QUARTERLY OF APPLIED MATHEMATICS
VOLUME LII, NUMBER 4
DECEMBER 1994, PAGES 707-719

KINEMATICAL APPROACH TO THE SHAKEDOWN ANALYSIS
OF SOME STRUCTURES

By
D. C. PHAM anD H. STUMPF

Lehrstuhl fiir Aligemeine Mechanik, Ruhr Universitdt, Bochum, Germany

Abstract. From Koiter’s kinematical shakedown theorem, a new variational prob-
lem is deduced, which does not contain integrals over a time parameter and gives an
upper bound on the safety factor. For a broad class of practical problems, including
planar bar systems subjected to combined axial and bending loads, it leads to the
exact value of the shakedown factor. The possible inadaptation modes (incremental,
alternating, or mixed) on the shakedown boundary are determined.

1. Introduction. The limit (Gvozdev [1], Drucker, Prager, and Greenberg [2], and
Hill [3]) and shakedown (Melan [4] and Koiter [5]) theorems are among the most
remarkable achievements of plasticity theory applied to structural analysis. While
the limit criterion has already found broad applications in engineering practice, one
is skeptical to say so about shakedown analysis, although it secures a safer criterion
for structures subjected to variable external loads. The reason lies in greater math-
ematical complexity of the shakedown criterion. In limit analysis one deals with
the instantaneous moment of collapse; in shakedown analysis one has to do with re-
stricted but unspecified processes over a time interval. Nevertheless, efforts have been
made toward resolving the mathematical difficulties and bringing them into practical
applications [6]-[12]. Most applications have been to bar systems and primarily to
trusses with axially loaded bars and frames whose members are beams in bending. In
the analysis of frames, a scheme with a finite number of plastic hinges is usually ad-
mitted. One ought to emphasize that the assumption of ideal plastic hinges, which is
good in rigid plastic limit analysis, may lead to inaccuracies in shakedown problems,
because local plastic deformations in a part of the cross section may cause alternat-
ing plasticity. The same should be said about the generalized variable approach. For
more complicated structures, results were obtained in special cases.

The main difficulty one meets when one applies the static shakedown theorem is
how to construct a set of self-equilibrated stress fields restricted by the yield criterion
that contains the optimal point for which one is looking. In plane stress problems the
use of the Airy stress function satisfies the equilibrium equations automatically; so
the difficulty is partly reduced. This approach was applied successfully by Belytschko
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708 D. C. PHAM anD H. STUMPF

[13] and Weichert and Gross-Weege [14]. On the other hand, one has to deal with
time integrals when one chooses the kinematic approach, although there are fewer
constraints on the variables. The shakedown factor k_ is determined from Koiter’s

theorem as
iy T -1 T
k, = sup l/ dt/ D(ep)dV] . [/ dt/ oe-epdV] (1)
ee2) | Jo 14 0 v

T
e’ = / e’ dt (2)
0

is compatible in V' ; &°(x) and e”(x,?) (x € V) are the tensors of plastic strain
increment (over a cycle) and plastic strain rate; D(e") is the dissipation function; the
stress tensor 6°(x, ¢) is the imagined elastic response of the body to external loads,
the envelope of which is obtained by solving the corresponding elastic problem and
is given beforehand in shakedown analysis. e’ € (2) means that the supremum is
taken over all fields eP satisfying condition (2).

Gokhfeld [10, 15] succeeded in reducing the time integrals in (1) by constructing
a set of generally incompatible strain rate fields e”(x, ¢) satisfying condition (2):

where

e (x, 1) =Ax, 1) &°(x), /TA(x,t)dt=l, A(x,1) >0, (3)
0

where A(x,t) is a scalar function and &°(x) is compatible in ¥ ; he generally
obtained an upper bound on k. Sawczuk [16], Gokhfeld and Cherniavski [10],
Konig [11], and Nguyen and Morelle (see [12]), among others, subsequently used
this way to evaluate the safety factor in practical cases.

