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ASYMPTOTIC BEHAVIOUR IN LINEAR VISCOELASTICITY
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Abstract. We study the asymptotic behaviour of the solution of the viscoelastic
equation, and we prove for a bounded domain that the energy associated to this
system approaches zero exponentially as time goes to infinity. Moreover, for the
whole space R" we will prove that the displacement vector field can be decomposed
into two parts, solenoidal and irrotational, whose corresponding energies decay to
zero uniformly as time goes to infinity with rates that depend on the regularity of the
initial data.

1. Introduction. In this paper we will discuss the asymptotic behaviour of the
total energy associated to the model whose solution describes the evolution of elastic
waves in a homogeneous, isotropic, and viscoelastic medium. The corresponding
mathematical scheme involves a system of integro-differential equations, with the
integrals reflecting the memory effect.. Through this work we will suppose that the
specific relaxation function E is of the form E(/, r) = e(t - t) ; therefore, the
constitutive relation for viscoelasticity assumes the expression

a = e(0)s + [ g(t - t)e(t) ch:
Jo

where a and e stand for the stress and strain tensors, respectively, and g is the
derivative of the specific relaxation function e (see [1]). Denoting the mass density
by p, the dynamic equation is written as p\ilt = V - a where by

uO, t) = (ux{x,t),..., un(x, t)) =y(x, t) -X

we denote the displacement vector field associated with the motion and by y the
positive vector at time t of the particle located at the point x. Expressing a in
terms of the displacement vector field we finally obtain

putt - pAu - (A + /i)V{divu} + pg * Au + (A + p)h * V{divu} = 0 in Q (1.1)

subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u,(x) (1.2)
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and boundary conditions (case of bounded medium)

u(x ,0 = 0 on £ = T x ]0, T[.

The sign " * " denotes the convolution product in time, which is defined here as

rj*v= I rj(t - r)v(x, x)dt
J o

and by Q we denote a bounded open set with smooth boundary T or the whole
space R".

Asymptotic stability in linear viscoelasticity was studied by C. Dafermos [2] in
the framework of the abstract Volterra's equation. By assuming kernels of convolu-
tion type, Dafermos concluded that the solution of this class of integro-differentiable
equations is asymptotically stable provided the derivative with respect to time of
the specific relaxation function is convex. Later on, this result was improved in [3]
for other types of relaxation functions without the convexity assumption. Concern-
ing the rate of decay of the solutions, the work of G. Dassios and F. Zafiropoulos
[5], for homogeneous and isotropic viscoelastic materials that occupy the whole tri-
dimensional space, establishes that the longitudinal and transverse wave decay to zero
uniformly as , where m increases depending on the symmetry of the initial
datum, provided the derivative of the density relaxation is an exponential function
as t fi0e~}''. The method the authors used is based on the study of the roots of the
characteristic polynomial associated with the ordinary equation, which is obtained
by taking the Fourier transform of system (1.1) and then differentiating the result
with respect to time. By using the fact that the kernel g is an exponential function,
that is, g\t) = -yg{t), the convolution term is eliminated; so the authors work with
the resulting pure ordinary differential equation. To our mind, however, this method
is not very efficient because the analysis of the roots is almost impossible for more
general relaxation functions, even for those whose derivatives are of the form of a
linear combination of exponential terms with varying rates of decay.

The main result of this paper is that the total energy associated to the viscoelastic
system (1.1) decays to zero exponentially for bounded domains. For the whole space
R" the decay also holds uniformly but with algebraic rates that depend on the regu-
larity of the initial data. More precisely, if the initial datum is the mth derivative of
a function in L^R"), then the energy decays as when time goes to infinity,
provided the following conditions hold:

h = g, h,g> 0; (1.3)

g'(t)<-cg(t) and g"(t)<Cg(t); (1.4)

g\t)>-Kg(t) (1.5)
where k , c, C are positive constants. For the case Q = R" , assumption (1.3) is not
necessary, which means that the functions h and g can be chosen as any linearly
independent functions; nevertheless, we must import the additional condition:

h'(t) <-c0h{t) and h"(t) < C0h(t), (1.6)
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h\t) > -K0h(t) (1.7)

where kq, cq, C0 are positive constants.
Moreover, we will prove that the displacement vector field can be decomposed

into two parts, solenoidal and irrotational, whose associated energy decays to zero as
indicated in Theorem 4.1 of Sec. 4.

