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Abstract. We consider the behavior of a premixed flame anchored on a flat burner.
For Lewis numbers L < L* < 1, one-dimensional stationary spatially periodic so-
lutions corresponding to stationary one-dimensional cellular flames (rolls) bifurcate
from the basic solution which corresponds to a steady planar flame. We derive and
analyze an equation for the evolution of the amplitude of the roll solution just be-
yond the critical Lewis number L*. That is, we consider the case of supercritical
bifurcation (L < L*) and determine the ranges of wave numbers of perturbations
corresponding to both the Eckhaus instability (to longitudinal perturbations) and the
zigzag instability (to transverse perturbations) of the bifurcating solution. We deter-
mine these ranges in terms of the flow rate m e (0, 1) and the scaled heat loss to
the burner K > 2/e . For wave numbers k < 0.25 we find that the zigzag instability
occurs for all allowed values of K and for m bounded away from 1 and 0. As
k increases, the range of values of m and K for which this instability occurs de-
creases. For k > 0.4 the zigzag instability no longer occurs for any allowed value of
m and K . For each value of L there is a minimum value m = mt(L) above which
the Eckhaus instability does not occur. As L approaches L*, mt(L) increases.

1. Introduction. Cellular patterns and their stability have been studied in the con-
text of a wide variety of phenomena ranging from fluid dynamics to biology [9], For
example, in many applications one-dimensional stationary cellular patterns, or rolls,
are observed. Two types of long wavelength instability which occur in these patterns
are instability to longitudinal perturbations—the Eckhaus instability, and instability
to transverse perturbations—the zigzag instability. The Eckhaus instability for cellu-
lar flames was analyzed using a two-dimensional model in [2], in which the flame is
treated as one dimensional, that is, as a curve. The zigzag instability, associated with
the rotational invariance of the rolls, leads to the undulation of the rolls along their
axis, which results in a two-dimensional pattern. This modulation can be thought
of as the system shifting the length of the wave vector closer to its optimal value
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h
Fig. 1. The zigzag instability

kc by decreasing the wavelength of the rolls [10]. As can be seen from Fig. 1, the
wavelength X2 of the two-dimensional pattern is smaller than A,, the wavelength of
the rolls.

One model of flames anchored on a flat burner is discussed in [1] which, following
[4], models the burner as a heat sink. Another model is described in [5] and [6]. The
stability of a steady planar flame to one-dimensional disturbances was examined in
[1] and in [8] for the model described in [5] and [6]. The behavior of two-dimensional
polyhedral burner-stabilized flames was considered in [7], where instabilities arising
from the interaction of two discrete modes in an effective one-dimensional burner
were examined, and in [3], in which the interaction of two discrete modes in a
cylindrical burner was considered. In the two-dimensional burner model used in [2],
stationary cellular flames which bifurcate from the steady planar flame at a critical
Lewis number L = L* < 1 were described in the context of a Ginzburg-Landau
equation which was derived.

In this paper we employ a three-dimensional model of burner-stabilized flames,
in which the flame is treated as a surface, to study the behavior of cellular flames
arising as a bifurcation from planar flames and their stability. We derive an equation
for the evolution of the amplitudes of a continuous band of unstable modes centered
about the most unstable mode in the linear stability analysis of the planar flame. One-
dimensional cellular solutions (rolls), which bifurcate from the basic solution for L <
L*, are obtained and their stability determined by analyzing the evolution equation.
We determine the stability of the cellular flame to both longitudinal and transverse
perturbations, thus determining the ranges of wave numbers that correspond to the
Eckhaus and zigzag instabilities, respectively. The stability regions for the wave
number are determined in terms of the physical parameters of the model, the flow
rate m e (0, 1), and the scaled heat loss to the burner K > 2/e. We graph the
Eckhaus and zigzag stability boundaries in the (m, A^)-plane, indicating the regions
of stability of the stationary cellular solutions that bifurcate supercritically. For wave
numbers k < 0.25 we find that the zigzag instability occurs for all regions of the
(m, AT)-plane, except for narrow bands corresponding to values of m near 1 and 0.
As k increases, the range of values of m and K for which this instability occurs
decreases. For k > 0.4 the zigzag instability no longer occurs for any allowed values
of m and K . For each value of L < V we find a minimum value m - mm(L) above
which the Eckhaus instability does not occur. As L decreases so does mt(L), so that
the region of the (m, A^-plane for which the Eckhaus instability occurs decreases
with decreasing Lewis number.