Conditions (3) mean that the principal plastic deformation directions do not rotate
during the cycle while the plastic deformations at every point change proportionally
and monotonously. If plastic deformations at some point x equal zero at the end
of a cycle, then they also remain zero during the cycle.

The kinematic factor obtained by using (3) is called the incremental collapse cri-
terion [8, 11]. Still, as we have already noted, (3) presents only a special mode of
incremental collapse. We will see subsequently that there are cases where incremental
collapse can occur with a shakedown factor lower than that derived by (3).

In practical analysis, given a kind of structure and a loading process, it is difficult
to say if the structure fails by the mechanism (3). This limits the practical value of
the criterion discussed.

Here we should mention the special case of a membrane shell for which Stumpf
and Le [17] obtained the shakedown factor in closed form from the kinematical
theorem.

In Sec. 2 of this paper, a set of plastic strain rate fields, which is broader than (3), is
constructed. From the kinematic shakedown criterion (1), a new variational problem
is deduced which does not contain integrals over time; therefore, the mathematical
difficulty is reduced to the same order as that of a kinematic limit problem. In general,
it yields an upper bound on k_ that is better than the bound of Gokhfeld. Moreover,
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the constructed set of strain rate fields contains all admissible plastic deformation
mechanisms for a class of structures, which are the subject of the following sections.
For those structures it determines the exact value of the shakedown factor as well as
the possible deformation modes of inadaptation on the shakedown boundary.

In Sec. 3, the safety factors for axisymmetric thick-walled cylinder and hollow
sphere subjected to variable internal pressure are derived, which are in exact agree-
ment with those obtained by the static approach.

In the last section, planar bar systems subjected to combined axial and bending
loads are considered. The problem of determining the shakedown factor is reduced
to a maximization problem, which can be solved by available numerical methods in
the general case while leaving room for further simplifications in special subclasses
of structures.

2. Upper bound on the safety factor. We take a set of possible plastic strain rate
fields e® as follows:

p’

T
Alx, 1) - °(x), /OA(x,t)=l, xeV:
(4)

ef(x, 1) =

T
A(x,t)-&(x), /A(x,t)=0, x eV,

0

where r

e’(x) = / e (x, t)dt (5)

0
is a compatible field in V', A(x, ¢) is a scalar function, &(x) is an arbitrary sym-
metric tensor function,

V.={xeV|e’(x)#0}, and ¥V ={xeV|e’(x)=0}
Assumption (4) presents all admissible plastic deformation fields where the plastic
principal deformations at every point x € V' do not rotate but change proportionally

during the cycle.
Substituting (4) into (1), we get

Iy deOTA'aeoepdt+fV0deOTA~0'e~édt
sup £ .
e s Iy, @V Jy |Al-D(ePydi + [, dV [ |A|- D(#)at

ky' = (6)
It is obvious that ks'l > kg ! (k, < ky;) . In deriving (6) we suggested that
D(A-&°) = |A| - D(e")

—this is the case of the Mises or Tresca yield condition.

Denote
max[6°(x, 1) -’ (x)] = ¢°(x, tuy) * e’(x), xev,
Ue(x), (x) =1{ : (7
mtax[ae(x, 1)-&(x)=o0"(x, tuy) * &8(x), x €V,
min[e°(x, 1) - e’ (x)] = 6°(x, 1,,) - &°(x), x€V,
Le°(x), (x) =1 * . ) AN (8)
m’m[o' (x,t)-&x)]=0(x, 1) &x), x eV,
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STATEMENT 1.
-1 fV[(S+1)‘U—S°L]dV+fVOS.(U_L)dV
ky = sup -2

Pes).e  Jy (2S+1)-D(eP)dV + [, 25 - D(&)dV
S(x)>0 P 0

Proof. We have A = éﬂzﬂ - JA'{—A .
Denote

S(x)=/0T 'Alz‘Adz, S(x) > 0. (10)

From (4) one deduces

/T|A|+Adt_{S(x)+l, xel,,
o 2 LS, x €V,

(11)
Then (10) can be rewritten as

" J, aV [ Ao -ePdi+ [, av [[ A-o° &t
= sup sup 2 g

ee(s),s Aco-1) [y (28 +1)-D(e")dV + [, 25 - D(&)dV
5>0 ’

(12)

Let us consider first the case x € V;, :

T T _
/ A'ae-apdt=/ (A+IA|—|A| A)-oe-epdt
0 0 2 2

T T _
SU'/ Mdt_L./ Mdt
o 2 o 2

=U-(S+1)-L-S.