Note that g and h can be a linear combination of exponential terms with varying
rates of decay. In general g and h can be functions of the form YlPi(t)e~X'' where
pi is a nonnegative polynomial function such that p\< 0.

Here we use basically the energy method in order to construct a suitable Liapunov
functional whose derivative is negatively proportional to itself. This property will
prove that the functional decays to zero exponentially. Regularity results and some
technical ideas are also used. In Sec. 2 we will establish the existence and regularity
results, while Sees. 3 and 4 are devoted to the study of the asymptotic behaviour of
the energy for bounded domains and the whole space M" , respectively.

2. Existence, uniqueness, and regularity. In this section we will prove the existence,
uniqueness, and regularity of solutions of the viscoelastic system given by Eq. (1.1).
Through this section Q will denote either a bounded domain or the whole space Rn .
So, to show the mean result of this paper we will introduce the following notation.

2 nLet us denote by A the operator defined on a subset of [L (fl)] given by

D(A) = [H* (Q)nH2(Q)]\
Aw = - fiAw - (A + fi)Vdiv w

where w = (w,, , wn); so for Aw we denote

Aw = (Aw,, ... , Awn).

Finally, div stands for the divergence operator. It is well known that A is a selfad-
joint, positive-definite operator of [L2(Q)]" .

In order to facilitate our analysis we denote by " □ " the binary function given by

{g □/}(/)= f g(t - T)\f(t) - f(x)\2 dr
Jo

where / can be a real, complex, or vectorial function. When / is either a vector of
M" or a complex number, by | • | we denote both the Euclidean norm of Rn or C ,
respectively. Note that the sign of g □ / depends solely on the sign of g .

Remark 2.1. Let t], 4>, and \f/ be C1 -functions; then the following expressions
hold:

2(ri *4>)4> = -r](t)\<t>\2 - jf/ □ (/>- rjd^J |0|2J + r\ □ 0, (2.1)

- <f>(t)}v(t)dz <E\i//(t)\2 +|t/(t)|</t j t]U(t>. (2.2)
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In fact, a simple calculation yields

d_
dt '2 dt[ lit ~ T)\(t>(t) -

JO

= f n\t-i)|0(?)-0(t)|2
Jo

~2Jo ̂  ~ WiMW <h + - *)j-t\4>(t)\2,

'2 dt

from which it follows that

if ij{t - r)4> (t)<l>{T) eh
Jo

= -j-t{fo n{t-^)\4>{t)-4>^)\2dt- t](t-T)di\(t>(t)\2^

- t]{t)\(f>{t)\2 + [ rj\t - t)|<f>{t) - 0(t)|2 dt
Jo

which yields Eq. (2.1). Finally, by using the Holder inequality we obtain

[ ri(t-T){<f>(T)-<l>(t)}y/(t)ih
Jo

( rt \^!2 ( ft ) '/2
< 1^(01 |y W(T)|rfr| |y \tj(t - r)| \<P{t) - 0(/)| *}

< «|V(0|2 + ~&{fQ WT)I^T} { JQ ll(* — t)| |^(r) — 0(O|2rfr} >

which proves the validity of Eq. (2.2). □
In order to simplify notation we shall omit the variables t, x , or £ of the func-

tions under the integral sign.

Theorem 2.1. Let us take (u0, u,) in D(A) x [//^(Q)]" , and let us suppose that g
and h are positive C -functions satisfying

roc roo

a = 1 - / g dx > 0, 1 ~ / hdt > 0. (2.3)
Jo Jo

Under this condition there exists only one solution of system (1.1) satisfying

u € C([0, T]; D(A)) n C1 ([0, T]; [H^ (£2)]") n C2([0, T]; [L2(Q)]"). (2.4)

Moreover, if we take u0 e D{A ) and u, e D(A), then the function of system (1.1)
satisfies

ue C'([0, T] \ D(A)) n C2([0, 7]; [//'(«)]") n C3([0, T]; [L2(Q)]"). (2.5)
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Proof. For bounded domains the result follows immediately from Theorem 2.2 of
[3]. For the whole space R", Theorem 2.3 of [2] shows that there exists only one
solution u of system (1.1) satisfying

u e c'([0, 71; [flj(«)]") nC2([0, T]- [L\Q)]n).

By taking the Fourier transform, Eq. (1.1) becomes

putt + /z|£|2u + (A + i + ^8 * 6 + £ ^ih * "i = 0'
i=i /=i

u(x, 0) = u0(x), u,(x, 0) = u,(x).