2. Formulation. The model we employ is a straightforward extension to three
dimensions of that used in [1] and [2]. In this approach the burner is modeled
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as a heat sink [4], with assumptions of weak thermal expansion of the gas, large
activation energy, and Lewis number close to unity. We also assume that there is
a single deficient component of the reaction so that only its mass fraction evolves,
while the mass fractions of all other components are so abundant that they can be
considered to be constant. Moreover, the reaction is modeled by one-step Arrhenius
kinetics, and the temperature of the burner is taken to be equal to that of the fresh
mixture for simplicity.

We employ nondimensional cartesian coordinates [x{, x2, x3), with the burner
located at Xj = 0. We seek perturbation expansions of the nondimensional tempera-
ture T(t, x j, x2, x3) and mass fraction Y(t, xl, x2, x3) of the deficient component
as

T — T T T
T=^~ 0 + -=r H—4 + • • • , (2.1)

Ta~Tu Z Z2
Y Y Y

y = ^~y+-L + _i + ... (2.2)
Yu 0 Z z2

where Yu is the dimensional mass fraction of the fresh mixture,

Z = ™ 1 - ^ » 1 (2.3)

is a nondimensional quantity termed the Zeldovich number, E is the dimensional
activation energy, Tu and Ta are the dimensional fresh mixture and adiabatic flame
temperatures, respectively, and R is the gas constant. Since activation energies in
combustion are typically large, the reaction zone is a narrow region of width 0{ 1/Z).
As Z —* oo, this zone shrinks to a front whose location is given by

xl=Q>{t,x2,x3). (2.4)

The Lewis number L, which is the ratio of thermal to mass diffusivities, and the
heat loss coefficients H are scaled as

L= 1 + |, H = £ (2.5)

Assuming that the reaction goes to completion at the flame front, we set Y = 0
behind the flame.

Employing a coordinate system that moves with the flame front

x = xl -<!>(?, x2, x3), y = x2, z = x3, (2.6)

the model is given by

e + y0 = i, (2.7)

ae ( d(t>\ee ^ f, (do\2 /ao>\211/2 fs\g/.
-dT+[m--dT)-^=Ae+\l + {^) +Uz)j

f + (".-^)^ = A5 + Me-A:e^ + o) (2.9)
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with boundary conditions
a rt

0=1 forx>0, — —► 0 asx-*+oo; (2.10)

8 —> 0,>S—>0 as^-t-oo; (2.11)
|8| < oo, |5| < oo as y, z —* ±oo. (2.12)

In (2.9) the parameter m is the flow rate of the fuel, S is defined as

s = r, + y,, (2.13)
and 8 is the Dirac delta function. The Laplacian in the moving coordinate system
is given by

A =

-2 — -
dx dydxdy ~ dz dxdz'

(2.14)

3. The basic solution and its linear stability. A steady solution of (2.9)—(2.12),
termed the basic solution, is given by

f 1, x > 0,e°W=L™ X < 0; <3-"
B, x > 0,
B - fimxemx , -h < x < 0, (3.2)
Bem(x+h) - [imxemx, x < —h;

<*>0 = ^ (3.3)

S0(x) =

where
B = 21n(„), * = (3.4)

The basic solution (3.1)—(3.3) represents a stationary planar flame located at the
standoff distance xl = h . The 0{l/Z) correction to the flame temperature, B , and
the stand-off distance h are given by (3.4). As shown in Fig. 2, h is a [/-shaped
function of m, whose minimum approaches zero as K approaches 2/e. We note
that the basic solution becomes unbounded as m —> 0. Hence, only values of m
bounded away from zero are considered. In addition, we consider values of the heat
loss parameter K > 2/e [1] in order to avoid flashback (h < 0) for certain values
of m . The behavior of this basic solution is discussed further in [1],

To determine the linear stability of the basic solution we introduce the perturba-
tions

0 = O-A, (3.5)
w = 8 - 80(x) - cf>^ , (3.6)

v = S-S0{x)-4>^. (3.7)
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5.0 r

m
Fig. 2. Graph of h vs. m for K = 2/e, 1, 2

The linear problem for these perturbations is obtained by substituting (3.7) into
(2.9)—(2.12) and linearizing about <j> = w = v = 0,

dw dw 2 „ . „ ,— + m—-Vw = 0, x*0 ,-h,

IFt + m ~ ^2y ~ = 0' x ^ 0 ,-h,
(3.8)

where

with jump conditions

dw
dx

V1 = + + (3.9)
dx2 dy2 dz2

* = (3-10)