On the other hand, taking A= (S+1)-d(t—1t,,)—=S-0(t—1,) (d(¢) is the Dirac
function) satisfying (10), (11), we have

T
/A-ae~spdt=U»(S+l)—L-S.
0
Therefore, we conclude
T
sup / Ao fd=U-(S+1)-L-S, xeV, (13)
Ae(10-11) Jo
Similarly one obtains
T
sup /A'ae-édtzU-S—L-S, x €V, (14)
Ae(10-11) Jo

Equation (9) follows from (12), (13), (14). The proof is completed. Denote
U(e®(x)) — L(£°(x)) U(é(x)) — L(&(x)) } (15)

e
Ule”, &) = max {‘Peav’: 2D(e(x))  ° xen 2D(a(x))

and Xx;; is the point where the maximum is reached.
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STATEMENT 2.

-1
k;'= sup max{[/ D(ap)dV] / vav, U}. (16)
ePe(5), & v, %

Proof. Denote

~ 2S-D(e), xev,
S(x) = { . P
25 -D(8), x €V, (17)
X = / Sdv >o.
4
Then (9) can be rewritten as
! fV L dV"'fV UdV+fV ZD(c)dV (18)
= sup  sup
v Bpi(%,é S(x)e17) X+ pr D(e”)av

From (18) and (195) it is easy to see that
-1
ki' < sup X+/ DE"av| - 17-X+/ vav|.
cpi(Sz),é v, v,
2

On the other hand, putting S = X - §(x — Xy), Xo €V, or ¥, satisfying (17) into
(18) and taking (15) into account we deduce

ky >sup [X+/D ] [U-X+/UdV].
ee(S)a v

p

Thus,

k‘;lz sup [X+/D ] [U-X+/UdV].
'e(5) & “
The expression after sup depends monotonically on X € [0, +o0); therefore, the

supremum is attained at X =0 or at X = +oo; thus we obtain (16).
Equation (16) can be rewritten as

k7' = max su /DepdV /UdV sup U
v Vo oCV {a"eg)l: v, ) c'GSl:))a

_ o] Ue) - L(#)
_max{’s;:g) [/VD(e )dV] /VUdV, sn;p 2D(E) }

From the last formulae one arrives at
CONCLUSION. k_1 =max{W, W} where

= sup [/ D(e ]—1 -/VUdV, U’ = m'ax[oe(x, t) -eP(x)],

e’e(5)
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w_ o U@)—L(&) [6°(x, 1) —6(x, 1,)]- &
W=se—be P, e

(19)

Note that the final expression of W' coincides with Gokhfeld’s factor.

For structures under loading conditions, where the compatible plastic strain rate
cycle has the special form (4), the upper bound k;; should coincide with the exact
shakedown factor k:

ks_l = kl;l = max{W, /W},

and the equation k, = 1 determines the load domain; inside the structure will shake-
down, while outside it will not. It is interesting to note that two local modes of
plastic deformations in (4) are formally separated in the final expressions of W and
W in (19); so on the boundary of the shakedown domain, where 1 = W > W, the
structure fails because of incremental collapse, while at 1 = W > W the alternating
plasticity mode might take place. At the same time we should not rule out the ex-
istence of mixed collapse modes on the shakedown boundary. In fact, it is possible
thatat 1 = W > W we have even perfect incremental collapse as well as alternating
plasticity. Looking back at (15), (19) we can find out that this would happen when

— [6°(x, 1)) — 6°(x, 1,)]& [6°(x, t,) — 6°(x, 1,)]e°

W = sup = = sup
&1, 2D(#) ePE(5),x, 1,1, 2D(e")

(20)

This is the case we encounter in the next section.