We next multiply the above equation by u( to obtain

\_d_
2 dt /=i

,2

(=i

= |f| g*U-U, + {/2* •
w=l / ) V 1=1

\_d_
2dt

By applying Remark 2.1 we get

+J2{^- f0 sdr) i£i2N2 + hdx)

+ \2gn»+\hn it,Ziu}j=-\\Z\2g'a ±^r

Since g and h are C'-functions satisfying g(t) > g0> 0, h(t) > h0 > 0 on [0, T],
we conclude that there exists c > 0 such that

where

E{£, t) = /?|u,|2 + J2 (v ~ gdT^J K|2|u|

+ I A + [i
i=i

therefore, Gronwall's inequality implies

E(£,t)<E(i,0)ecl

[ hdx) ui +\Z\2g£lu+^hn
Jo ' «=i z ,=i
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Multiplying the above inequality by (1 +1£|2)m and integrating in K" for m = 1, 3,
we conclude

ueC(0J; D(A2)) and u,eC(0, T \ D(A))

which together with Eq. (1.1) establishes Eq. (2.5). The proof is now complete. □
The study of the asymptotic behaviour is a rather complicated task, which will be

the object of the following section.

3. Asymptotic behaviour. Our objective in this section is to show that the total
energy associated to the viscoelastic system on a bounded smooth region decays to
zero exponentially provided conditions (1.3)—(1.5) and (2.3) hold. From now on and
without loss of generality we will suppose that p = 1 .

In order to prove the asymptotic behaviour of the energy we will introduce the
following functions:

Ei8 1=1 Vm/ + + /l)/ £ndivufl!x

+ i/aW^+i(|-/o'sA)

•i'U |V«.|2 dx + (A + n) J |divu|2dx| ,

m =f ̂  Jng D Au+Ja\vu,,i\2dx

+ + n) Jjdiv uf dx + ̂ 1 - J gdr^j JjAuf dx,

Ei{t) d= ̂ J^\utt\2 dx + J^fi\Vui f dx + + ̂ .) JJdivut\2 dx,

*(0 =f j^'t"atdx + ^(°) J luJ2 dx

+ ^{g(0)g + g} □ Vujdx + + n) Jj_g(0)g + g'} □ divu dx

~ \ (,J0 g^g + gdx) (Jt, JnV\Vui\2 dx + {A + ii) J^\divu\2 dx\ ,
and

J(t) =f [ u • Audx.
Ja

In the following lemma we establish an inequality which will play an important
role in obtaining our decay result. To do this we will take advantage of the kernel
properties in Eqs. (1.4) and (1.5) which cause the memory term to have a damping
effect.
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Lemma 3.1. Let us suppose that g e C2 satisfies Eqs. (1.3)—(1.5); then for any initial
2datum (u0, Uj) taken in D(A ) x D(A) we have

d_
dt 1^(0 + g{0) {1 - ^ } 7(0 + g(0) {1 - } J(t)}

< lQ {lu// + ur • Aa, + l^u|2} ̂

+ {jm^ + Ai}LsDA^ <31>
+ Kg(0)g(t) [ u-Audx + ^Cg{0)J2 f g nVuidx

J a 1 ~7 J n

+ ^Cg(0)(A + n) [ g □ divu<&.
1 Ja

Proof. Differentiating system (2.2) with respect to time and then substituting Au
given by Eq. (1.1) yields

utu + Aut + £(0)u„ - / * Au = 0 (3.2)
where / = g(0)g + g'. Multiplying by u(( and integrating in Q we have

^ + L0' AUldX} = ~8^ dX + *Au'u>tdx- ^3-3^

Inserting the identity

f*Au—I^J /(t)^r|^u + y f(t - t){^u(x , r) - Au{x, t)} dx

into Eq. (3.3) we get

d_
dt

(3.4)
E™(t) = - g{0) JJutl\2dx + | J f dx^ j^un- Audx

+ [ [ f{t-x){Au{x,x)-Au{x,t)}-undxdx.
Jn Jo

Substituting u(( given by Eq. (1.1) into the expression fQ u(( • Au dx yields

J un • Audx — - 11 - J g(T)</rj J \Au\2 dx

+ f [ f(t-x){Au(x,x)-Au(x,t)}-Au(x,t)dxdx.
Jq Jo

In view of the above identity we may rewrite Eq. (3.4) in the form

T,e» = " «(<» ja K.I2* ~ {/'/*} {:I - ( *■*} /QI■&

+ {/ /(f) rfr} J^J g(t~ r){Au{x, x) - Au{x, t)} ■ Au(x, t)dxdx

+ [ [ f(t - x){Au(x, x) - Au{x, /)} • utl{x, t)dxdx.
J si J o



636 J. E. MUNOZ RIVERA

To evaluate the derivative of /, let us multiply Eq. (3.2) by u, in Eq. (3.2). Inte-
grating over Q yields

d_
dt

(3.6)