[v]o + 0[w]o = O, (3.11)

- m[w]0 + ~v(t, 0+, y, z) = 0, (3.12)
o z

dv
dx + fi

o
dw
dx

dxi-h

where [f]a denotes the jump in / across x = a,

+ Pm[w]Q = 0, (3.13)
o

[v]_h = 0, (3.14)

1 - Kw(t, -h, y, z) - 0, (3.15)

[/L = f(t, a+,y, z)-f{t, a , y, z), (3.16)
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and boundary conditions

dv
w = 0 forx>0, — —» 0 as x -» +00; (3.17)

w—> 0,v—>0 as x —>-00; (3.18)
|u;| < 00, |t>| < 00 as y, z —► ±00. (3.19)

We find that (3.8)—(3.19) has solutions of the form

^=jRe-'+'V+'V^+ c.c. (3.20)

2 2 2where k{ + k2 = k , R is an arbitrary complex constant, c.c. denotes complex
conjugate,

f 0, x > 0,
W=\ Dx (3.21)I -e"x, x<0] v ;

A2e,x, x > 0,

V=< Celx + Dlepx + D2xepx , -h < x < 0, (3.22)
. Eepx + D7xepx , x < -h;

(3.23)

A2 = -, C=- + /?(/ ~k2\ (3.24)
L rn m l\£

and

p - \{m + \]m2 + 4a» + 4k2}, l — m-p,

3(l2 - k
m m {p -1)2

D.=p + --C, D2 = ^ , E = D. +Ceh(p~l). (3.25)
1 m 1 p -1 1

In the following sections we consider modulations of one-dimensional roll solutions.
Therefore, we consider the specific wave vector (kA, k2) = (k, 0) so that these so-
lutions are periodic in y only. Thus a distinction is made between the y- and
z-directions, and we refer to these directions as longitudinal and transverse, respec-
tively.

The solution (3.21) and (3.22) is nontrivial if and only if the dispersion relation

21(1 - p)2 + - k2) + Km{l - p)e~h[p~l) = 0 (3.26)

is satisfied. For $K(a>) <0 (> 0) the basic solution is stable (unstable). The neutral
stability boundary corresponding to co = 0 is shown for selected values of m and
K = 1 in Fig. 3. This boundary, given explicitly by

P = _2 - 8-4 + 2fQg h\ , (3.27)
m2 m(m - a)

2 2 2where a = m +4k , delineates the region of cellular instability of the basic solution.
The boundary corresponding to 3(<w) / 0 is discussed in [2],
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-5.0

-10.0 I \m-.9

-15.0

-20.0 •

-25.0 ■

-30.0

Fig. 3. Neutral stability boundary for m = 0.9 and m = 0.5 and
K = 1

4. Nonlinear analysis. For admissible values of the flow rate m , the neutral sta-
bility curve has a local maximum at (/?0, k()), where kQ / 0 corresponds to the most
rapidly growing mode of the perturbation (3.20). In Figs. 4 and 5 the coordinates
of the maximum are shown as functions of m and K . From Fig. 5 we see that k0
has a maximum value for all 0 < m < 1 and K > 2/e, which we refer to in
Sec. 5.

We perform a local analysis in a neighborhood of the point (/?0, k0), seeking
solutions that bifurcate from the basic solution (3.1)—(3.3). We expand in the small

-2.0 r

-20.0
0.0 0.2 0.4 0.6 0.8 1.0

m
Fig. 4. Graph of p0 as a function of m for K = 2/e, 1,2. For
values of f} < y?0 , cellular solutions exist.
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0.5

0.4 0.6

m

Fig. 5. Graph of kQ as a function of m for K = 2/e and K — 20

parameter e as

P ~ (S <\+ve2) + ... , (4.1)

<j> ~ £0j + £ </>2 + ' ' ' > (4.2)
u; ~ eto, + £ w2 H  (4.3)

and employ the scaled variables

r = £2/, rj = ey, C = fi'/2z. (4.4)

This choice of scalings is motivated by the fact that we are interested in the mod-
ulations of one-dimensional roll solutions directed along the ^-direction. That is,
we perturb the wave vector (fc, , k2) = (k, 0) in (3.20) as (k + Sky , Sk J (S < 1),
substitute in (3.8), and balance the leading-order terms, which have coefficients Skx
and (Sky)2.