3. Thick-walled cylinder and sphere. Let us consider a thick-walled hollow cylinder
of inner and outer radii a and b, respectively. The cylinder is subjected to an
internal pressure P, which may vary arbitrarily in time within the limit 0 < P < F,.

For this rotationally symmetric case the Tresca yield condition takes the form

|a¢ -0, <oy.
The elastic radial and circumferential stresses are
e 2 2,2 2 2 e 2 2,2 2 2
o,=P-a"-(1-b"/r")/(b" —a"), o,=P-a -(1+b7/r) /(0" —a”).

The material is supposed to be plastically incompressible; so the admissible plastic
strain rate cycle has the form (4) (thus k, = k;), where
__P_ .2 _ ;-
8¢——8,—C/r , ¢ = const, £ = —¢.
One has D(&) = g - |¢,|, o, = stress limit in tension,

b
D(e") =0y, -|ef| =0, -c/r’, / D(")-2n-rdr=2n-c-o,-In(b/a).
a
From (19) one obtains

b
U=2c-P,-a"-b/(r'(b® - d%)), / U-2n-rdr=2n-c-P,,

W = P,/(oy -In(b/a)), W =P,-b’/(b-a%)-ay),
k, = 6,/P,-min{In(b/a), 1 —a’/b’}.



KINEMATICAL APPROACH TO SHAKEDOWN ANALYSIS 713

This result coincides with that obtained earlier by the static shakedown approach (see,
e.g., [11]). Note that in this case Gokhfeld’s bound coincides with the limit factor
k.= 0, /P,-In(b/a). The cylinder will fail because of either alternating plasticity or

incremental collapse if k, = 1 and In(b/a) > 1 - a* / b*, as follows from (20) for
this case.

A hollow sphere of inner and outer radii a and b, respectively, is subjected to an
internal pressure P, which may vary arbitrarily in time within the limits 0 < P < P .
One has analogously

of =—P-(b*/r - 1)/(b*/d’ = 1), &) =a5=P-(b’/2r +1)/(b’[a’ - 1).

The admissible plastic strain rate cycle has the form (4), where
8Z=sg=—ef/2=c/r3, c=const>0, & =8,=-¢/2,
D@&) =0,-1&|, D) =20, -c/r,

b
/ DE")-4n-r’dr=8n-c- oy -In(b/a).
a
From (19) we derive

b
U=3c-P-b-a* )0 (b° - d*)), ] U-dn-rdr=an-c-P,
W = P,/(20, -In(b/a)), W =3P}’ /(40,(b’ —a’)),
k, = (a,/P,) min{21n(b/a), (4/3)(1 — a’/b*)}.

Again, we have instantaneous collapse at 1 = W > w , while at 1 = W > W either
alternating plasticity or incremental collapse mode occurs.

4. Planar bar-systems. Let us consider a planar bar-system (see Fig. 1 on p. 714)
described in two-dimensional Euclidean space by

¢, z)=p@)+z-n&), A () <z<h@);

here p(£) describes the centroidal axis of a bar and n(&) is the unit vector normal
to the centroidal axis. The hypothesis that plane cross sections remain plane and
normal to the centroidal axis is assumed as usual; therefore, the compatible plastic
strain increment has the form

D(®) =ay-leil,  D(e")=ay-Igl,

where A(£) stands for the strain of the centroidal axis and k(&) is the change of its
curvature.
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—

Fi1G. 1. Planar bar system

It is obvious that the plastic deformations of bars have the form (4); therefore,
ki =k;.
’ The elastic stress response to the external loads has the form
0 (&, z, ) =M, 0)]J(&)-z+ N(&, )/Fo(&) =m*(&, 0)-z+n°(&, 1) (21)
where M°(&, t) and N°(&, t) are moment and axial force and Jy(¢) and Fy(&) are
the moment of inertia and the area of the bar’s cross section. From (19) and (21)
one deduces A
W= sup (20,18 L mt & ) - mtEL )]
(4 l 2
+n5(&, 1) =", 1)} - &

= max_max 1/20 - m* (&, 1) —m* (€, t)]-z+n°E, 1,) = n°(E, 1,)]

/VD(e )a’V=/D¢d§,
where

D.=g / e | dF
¢ Y Fy(&) ¢

oy -[JA-F(A/k, h") —k-1(A/K, h"))| (22)
+HA-F(h™,Alk)—Kk-I(h™,A/K)|]] ifh” <Ak <h",

oy -4 - F if otherwise.