= / |uj2 dx - Aut • utdx + / {/* ^4u} • u( dx.
Jn J n Jn

Using identity (2.1) we can establish

[ {/ * Au} • u dx = - f Auudx
Jn L Jn

+ / fif' □ Vu dx + + n) [ f'Udiwudx
l~[J n 2 -/n

jj.fnVuidx + (X + n)j^fn div udxdx

+

Substituting this expression into Eq. (2.6) and recalling the definition of I, one has

d = jf |u„|2dx - 1/(0 J^Auudxdx

- [ Au, -u dx + [ nf'n Vw + 1(A + n) f /' □ divinix../n z ~1 Jn 2 Jn
(3.7)

i=i

Differentiating J and using Eq. (1.1) we get

d_
dt J(t)= J Aut • u( dx - 11 - J g(z)dT^i J |y4u|2 dx

(3.8)

+ / / g{t - x){Au(x , z) - Au(x, t)} ■ Au(x, t) dx dx
Jn Jo
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which together with Eqs. (3.5) and (3.7) yields

£ {£,(»+rn {1 - ^} /(')+*(0) {:I - ®}.m}

jaKf<bc- {jioj {i -S(0)2
4 K

+ {#(0){l ~^-) + Jo fdx}f0 J0 S{t - t){Am{x, t) - An{x, t)}
• An{x, t)dxdx

+ / / ~ r){Au(x, t) - Au(x, t)} • uM(x, t)dxdx

m
2

1
+

+ \{X + n)g(0) |l J f' □ divu<&.
(3.9)

On the other hand, hypotheses (1.5) and (2.3) imply that

£!°><1-„<1 and +
K J0 ~ K K

therefore, we get

Using Eqs. (1.4) and (1.5) and the inequalities

{,(0){l^fi}+pWA}
x / / g(t - t) {Au(x, r) - Au(x, £)} • Au{x, t) dx dx

Jo Jo

< af |^u|2^ + 4— f gUAudx,
4k Jo 01 Jo

U f(t — t){;4u(x , t) - Au(x, /)} • u;((x, t)drdx

S " -°)^- [ + g(0)0 - a)iLgaAadX-

together with Eq. (3.9) our result follows. □

Theorem 3.1. Under the same hypotheses of Lemma 3.1, for any initial datum
(U0,U[) taken in D(A) x [//0'(Q)]n the corresponding solution of Eq. (1.1) satisfies

Et(t) + E2(t) + E3(t) < Ce~yt.
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Proof. We will suppose that (u0, u() e D(A2) x D(A); our conclusion will follow
using density arguments. Using Eq. (1.1) we can show

\_d_
2 dt J jl",|2 + T>|V«,|2 + (A + //)|divu|2| dx

= »T[ [ g(t - t)Vm.(x, r) • Vm. t(x, t)dxdx
J=1 Jo J a

+ (fi + k) / g{t - i)divw(x, t) • divw (x, t)dxdx.
Jo Jn

Applying identity (2.1) with hypotheses (1.4), (1.5) and recalling the definition of E{
we obtain

^~tEx (t)<-^g{t)J Auwdx-J g □ Vuidx-+ gDdivudx.

(3.10)
Similarly, using Eq. (1.1) and applying Green's formulas the following identity is
established:

\jt{J AlIt'ut + \Au\2} d* = f J g(* ~ T)Au(x, t)' Aut(x, x)dxdx.

Applying inequality (2.2) for rj = g, <f> = y/ = Au, and hypothesis (1.4) turns the
above identity into

j-E2(t)<-C-J^gDAudx. (3.11)

Let us introduce the following functions:

K(t) = E3(t) + *(0) 11 - I(t) + g(0) { 1 - ^ J 7(0 + NxE,{t) + N2E2(t),

[ {lu„|2 + ur ' Ant + l^u|2 + g □ Au}dxJq

+ Y2 Hg □ VU:dx + (A + n) / g □ divucftc.
Jil JQ.