The expansion of /? implies that the basic solution S0(x) is expanded as

SQ ~ S00 + e2SQ2 + ■■■ . (4.5)

The perturbation v is then defined as

v = S- SQ(x) - (4.6)

and is expanded as

Substituting (4.1)-(4.7) into (2.8)—(2.12) and equating like powers of e we obtain

2v ~ £t>, + £ v2 H . (4.7)
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the sequence of equations
dw. dw. ,
~~df + m~di ~ Vwj = ' x*°>-h> (4-8)

dVf dvj , 2
~dt~ + m~dx~V Vj~PoV wj = rj2> X?0,~h, (4.9)

with jump conditions

^ = <4-10)

[Vj]0 + P0[Wj]0 = Pj0, (4.11)
dw j
dx o

dVj
dx

- m[Wj]0 + ™Vj(t, 0+ , y, z) = pj{, (4.12)

+ Po
0

dw-
dx + P0m[Wj]0 = pj2, (4.13)

[Vj\_h = Pj3, (4.14)
dVj
dx - KwAt, -h, y, z) = pj4 (4.15)

-h

and boundary conditions

dv
Wj = 0 forx>0, ——» 0 asx—>+oo; (4.16)

Wj —>0,Vj —>0 as x —»-oo; (4.17)

|t«.| < oo, \Vj\ < oo asy,z—>±oo. (4.18)

The nonzero inhomogeneous terms r,, rj2, pJ0, pjX, pj2, pj}, pj4 for j = 1-3
are given in Appendix A.

For j = 1 all the inhomogeneous terms in (4.8)—(4.18) are zero, so that for a long
time the one-dimensional roll solution of the homogeneous problem is

M •* - •*. [ww\
= (Re,k°y + Re °y) I V{x) (4.19)

>i J l 1 /m J
where W(x) and V(x) are given in (3.21 )-(3.22) with p, k, and w replaced by
P0,k0, and zero, respectively. Since we perform our analysis in the neighborhood
of the local maximum (fi(), kQ) of the neutral stability curve, all other modes de-
cay exponentially in time. At this order the complex coefficient R(t , tj, Q and its
complex conjugate R are undetermined.

Higher-order terms in the expansion of w, v , and 0 satisfy equations (4.8)-
(4.18) with j >2, which are inhomogeneous forms of the equations with 7 = 1.
Solutions to these problems exist if and only if certain solvability conditions are
satisfied, as given in Appendix B. The small parameter e is defined so that

(»■)•(«•)),=0 <J>1)' {4'20)
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Thus the homogeneous part of the solutions for j > 1 will vanish. Said another
way, e is defined so that the homogeneous parts of the solution at each order are all
collected into the leading-order term. Here the quantity <("), (™*))i and the vector
(w*, v*) which is the long-time solution to the problem adjoint to (3.8)—(3.19) with
13 = are given in Appendix B. For j — 2 the solvability condition is identically
satisfied, and the solution is determined to be

w2\ ( W2.(x) \
= (R2e2,k°y + R2e 2,k°y) | V2l(x) J+/U?

VI^ilo/m]

df - —r 0,1 + i ^2 - —0^ Ic ri ^+ < I ̂  + 2ik0^ 1 + ( — _ 2ik~ ) e-v > I F23(X)
W2i\Jm

d2R ... dR\ i/c„v (d2R 3R\ _k.vl I ^23,Wx
)/

(4.21)
where W2j and V2j for 7 = 1 — 3 are given in Appendix C. For j = 3 we apply the
solvability conditions to obtain the evolution equation

dR „ , / d 1 d

where

2 2
,2,

8r=""* + 4Ur2iM?l R + m R <4'22)

m(a — m) 2 2 „, 2a = — >0, a = m +4kQ , (4.23)

and b and d are given in Appendix C. The graphs of these coefficients are shown
in Figs. 6 and 7 for particular values of K and for m € (0, 1). For these values of
m and values of K such that h > 0, the coefficients b and d are positive and neg-
ative, respectively. The equation (4.22) is referred to as the Newell-Whitehead-Segel
equation, which was first derived in the context of the Rayleigh-Benard convection
[11,12],

