the rank of the Jacobian of the mapping F given by (3.1) (F

also depends on s here) is four, i.e.,

rank(a(^'^:V3>)
V 9(0, 4>, h, s) ) (60,<t>0,h0,0)

then flutter ill-posedness occurs near (0O, <j>Q, h0, 0).

Proof. Suppose

= (d(yl,y2,yi,y4,y5)\ = fdu du

V d(0,<f>,h,s) / (s0, , a0 , o) \^2i D22

where Dn is a 3x3 matrix. Locally, we have the mapping S2 x R+ x R

defined byy=DC

where r = (6 - 60, <j> - <f>Q, h - h0)T . The value of j\ - 4J2 is equal to ^jf-yTNy ,

where

y1 Ny = (Dnr + Dns)T(Dur + Dl2s) - (D2lr + D22s)T(Dlxr 4- D22s). (3.5)
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From the facts that rank (^n) = 3 and

(Dur)T(Dur)-(D2lr)T(D2lr)> 0,

it follows that Dn is nonsingular (det(Dn) / 0). When s / 0, we can choose

r = D^Dns . Substituting this in (3.5), we have

yrNy = -(D21D~'di2 + D22)T(D2lD~lDn + Dn)s2 < 0.

In fact, if D2lD~xlDl-,+D11 = 0 , then rank(Z)) = 3 . This contradicts the assumption.

The proof is complete.

Now we apply Proposition 3.3 to verify Loret's results [L]. He discussed two cases,

the noncoaxial and coaxial case. We claim that the conditions of Proposition 3.3 are

satisfied in the noncoaxial case but not in the coaxial case. Suppose that

0D = VFD-25A,
2

where A is a symmetric matrix satisfying tr(A) = 0. Then the mapping F : S x

R+ x K —+ R5 can be rewritten as

= 6,('g2">{4g(lW-2^) " {K" ~ +")(K# ~ ~ ~ (t'3)2

- 2 s Si(^-*n)-*,A2-*13Ai3

^2 ~ ^12 5^12 ' -^3 3 5^13'

y4 = ^A12, y5=sA13,

where *Ff,, ^{2 , *F13 are given in (3.3) and An=^TA^, A12 = <^TA//, A,3=<^TAC.

We knew from the proof of Theorem 2.3 that ,yT-Wy|J=0 > 0. Also we knew that

y Ny\(e0,^0,h0,o) = °'

where (60, 0O) is any one of the pairs in (3.4) and hQ is any one of the values in

(2.9). Let (60 , (f>0) = (f , n); then it is easy to check Dn = 0 and

'd(yx, y2, y3)y
1^.1 =

d(d,4>,h) )(8oAo,h(),o)

G{\-2v)V2, v wn
-7-{Pl ~P2)(P 1 ~Pi) * 0H

(|£>n|/0 is also true for other choices of (60, cp0)), where H0 = h0 + 2G(3Kn/3+ 2).

Hence the rank of Jacobi of the mapping F is four if and only if

2*4 V 4. f^2
ds V ds (A12)2 + ( A13)2' 7^ 0-

(®o' ' ^0 '
(®o ' ^0' ^0 '

According to Lemma 2.4, both Ap and A13 are zero if and only if £(0O, <j>0) is an

eigenvector of A. In the noncoaxial case, £(0O, <p0) is not an eigenvector of A. In

the coaxial case, £(60, </»0) is an eigenvector of A. So rank(Z)) = 4 in the noncoaxial

case but not in the coaxial case. The claim is proved.

In fact, the coaxial case is not generic. The dimension of perturbation is restricted

to be less than five. As a result, the transition from the state of non-strict hyperbolicity

to loss of hyperbolicity is not smooth. Only large deviation could cause flutter ill-

posedness in the coaxial case.
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4. The case of two coincident transversal wave speeds.

4.1. Statement of main results. In the three-dimensional case, we knew from The-

orem 2.3 that, whatever the hardening modulus is, two transversal wave speeds are

equal when £ is near principal directions of . But deviation from deviatoric as-

sociativity in the flow rule alone cannot cause flutter ill-posedness in this case, since

J3 = det(/l) = 0. More general perturbations need to be considered. Another reason

for considering more general perturbations is that the plastic part (1.6) of constitu-

tive law should not be restricted to be of rank one under perturbations. In fact, the

plastic part V^ of constitutive law in the yield vertex model [C-H] is not of rank

one. In this section, we shall show that flutter ill-posedness could occur under general

perturbations in the case of two coincident transverse wave speeds.

Recall that, without perturbations, J2 = 0 when two transverse wave speeds are

equal. We can assume that

J2 = J} = 0, Jx = /,(0)

at 0 = 0O, 4> = (f>0, s = 0 where 5 is a perturbation parameter. If

d(Jx, J2, J})

<9(0, <j), s)

then, according to the Inverse Function Theorem,

/: (0, 0,j)->(/,,/2, J3)

maps a neighborhood N of (0O, (f>0, 0) onto a neighborhood of (j[0), 0, 0). In

particular, on a subset N' of N,

J2 = 0 and 47,3y3 > 0.