Lemma 3.1 and relations (3.10), (3.11) imply that the inequalities

£*(,)< (3.12)
cQyr{t) < K{t) < c^{t) (3.13)

hold for

JVj = \ (s(0)[ck + c + 2C{n + A)] + c- + ag(0) I
cl a 4k

... 2 f 4k k ag(0)2 1
Nj — — < —... .. r + 4 h Cg(0) H    > ,2 c 1 g(0)(l — a) a 4k
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C0 = minU, £(0)} , C,>0.
Using inequalities (3.12)—(3.17) we get

+ yKt(t) <0

for y = , which implies that

K(t) < K(0)e~y'.

Finally from Eq. (3.13) our result follows. □

4. Decomposition of the displacement vector field. Here we will study the asymp-
totic behaviour of the energy in the whole space R" . We will prove that the dis-
placement vector field can be decomposed into two parts: solenoidal and irrotational,
whose corresponding energies decay uniformly to zero at a rate that depends on the
regularity of the initial datum.

In order to assist the reader we will show the conditions for which such a decom-
position holds for any vector field of R" . Let us denote a = (a, , ... , an) € N" ,
x = (jc, , ... , xn) £ R" and

I I A a a, *2 a -a (8 ( 9 Y"M = * =VV"V> 0 ■

Let us define by U(x) the function

U(x) =

1— In |x| if n = 2,
In

if n > 2\n—7(n - 2)an\x\

where an is the area of the unitary ball of R". It is well known that the solution of
the equation

Au = f inR" (4.1)
is given by

u(x)= f U(x-Z)mdZ
J R"

whenever / is a continuous function.
Remark 4.1. If F e l'(R") n Z/(R") and </>, y belong to Ls(R"), i'(R")

respectively, then we have that

(p*FeLs{ R") and «/*FeLs( R").

Moreover, Young's inequality establishes
l/s ( r \ l/s

{!*»'««} {UFld(}'
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In particular, this fact implies
{<j)+W}*F £ L\Rb)

and
l/s

{f \w+v}*Frdt}

s {/»~10,1 L "r| I+{/E-Iv" {/.- }"* ■ °
Lemma 4.1. Let us suppose that v is a continuous function satisfying dav e LP(R")
for | a | = 1 ; then the following inequality holds:

\ 1/p
|U(x)|<|t;(0)| + 8^-5|x|1-2^ (/,|v"|,rf{)

Proof. Let us consider the identity

w(£) - u(x) = [ Vv(t£ + (1 - t)x) ■ [£ - x]dt.
Jo

Integrating it over the ball B of center x and radius \\x - y\ we get

\[ v{£)d£-^r\x-y\2v{x) < [ f \Vv(t£ + {l-t)x)-[£-x]\dtdZ
\Jb 4 JbJ o

< X ■■y\ [ [ \Vv{t(£-x)+x)\dtd£.
J B JO

1 tP

Introducing the change of variable y = t{£ - x) + x we obtain

I [ v{£)d£ - j\x -y\2v(x) < \x -y\ [ t~2 [ |Vv(<J;)| d£dt (4.2)
\Jb 4 Jo JtD

where D is a disk of center at the origin of coordinates and radius equal to t\x — y \.
Since t < 1 and tD C D , it follows that

JiD\Vv(Z)\dZ<7ti/p'\x-y\2/p't2lp' ̂\Vv(Z)\pd^ ,

which together with Eq. (4.2) yields

|^ «(£)</£- ^\x-y\2v(x) <nlP-^-^\x-y\l+2lP ^\Vv(Z)\" d^

Interchanging the role of x and y and applying the triangle inequality we obtain

j\x - y\2\v{x) - v(y)\ < ^v(£) d£ - ^\x - y\2v{x)

+ v(£)di- ^\x-y\2v{y)

from which it follows that

\V(X) - v(y)I < 8^|X - y\l-2,p (J \Vu(^)\pd^j . (4.3)

Taking y = 0 and using the triangle inequality the result follows. □
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In the following lemma we will establish some regularity properties of the solution
of Eq. (4.1).

Lemma 4.2. Let / be a function satisfying

/ € C(R") o(f) = o(\x\~e) when \x\ -> +00, 6 >2 for« = 2;

then there exists a continuous function u with d°u e Hx{R") for |q| = 1 , satisfying
Eq. (4.1). Finally if

/ G l'(R") fl Z/(R") for n > 3

where p 6 max{#, q'} , q > n/{n - 2) and j \ = 1. There exists a solution u of
Eq. (4.1) satisfying ueLq{R") and dau£Hl(R"), |a| = 1.