2.0 r

1.5

-o 1.0

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0

m
Fig. 6. Graph of b vs. m for K — 2je ,1,2



TWO-DIMENSIONAL CELLULAR BURNER-STABILIZED FLAMES 675

-0.2

-0.4

-0.6
0.0 0.2 0.4 0.6 0.8 1.0

m

Fig. 7. Graph of d vs. m for K = 2/e, 2

5. Analysis of the amplitude equation. In this section we analyze the behavior of
stationary spatially periodic solutions of (4.22) given by

R = r0eiK" (5.1)

where

ro = ~" 77 - (5-2)
2 bK2 - av

provided

^^>0. (5.3)

For the subcritical case (v < 0) this condition is never satisfied, since d < 0, a > 0,
and b > 0, while in the supercritical case (v > 0) (5.3) is satisfied by wave numbers
k such that

2 avk < —. (5.4)

Considering a perturbation SF of (5.1) of the form

R = r0e,K" + ^{x, rj, C)e'K\ (5.5)

we determine the stability of the stationary cellular flame (5.1). The equation for

d3r a W b dbKd2&~ ... b aV ,d2P— =drJSr +$r) + -  j + 7 - + 2ibK-= T—T + b T 5.6
d? 0 **b dtjd(2 ko d(2 d*1 4k2 8C dr)

is obtained by substituting (5.5) into (4.22) and linearizing about &~ = 0. Setting
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SF - f + ig , we find that / and g satisfy the equations

df b , bKd2f ^u„dg b a4/ , ud2f ,c ^
—— — 2uTnj + - -z -\—  y — luK— ~—j + b—j , (5.7)
dr 0 k0dtidC k0 dC2 dri 4k2 dt* dt]2

dg b d3/ , btcd2g i ^df b d4g , ud2 g /c ON—— — —7 ~ + -j * + 2dk— y—j + b—~ , (5-8)
dr k0dnd£2 k0dC2 drj 4k2 dC dt]2

which have nontrivial solutions of the form

= ent+iw+in}c //\ ^ ^

for values of D. such that

(Q-2^r02 + r,)(Q + r1)-r2 = o, (5.10)
where

r b)C 2 , b 4 , 2ri = TP ̂  ' (5-n)
0 ^0

b 2
r2 = -r-fi2t*} + 2bicfi2. (5.12)k0

We restrict consideration to Q real. In fact, there is a pulsating instability corre-
sponding to Q complex; however, it occurs in a different parameter regime and is
not considered here. The solution (5.1) is stable (unstable) if Q, < 0 (> 0). For
longitudinal perturbations (n2 ^ 0, //3 = 0) the condition for stability is

2 av / c i ->\k < (5.13)

This condition, the well-known Eckhaus criterion, indicates that for the cellular flame
with wave number k near k0 , longitudinal perturbations of this solution decay if

fw i / [w , , ..
~\Jb+ 0< \3b+ °" ( }

For transverse perturbations (//2 = 0, //3 ^ 0) the stability condition is

k>0. (5.15)

Stationary periodic solutions (5.1) not satisfying this criterion are said to undergo
the zigzag instability. From (5.13) and (5.15) we conclude that the solution is stable
to both longitudinal and transverse perturbations only if

i i [w J
ko<k <

We observe that consideration of n2 and /i3 simultaneously nonzero does not change
the stability conditions. The stability condition is given for k in terms of the physical
parameters m, K, and v in Figs. 8-10. In Fig. 8 the marginal, Eckhaus, and zigzag
stability boundaries are shown for v — 1 and K = 1. From Fig. 9 (see p. 678) we
conclude that the stability region given in (5.16) narrows as K increases. As shown
in Fig. 10 (see p. 678), the width of this stability region decreases as v —> 0, that
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1.0 r , .   Eckhous stability boundary
/ j \ ^   neutral stability boundary