It implies that

disc(^) <0 on N'.

The condition (4.1) might not guarantee that flutter ill-posedness occurs for all h > 0

because the parameter 5 may be restricted to be positive. If can only be positive

on

N' = {(0, <j>, s) e (0O - S, e0 + S) X (0O - <5, + S) X (0, 3): J2{0, <f>, s) = 0} ,

then flutter ill-posedness occurs on N' x M where

M = j/j > 0 : Jx(0 ,<j>,s,h)> 0, (0,0,5)6^'}.

Similarly, if ,/3 can only be negative on N', then flutter ill-posedness occurs on

N' x M' where

#0, (4.1)
(»0 ' ^0 '

M '={/z>0: Jx{6,4>,s,h)< 0, {6, <f>, s) e N'} .

Note that, when 5 = 0 and two transversal wave speeds are equal,

Ji = (1 _2v)H ^ + 1G^k^P + 2) - 4(?(1 - 2v)(tc0 - P0)(kh - p0)] ,
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where p0 is one of the eigenvalues of *F . There always exists a value h = h0 such

that 7, (90, 4>0, 0, h, ) > 0 for h > h0 and /, {90, (j>Q, 0, h, ) < 0 for h < hQ. So

flutter ill-posedness could occur in a large range of the hardening modulus.

If the condition (4.1) does not hold, then more delicate theory about singularities

should be used. We do not go further in this paper.

In the next two subsections 4.2 and 4.3, we shall demonstrate that flutter ill-

posedness occurs near the direction of two coincident transverse wave speeds under

specific perturbations.

4.2. Models including the Jaumann rate and a nondeviatorically associative flow

rule. We assume that is away from zero. So the longitudinal wave speed cannot

be equal to two transversal wave speeds. As was said in the end of subsection 1.1,

we take \T\/G as a perturbation parameter. Then we calculate J3 to see whether

/3 could be nonzero on the set of (9 , 4>) for which J2(d ,</>) = 0 .

In terms of (2.3) and (2.4), we have

[H - 4G( 1 - 2u) [{kH - <,)(*// - ) + *12012 + *136i3] } ,
(1-2 v)H

= ~H{\G-2v) {*1**12 + *13*13 + 0(5)} '

j - 2g4 {4/ o Zk + >~v £ Z33 _ xj/ <j> Z23 _ xp (J, Zk + o/yU
3 - H{\ -2v) \ 13™ 3 G 12'V12 Q 12 13 Q Y13^12 Q + U ^ )j '

where s = ^ and 0(s) represents terms with the order

h = W° (f) ■ If *12®, 2 + *,3^,3 = 0, then

^10
disc(^) = -4 7,373 + — O

H

To find flutter ill-posedness, we only need to prove that

^3 = ^*13^*13^22 + ^12^12^33 — ̂ 'l2^>13^23 — ̂ (4-2)

is not zero on the set of (9 , 4>) for which (^/12<i)i2 + (^ > 0) = 0 ■

Suppose that 4*° is diagonal in our reference coordinates with eigenvalues p,, p2,

p3. We parametrize S2 by £ = (cos 9, sin 9 cos 0, sin 9 sin <j>). Under this parame-

trization, rj = (— sin 9, cos 9 cos</>, cos 9 sin <j>) and £ = (0, — sin</>, cos</>). Conse-

quently,

M* = -
12

2 1
iP\ - Pi) + iPi ~~ P-}) sin 0 sin 0 cos 0,

^13 = _(^2 ~ P3)sin0sin</)cos(/).

Let O = ATlFA, where
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In this case,

<£»i2 = - \{PX - P2) + (P2 ~~ P3) sin2(0 + «)] sin 6 cos 6 ,

013 = ~{p2 - Pt) sin 6 sin(</> + a) cos(</> + a).

If <t>0 = —j , then

((/?! - P2) + (p2 - Pi) sin2 \) cos2 6

. ,2 . 2 a 2 a
- (P2 - P3) sin - cos -

This will be zero when

(p2 -/>3)sin§ cosf
COS 0q =      - ±J—.

p,-p2 + (p2 - P3) sin I

Now we calculate the value of J3 at 0 = 0(j, (j> = <j>0. We assume

D -t(°* 0 0V (l 0 0
r =A 0 a2 0 A, A = I 0 cos f sin |

V 0 Oct} J v 0 - sin | cos §

Thus, we have

- 2 2 2 Cl 2 & / 2 \
J3 = — sin #0(p2 _ ^3) sin — cos — ̂ (CTj - ct2) sin 0Q + ct2 - ct3J < 0.

Therefore, when (6, </>) is near (00, </>0),

(disc(^)) (6, (f>, h) < 0

for h > 4G(1 - 2i/) (icjff - *f,(0o, </>0)) (k/z - , 0O)) - 2G(3k/z/? + 2).