Proof. Let us denote by fv the following convolution in R", fv = pv* f, where
pv is the mollifier taken such that

Pv{~x) = pv{x), [ pv{t)di= I, and pv(x) = 0 if \x\ >
J R" V

It is well known that fv converge to / in Lr for any r > 1 provided / e Lr. As
we saw above, the sequence (wj^ defined as

uv(x)=f U(x-Z)md£
J R"

satisfies the equation
= L > (4-4)

from which it easily follows that

[ IVuv{x)\2dx< [ \uv\ \fv(x)\dx, (4.5)
J R" J R"

f |Vm„(x) - Vm^(x)|2 dx < [ \fv{x) - f/x)\2 dx. (4.6)
J M J R

From the hypotheses on / we have that if (/t/)„6N is a Cauchy sequence in L2(R")
then so is (Ami/)(/£N . Therefore, in order to prove that dau € //'(Rn) for |a| = 1,
we only have to show that dau e L2(R"). To do this it is enough to prove that the
right-hand side of Eq. (4.5) is bounded. First we will consider the case n = 2, for
which the derivative of the function u, satisfies

d . . d

The hypotheses on / imply that / € Z/(R") Vr > 1 . Since 6 > 2, there exists p > 2
such that 8 - (1 - 2/p) > 2. Applying Remark 4.1 for y = x\£\~l > ^ >
F = fv — f and s = p, where x and Xc stands for the characteristic function on
the open ball B(0, 1) and its complementary set, respectively, we get

x~ [jx- £f U(£) - f^)\d4 e L"( R");
J R
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therefore,
^Waf(u") Vz/eN

and

{L\£r,u"ix) - 4">wf *}"s <* {/,. ̂ -^f
+{s/R.^r'<fa}"7R.|/'-/'i<fa;

hence, (duv/dxi)veN is a Cauchy sequence in LP(R") and so is bounded. Applying
Lemma 4.1 to the Cauchy difference w„(.x) - w (x) we obtain

K(x) - u^x)| < |«„(0) - k„(0)| + C|x|a {£ |Vm„({) - V«,(^r^}1/P

where a — 1 - 2//?. In order to prove that («I/)t/eN is a Cauchy sequence in C we
only need to show that the numerical sequence («I/(0))I/eN is convergent. But this
follows immediately from the definition of uv and the hypotheses on / ; so there
exists a continuous function u such that

2uv -+ u uniformly on bounded sets of R ,

daujy —> dau strongly in Z/(R2), p> 2, |a| = 1.

Lemma 4.1 implies that

K(X)\ < 1^(0)1 + (/R„ IVuvmP dt) l'P ■

 Q  Q
Since o{f) - o(\x\ ), it follows that o(fv) = o(|x| ) (consider the identity

/„(*) = ( pu(t)f(x-Z)dt
J\t\<±

and apply the hypotheses on /). Therefore, we have

°(f„uJ = °(\x\~e+a) when x —> oo,

which implies that fvuv is bounded in l'(R") for any v e N. Hence, the right-
hand side of Eq. (4.5) is bounded. Then our result follows. Let us consider the case
n > 2. We will prove that {pauv)ueN is bounded in R") for |a| = 1 . In fact,
since xU and xcU belong to l'(R") and Lq(R") where q >n/(n- 2), applying
Remark 4.1 for y/ = xU , <f> — xcU , s = q , and F = fv yields

f i c r r i
/ n \uv{x) - u^x)\q dx < C I \xcU\ dx\ I \fu- f/ dx

yR J J R L«/ R
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Hence, («1/)v6N is a Cauchy sequence in Lq(R"); so we have that there exists u in
Lq such that

uv —► u strongly in Lq{R").

Since fv converges to / in Lq (Rn), we conclude that the product fvuv converges
to fu in l'(R"); then Eq. (4.5) implies

dauu —* dau strongly in L2(R"), |a| = 1.

The proof is now complete. □

Lemma 4.3. Let F be a vector field in [Hk(R")]" such that the divergence of F
(divF = /) satisfies the conditions of Lemma 4.1. Then we can decompose F into
two parts, both in [//^(R")]", one of them a gradient and the other a solenoidal
function (that is, with null divergence).