0.8

0.6

e
0.4

0.2

0.0
-0.5 -0.3 -0.1 0.1 0.3 0.5

Fig. 8. Graph of the neutral, Eckhaus, and zigzag stability bound-
aries for K = 1 and v = 1 , as given in (5.4), (5.13), and (5.15),
respectively

is, as p —> /?0 . This result is as expected, since /?0 is the maximum of the curve
delineating the cellular instability region of the basic solution. The zigzag stability
boundary (k = kQ) is given in terms of K > 2/e and m in Fig. 11 (see p. 679).
For values of K exterior (interior) to the curve corresponding to k = k*, cellular
flames with wave number k* satisfy (violate) condition (5.15). The horizontal line
corresponds to K = 2/e which is the largest value of K for which flashback occurs
for a particular value of m . From the dependence of k0 on K and m , we conclude
that for K > 2/e cellular flames with wave number k > k™ax ~ 0.4, where k™x is
the largest value of k0 for any 0 < m < 1 and K > 2/e, do not undergo the zigzag
instability. As k decreases from k™ax we find that the set of values of K for which
the zigzag instability occurs increases in size, so that for wave numbers k < 0.25 we
find that the zigzag instability occurs for all regions of the (m, A^-plane, except for
narrow bands corresponding to values of m near 1 and 0.

In Figs. 12 and 13 (see pp. 679 and 680) we graph both the Eckhaus and zigzag
stability boundaries for specific values of k and ft. The region corresponding to
the stability of the rolls is the intersection of the region to the right of the Eckhaus
stability boundary and external to the zigzag stability boundary, as described above.
For fixed k, decreasing fi results in an increase in the size of the region of stability
in the (m, AT)-plane, as can be concluded from Fig. 10 as well. This change is due
only to the increase in size of the region which is stable to longitudinal perturbations,
since the zigzag stability boundary does not depend on ^ . In Fig. 14 (see p. 680)
we plot the Eckhaus stability boundary for specific values of k , which indicates that
the variation with k of the corresponding stability region is more complex than that
delineated by the zigzag stability boundary, as can be seen by the crossing of the
curves.
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1.0 r

Fig. 9. The Eckhaus and zigzag stability boundaries for K = 2/e, 5
and u = 1

Fig. 10. The Eckhaus and zigzag stability boundaries for K = 1 and
v = 1, 3
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10.0

m

Fig. 11. Graph of the zigzag stability boundary in terms of m and
K > 2/e. For values of K exterior (interior) to the curve corre-
sponding to k = k* cellular flames with wave number k* satisfy
(violate) condition (5.15).

10.0 -

k=.35
k=.38

Fig. 12. Graph of the zigzag stability boundary (designated by zz)
and the Eckhaus stability boundary (designated by E) for k = 0.35 ,
0.38 and ft = -0.6 . The region of stability is the intersection of the
region to the right of the Eckhaus stability boundary and the region
external to the zigzag stability boundary.
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10.0 -

6.9

3.8

0.7

p=-A

0.5 0.6 0.7 0.8 0.9 1.0

m

Fig. 13. Graph of the Eckhaus stability boundary for k = 0.35 and
P = -6,-4

10.0 -

0.55 0.65 0.75 0.85 0.95

m

Fig. 14. Graph of the Eckhaus stability boundary for k - 0.25,
0.35, 0.38, 0.4 and p = -6

Appendix A.
The terms rjl, rj2 , pj0, pj{ , pj2 , pj3 , and pj0 for j = 1 , 2, 3 , which appear on

the right-hand side of the inhomogeneous problem (4.8)—(4.18) are given by

r\\ = r\2 = P\0 ~ P\\ = P12 = P13 = P14 = ® (A.l)
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\2 d2&0 d2wl d2(f)j dwx d2&0
V dy ) dx1 dy dydx dy2 dx + ldx2

.d2w. d2w.
+ 2ir^r- + r

dx + ^dx +0' dx2 +^1 dx2

(d2v. d2w, \ d2v. d2w.
(dyd?/ + °dydrjJ + of + ° <9£2 '

_<KP21 - 9
d '^00

J -h

dv{

r3!
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(A.2)

^ + B - 2^1 + B
dx2 0 dx2 ) dy \dydx °dydxj

,2„ ,2~ 1

(A.3)

P20 ~ P7.2 = 0' (A-4)
m (d<j>{ \2 m 2 .. ..

P21 ~ 2 y dy ) 8 ' (A-5)
]2 r j2n 1 o.. -.