Here, we just choose a special perturbation. Nevertheless, we believe that the

rotational terms in the Jaumann rate and nondeviatoric associativity in the flow rule

will lead to equations with flutter ill-posedness near the direction of two coincident

transverse speeds in general.

4.3. The yield vertex model. In this model, the plastic part of constitutive law is

not of rank one. As shown in [A], the flow rule essentially satisfies nondeviatoric

associativity. In this subsection, we shall show that, when rotational terms in the

Jaumann derivative are included, flutter ill-posedness occurs near the direction of

two coincident transverse wave speeds.

The plastic part of the constitutive law [S-S] is written as

where

Vl{f) = Vij-mSij, (4-3)
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in which A = V, (jp) » c = |tr(^)> Gp and Gr are plastic moduli (subscripts p

and r are mnemonic for "proportional" and "rotating" respectively), and P is the

projection operator along the direction of T° ,

PA = A,
jD \ rpD

nD, I irfli'

Assume that, compared with the proportional loading, the rotational loading is small,

i.e., \PA\ w \A\ and s = is small. Then we obtain

Gp i+\a+U^-) i

More explicitly, (4.3) is written as

— M V T
ij ~ ijkl t kl'

where

Mijki - 2G ^ij Mki) 2G X'jTki

+ ̂  + Vjt) - \S„\) + 4^ (2»'« - My) °b.

in which ft = (la + (§j) j ft, T:J = ^, /i = J 1^1, and

V Td - (V T
v t1 kl I 17-01 ' t

u v- ' / I7""'b.ykl

'\V,Td\2- (j?rr V,7^)

2

It is easy to check that r . £>.. = 0.

Reversing the relation

*0' = (^Ofe/ + Mijkl) ^tTkl'

we obtain

^Jij-BijklVk,,

where

Bijki ~ ^iA, + G(8ikdji + 3,fijk) + i)TijTki

4G2
- -Jf(KPSij - hj)(K»Skl - rki) + s(uSU - wtu)bkl
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in which H = 2Gp + 4G + 6Gkh/3 and

2 G 7>vGr + 2G(1 + v) ~ GGr

~ 1 - 2v ' 3{Gr + 2G) ' Gr + 2G '

Wg . 2G2
51 = — „ , Z/ =

Gp(Gr + 2G)//' Gr + 2G

2

W -
/ G„\ /G„

+ ' 1 + 2 G p 2aG /Gn\2
kjS, u> = —^-3/c(^| nfi.

r i

As in subsection 2.1, we reduce the acoustic tensor

where is given in subsection 1.2. Finally, we wind up studying the following

matrix:

AU(Z, G , G ) = {X + G)8u8n + uiui - ^-(KfiSu - i u){k^xj - f )H (44)

\T
+ 5(1/^,,. - wiu)bjl - LY1(Sljfn - 6J„• - f;7),

where f = , b = RrbR, and J? is given in (2.1).

Note that the last term in (4.4) comes from the Jaumann derivative. Without this

term, /3 = det(yl) = 0. In this case, flutter ill-posedness could occur only when three

wave speeds are equal.

From (4.4), we can obtain

J2 = + f13) - «^12f12 + ^13f13) + °{\tD\) .

J3 — -^\T I [m(*22* 13 + ^33^12 ~ ^^23^12^13)

- ns (^12(^12^33 _ ^13^23) + ^13(^22^13 _ ^12^23)) ] + I )

where

A + G + vtj, - ~ t1 1)(k:jU - f 11) + s(u - un,,)^,m =
.2 4G2

v —
4G2

H

4 G2
^*11 + -^-(kA-tu)

4G2
viu + -jj-(Kn-iu)-swbu

n —
..2 4G2

A + G + i/f,, - — (k0 -Tu)(Kfi-Tn) w

+
4 G2

(w - WT,,).

In general, when s ^ 0, the vector £ can be chosen such that (1) c is not an

eigenvector of T and (2) the leading order in J2 is zero. To complete the proof, it
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remains to show that, for the same £ , the determinant J3 ± 0. In fact, the leading

order terms of J2 and J3 are simultaneously equal to zero if and only if

A =

Suppose that

fj2 + tjj ^12^12 + ^12^13

^22^13 + ^33^12 _ ^^23^12^13 ^12^12^33 ~ ^13*23) + ^13(^22*13 ~~ ̂ 12^23)
0.

°2

2
in the reference coordinate. Parametrize S by £ = (cos#, sin0cos</>, sin 6 sin <f>).

Then we have
~ 2

A = (^12^13 ~ ^i3^i2)(ai ~~ a2^(a2 ~ (73)((T3 ~ C[)sin d sin (f> cos <f> cos 6.

When (fc12i13— £>13'?12)(<71 - <72)(<t2— <t3)(<73 - <7j) / 0, the value of A is not zero for

^ being away from the eigendirection of T. So, in general, /3 / 0.
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