Proof. From Lemma 4.2 there exists a function p such that d"p € Hl(R") for
|a| = 1 , satisfying

A/> = divF in R".
Since Ap = divF e Hk~\R"), we have that dap e Hk(Rn) for any |a| = 1, and
from the identity F = Vp + (F - V/?) we obtain the desired decompositions. □

Lemma 4.4. Let us denote
/ 1 fl \ /I

u0 = (u0, ... , U0), Uj = (Uj,..., Uy);

then if the initial data u0 and u, are such that

Dyo(x) = DjUl0(x), £>.«{(x) = Dju\(x) for i^j,

the solution u of system (1.1) also satisfies

DjuJ(x, t) = DjUl(\, t), DjU^fx, t) = DjUt(\, t) in R" x R(.

Moreover, if divuQ = divu, = 0, then u is a solenoidal function.
Proof. Denoting di-da for a = (0, ... , 1, ... , 0), where the 1 is in the j'th

position, from system (1.1) it is easy to see that
def

Cy U

satisfies

Cdef a j r\ /iju - dtu - djU

icU - Aicij "} + <?* Aicij«} = 0,
Cy u(x, 0) = 0, Cy u, (x, 0) = 0;

on the other hand, the divergence operator solves

{div u}tt - A{div u} + g * A{div u} = 0,
divu(x,0) = 0, divu((x, 0) = 0.

By the uniqueness of the solution our result follows. □
From Lemma 4.3 we can decompose the initial data into two parts, say

U0 = U0 + Uc> U! = + U,
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where div(Ufl) = 0, div(u^) = 0, and = V/?0, u', = Vp{ for some functions
p0, px . Let us denote by u5 the solution of the system

u*( - pAu +g*Aus = 0 inl"xi(,

us(0) = Uq and u*(0) = u* in K".

From Lemma 4.4 we conclude that

divu* = divu^ = 0 in R".

On the other hand, if u' is the solution of

u' — (A + n)u + h * Aii' = 0 in R" x R ,
. . (4.8)

u'(0) = and uj(0) = u', in M" ,

Lemma 4.4 implies that Ctj uv = 0; therefore, we can express u' = Vp for some
scalar function p . Note that in this case we have

Vdivu' = V{A/?} = A{V/>} = Au';

therefore, the function u = u1 + u' satisfies Eq. (1.1). By the symmetry of the system
(4.7) and (4.8) it is sufficient to study one of them; therefore, denoting u = u*,
u0 = Uq , and Uj = uj, we will consider

u;r - pAu + g * Au = 0 in R" x R(,
n
x'u(0) = u0 and u,(0) = u( in

In this case we will define the energy functions as

E\{t) = \ Jn{\ut\2 + (! ~ JQ gdx) lVw,|2J +

m = \ jJyZ2\Vuij\2 + ̂  (* - JQ |Au|2| dx + fig O Audx,

= ^{|u»|2 + ^E|Vm-,/} dx-

and

E3(t) =

We will conclude the asymptotic behaviour of the energy by studying the asymp-
totic properties of the energy density function given by

r, (£, 0 d^f i|u,i2+p\z\2 (1-fig*) it i"/i2 + f \z 12 £ gD *i'

r2($, t) =f ifi2r.(f, t),p
def .2 , , -.2, - ,2^,0 =

1=1

i(t) =f Re{u(( • flj + ^(0)|u,|2 + ||£|2^/G ui - f fdt) Sl"«l
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and
S(t) = ^|£|2Re{u(-5}

where v denotes the usual Fourier transform of v .
To conclude that the rate of decay depends on the regularity of the initial data,

we will use the following lemmas.

Lemma 4.5. Let v be a function in L2(R") n Z.'(R") for which there exist / e
L2 (Rn) n L1 (Rn) satisfying

v — da f where |a| = m.

Then we have
|fl(i)| < [2n]-nll\C\ f \f(x)\dx e R".

J R"

)eixidx

Proof. Integration by parts of v implies that

«({) = [2^r"/2(-/)|a|\Of f{x)e
J R"

where j = >/-T. Since / ei2(R")nt'(R'') our result follows. □

Lemma 4.6. If r is a positive real number, then we have

t]2me~rv dt] < (2m)]\/nj2r m_1^2 s m = 0,1,...
/Jo

Proof. Let us denote by Im the integral in the left-hand side of the above inequal-
ity. Straightforward calculations give the inequality

70 = f e~rri dr) < v/7r/2r~1/2.
Jo

Reiterated use of integration by parts on Im with m > 0 implies

Im < {2r)~\lm - 1) [ t12m~2e~rr' dr] < (:2r)~X(2m - 1 )Im_l < r~m(2m)\I0
Jo

which together with Eq. (4.9) yields the required inequality. □
Let us denote by E'k and Esk the energies stored in the irrotational and the

solenoidal parts of the displacement vector field, respectively, for k = 1,2,3. We
will express our final result in the following theorem.