+ 4>\ (A.6)

(A.7)

\ ^y / |_ ax ax

d2e0
K dy dy dy dt] \ dC J J dx2

f d<t>\ d2w2 dtp2 d2wj d(f)l d2w{ dcpl d2w{ d<j>{ d2wx \
y dy dydx + dy dydx + dC dl^dx + dy dtjdx + dt] dydx J

/ ~2 , ,2^ „2 , r„ ,2^ id2e(
dx2

a2 a2
■ 2d W2 I Wl

dydt] dt]2
(A.8)
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dv. (d(f>.\2 \d2vl a d2wl ,d2sl~
r32 - xr + ( a., ) Q 2 + A) Q 2 + m<t>\ ,2

iX + z? d2yji
d(dx Podt;dx

-d\ + a\

dS°~n U Uu-) , UOn

dvx dw{ dS[
+ Po^L + m't,l°9x T ^ ate

df + dydrj ' ~nudydr] ' g^2 ' r» ^
() to, 9 v. 0 d w. 0 _2

1^—~—I r A) 7 A)^ w\dydt] Qrj2 0 g^2 0

_ d2<t)x dSQ2 d_ 0O
flv2 flbc +/^° 01 ^r3 '

(A.9)

/>30 = 0> (A-10)
2

w 3 W V, , m (d4>i\ .
^31 48^llx=0+) 4 (UlV2)lx=0+ + 4 ^ J vilx=0+

P32 ~ A)"
dw.
—— - mw,
ox 1 (A. 12)

P33 — &
dv2
dx

+ 4>\4>2

+ 4> 2
-h

d '^00

9v1
9x

_^i
-A 2

dx2 3
d ^00

dx3

a2?;,
9x2

-h

-h

(A. 13)
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-©)]

(dJ±Y \dvi
\ dy J dx

n _ ( d(t>i ~,d(t>i dtp2
Pm ^ dy 8r\ dy dy

2 1
+ 0,

+ </>l 0;
d Sqq
dx3 3

-h

d2v2

dx2

d4Sm
dxA

T V2

-h

-h

dx

d2vl
dx2 -h

£
2 9x3 -A

I K ( 6dWl 6 dWl l ^ i i ^0° I ^

x=-h

(A. 14)

Appendix B.
The problem adjoint to the linear homogeneous problem (4.8)—(4.18) is

^ + m^ + vV + /?°vV = 0' x^0,-h, (B.l)

^ + mlfx+v2v* = 0, x^0,-h, (B.2)

with jump conditions given by

[«*]«, = ["'Jo = °> (B-3)
- 0 as x -» 0" , (B.4)dx

dv* m
o

[v*]_h = [w*]_h = 0, (B.6)

dx + jw |v=0- -0, (B.5)

dv*"1 -0, (B.7)
h

dw*
dx -h

dx

Kv\x=_h = 0 (B.8)

and boundary conditions

u>* —> 0,v*—>0 as x —► ±oo. (B.9)

A solution to the inhomogeneous problem exists if and only if

rj\ ^ ' w
rji) V v

(B.10)

x=~hl
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with the above quantities defined by

J r T r27t/k0 roo

(/!)■(£)),*L I"'Sjf^+fA)dxdydi-(Bu>

((/i) ■ (%))>=£So?rr"°(/'y|+f^dL <ai2)
For a long time the adjoint problem has the solutions

(£).

where

W =

C*e px + C2xe px, x > 0,

D\e~ + Ee + D2xe~ , -h<x<0, (B.14)

'rF*e~,x + D*xe~'x, x < -h

and

« [ A*e px, x > 0,
V=\A.-ix n (B.15)\ A e , x < 0,

A*-Pjd.
h

2 2

c>1A"P~ir- cl-A'i>oP-f=T

d; = c;-e\ d"2 = ,

(B.16)

E* = -CA*, F* = D* + E*e(p~l)h ,

with I, p , and C given in (3.25) with <x> = 0 and k = k0.

Appendix C.
The coefficients W2j(x) and V2j(x) for j — 1,2,3 which are included in the

definition of w2 are given by

1 dW 1 20n f 0, jc > 0,
W2t (x) = -j-+~ r^ + i « (Q1)21 w dx 2m dx \ A2Xep , x<0;
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j. . , 1 dV 1 d2S00
^21 (■*) — ~j ' J 9 

21 mdx jm2 dx2

2 dW d0n

B2Xehc, x > 0,

C2,eXx + D2.epx + F2.xepx, -h < x < 0,'21 21 ^ ± 21-

?2i epx + F2l:E2.epx + F2.xepx , x<-h\

(C.2)

W22(x) = -^- + ^-7^, (C.3)m dx m dx

jw , . 2 rfF
22(X) ~ mdx +

B22, x > 0,22
C22 + Dnemx + F22xemx, -h < x < 0, (C.4)
E22emx + F22xemx, x < -h;^22 ' "* 22

f 0, x > 0
x < 0, (C5)