Theorem 4.1. Let us suppose f,g are C -functions satisfying Eqs. (1.4), (1.5),
and (2.3). Let u0 and u, be vector fields in [//2(R")]n and [//'(Rn)]" respectively,
such that divu0 and divu, satisfy the hypotheses of Lemma 4.3. Then the displace-
ment vector field can be decomposed into two parts, one of them solenoidal and the
other a gradient whose associated energies decay as

E\{t) + E[(t) + E[{t) <c{rn'2,

E\{t) + Es2{t) + El{t)<cxrnl\
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Moreover, if there exist functions fQk and fk e L2(R") n l\r") such that

d<Xkfa=uo and dfikfk = u\, k = \, rt,

then
E\ (t) + E'2(t) + E\(0 < c, rm-n/2 ,

E^t) + Es2(t) + Es3{t) < cirm~"12

where m = min{|afc| + 1 , \Pk\; k = I, ... , n}.
Proof. We will suppose that (u0, u,) e D(A ) x D(A). Our conclusion will follow

from the fact that D(A2) x D(A) is dense in [//2(K")]" x [//'(K")]" . In view of the
above discussion it is sufficient to prove the result for u = u'. Let us introduce the
following function:

jr (o = r3(o + g(0) { i - ^} i(t) + g( o) {i - ^} *{t)+(t)+jV&it),

31 = |u(|2 + ^^|2^|ii,|2,
i=i

and

jt = iuj2+niz \i\2K,\2+m\4\»\2++ ia2} £>□ ur
i=l ;=1

As in the proof of Theorem 3.1 we conclude that
2

(4.10)

and
, t) < cxj? + (2 + ^(0) + a)&({ , t).

In order to prove the uniform decay of u, we will consider two cases. First we will
prove that the energy density decays exponentially for |^| > 1 and then that the
uniform decay holds for |£| < 1 . In fact, for |^| > 1 we have

Jf{i,t)<{cl+2 + g{0) + a}JT for |£| > 1 (4.11)
which together with Eqs. (4.10) and (4.11) yields the inequality

jbr(£,0 + y^(£,0<o
2for y = ag(0) /(4kc2) , where c2 = {cl + 2 + #(0) + a) , from which we get

JT(£, 0)e~7'.

Integrating over |£| > 1, we obtain

[ •*-(£,*)#< | f ^(Z,0)dAe~yt. (4.12)
J lil>i [J\t\>i J

On the other hand, since

\^(^t)<(c.+2 + g(0) + a)jr V|£|<1, (4.13)



ASYMPTOTIC BEHAVIOUR IN LINEAR VISCOELASTICITY 647

inequalities (4.10) and (4.13) imply

so we have
0 <•&({, 0)e rK,2t. (4.14)

Integrating the above inequality over |£| < 1 and using Lemma 4.6 we conclude that
there exists a positive constant Cx such that

[ jr(t,t)dt<cA [ o)dAr"12.
J\Z\<1 J

From Eq. (4.12) and Plancherel's identity, part (i) follows. Finally to prove part (ii),
let us suppose that there exist functions fQk , f{k e L2(R") n l'(R") satisfying the
hypotheses of this theorem; then there exists C2 > 0 satisfying

jr{t,o)<cM\ie)\2 + \i\4W\2}-
From Lemma 4.5 we have that

jr^o)<c3 |Eiri + i£i2Ei£2vVi
k=1 k=1

where

Since

C3 - max If \f0k\di, [ \f\k\d£; k=l,.
UR" J R" )

/ ■
JT(£,

<C4 [ IE ir* i + i^i2 E \^ki + E 10 1ds'
J\t& U=i k=i k=\ J

by iterated integration and applying Lemma 4.6 we conclude that

/J\t\
jr(i,0)e <C5t m "l2 (4.15)

'Kl<i
for C5 > 0. As in the proof of Theorem 3.1 we have

[ <T(Z,t)d$>c0 [ *(Z,t)+&(Z,t)dZ.
J R" J R"

From Eqs. (4.12) and (4.14) and the Plancherel identity our result follows. □
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