B2}elx + C2)xelx, x > 0,

V23(x) = ^ D2ielx + E23xeIx + F23epx + G23xepx + H23x2epx, -h < x < 0,

I23epx + J23xepx -(- K23x2epx, x < -h;

(C.6)

where

p = ^(m + \Jm2 + 16 kl), X-m-p, (C.7)

2 4^^
^21 = ^21^0 X-p° ' ^22 = ~A22^0m'

A --L * c - 2/
p - V 23 m 23' 23 m(p - /)'

„ 2(1+ (p-l)h)C r C
23 _ (p-/)2 ' 23~ p-l'

-fi0(2 tn-{p-l)m) ygQ(3m2 - m(p -I)- 2 (p - I)2)
23 CP-/)4 ' 23 2(z>-/)3

I 2K I F
_ (P-/)' i23~(^-/)3+^23'

•^23 = ^23 ~ ^ _ ^2 ' ^23 = ^23"

(C.8)
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The coefficients A2j , B2., C2j, D2j , and E2j for 7 = 1,2 are solutions of the linear
equations

(A 21
B

m21
'21
'2r
21

/ sl \
S2
s3
SA21

\EnJ \s5J

and

m22

f An\
b22

cn
D22

V ̂ 22

where the matrices M2X and M22 are given by

(i\ \
t2

h

M2{

and

M21 —

( -po 1-1-1 0
k m/2 0 0 0

-P0(m + P + ^) k -k -p 0
0 0 e~xk e~ph -e~ph

V -Ke~ph 0 ke~xh pe'ph -pe~ph J

-fi0 l-i-l 0
0 10 0 0

-/?0m 0 0 —m 0
0A i -mh —mh0 1 e -e

ts —mh r\ n —mh —mhV -Ke 0 0 me -me

and the right-hand sides of (C.9) and (C.10) are

fsx\ ( PJ2 \
S2
s3
S4

\S<J

3l{p - l)/2m
p0m/2

0
V -Bk\/m )

ax\
t2

h
u

{ 2/?0 \
-2l(m - 2(p - l))/m2

2/?0 m
-B

V IBkl/m )

(C.9)

(C. 10)

(C. 11)

(C.12)

(C.13)
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The coefficients b and d in the evolution equation (4.23) are given by

m,2 a (~4h{m-a) , -2m2 — 4a2 + 8ma p0(mi-2m2a)\ ,^1/IN
o a I 2 + 3 / \ 5/ \ I 'Po \ a m a m(m - a) a (m - a) J

P0 j _ 2ak.Q -4m3 + 7m2a - 4ma2 + a3 nl 2 m2 - (a + 8)m + aS
u ft 1 y /cn ol ^

a m 4m 2(a + d)m

+ /?0A:(
2/ 3(m + (5)2 2m2 - ma + 4a2
0 4m(a + <5)<5 ma(m+a)

^ B [ (m + ck)(—9mz + 6ma — 5aA) ̂ hi ^ 3k^lelh

8 m2 m2{X-l)S m2(A-/)(/?-/)

2ih I m 5 la2 A a(m — a)(m2 + a2)
e I — -^a 1 ,

\ 4 2 4m 4m

A.,., I aBe —2 hi a(m-a)B\
122 \ 2m J

2
i —VY1 rv 4-

+ A ^2 —m2a + 3<52a — 2maS + 2 md2 — 3 — m2<5 a(m — a)(m — 8)
0 m2(a2 - S2) 2m2

+/*n

21

7>kUm + 8)(-28amA — 5<Szmz — mzaz + 4maz<5 4- 4madz — 28*a + ($zaz + 84)

4m(a-<5)(a + <5)2<52

, , 4 3<5m + am — ad + S2 2kl \ 2kla
+ I2kn r-5 + 2_ + _L_

m{a + S)2S2 m + a) m2

+Bu-m + -\e

(C.I 5)

where

8 = p-k,
m2 + 2/cq (m - a)(m - 2a)

Att —22 2 n 2m Bm
A"

A - 2121 _ ^
(C.16)

n = -3(m -a)a ^0

21 2m2 4(5 4 '
/?0™2 4/:2/?0 8 mBem

21 " 4 + 2<y 4^2 <52 w (5 L

In (C. 14)-(C. 16) the variables p, I, p, X, a, and 8 are all evaluated at k = k0.
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