F(z,, z,) with z, < z, denotes that part of the cross-sectional area that lies between

the horizontal axes z = z, and z = z,; I(z,, z,), J(z,, z,) are the corresponding

static moment and moment of inertia.

=§1 (/D dé)_l /dé F(:)UdF
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where
U, = mle[me(é, 0)-z+n%(&, 0] [AE) - z- k(&) (23)

Thus, the problem of determining the shakedown factor (1) is reduced to the maxi-

mization problem: k ' = max{W , /W} (W, W are defined in (22), (23)) with the

variables A(£), x(&) satisfying the kinematic constraints of the particular problem.

This can be solved by available numerical methods of mathematical programming.
Denote

my (&) = m}nme(é, B, my&)= mlaxme(é, 1),
(€)= min n’@, 0, ny(8) = max n’(&, 1)

For separated axial and bending deformations relations (22) and (23) are simplified
drastically. For bending frames we have

W= max{(1/2)ay - [my(©) - my €] max(h”, |h”|)};

U, =

{x-m;-JO ifx>0, (24)
4

D, =2k-a,-100, h*).
k-miJ, ifk<O0; < ay 1 )

In the case of trusses we have
W = max(1/2)ay - [n5(¢) - nL(©);
A-nS - F, ifA>0, (25)
U§={ uto A4S D, =y -Al- Fy.
A-n - Fy if A<0;

ExXAMPLE 1. A cantilever beam of variable cross section (see Fig. 2) is subjected
to variable distributed loads ¢(¢, t) and moment M (¢):

OS(I(é,t)SCIs(‘f), _MSSM(Z>I)SM

The elastic response of the beam to the external loads is

¢
M) = M(e) - /{5 g -(n=&dn, ol =M©)IE)-z=m(©)- 2.

q(E)
T \M‘g’
] ¢

- | ———————=

SUOOMONOUOVINNNNNNNY

FiG. 2. Clamped beam subjected to constant load and singular mo-
ment
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Denote ,
m (&) = MJIE). )= /f g, (1 — &) dn/ I, (&).

It is easy to see that

ifz>0: my=mg, m =-mg—pg
if z<0: my=-—-m;,—p;,, m =mg
Now from (24) one obtains

W = max{(2m, + p,) - max(h" , |h"|)/(20y)}

£
= m?X{ 2M, +/<: a,(n) - (n - <) dﬂ] -max(h"(€), [k~ (&))/(20y - Jo(é))} ;
D

€=O’Y'|K|~2I(O,h+);
U={x-msoJO ifx>0,
¢ L=k -(m+p)-Jy ifx<O.

The bar is statically determinate; therefore, W has the simple form

-1
W = il(lé})) [(/D.f d{) o/Ué d{] = méaxsgp(Uc/Dé)
= m?x{JO -max(my;, —m;)/[oy - 21(0, h™)]}

= max Jo(&) - [m,(&) + p,(&))/[20y - 100, hh)]
14
= max [Ms + / a,(n) - (n—&) dn] /26, - 10, k¥ (&))].
¢ ¢

The shakedown factor is k, = min(W ™', W).
For the bar of constant rectangular cross section J;, = 2h3-b /3, I(0, h+) =h2b /2,
and ¢, = const, we have

W=02M+q,-1°/2)-3/(4h° -b-ay), W =(M+q,-1’/2)/(h* - b-a,),
2 2

k,= (o -h*-b)/ max{3M, /2 + 31> -q./8, M, +I"-q/2},
2 2

k.= (ay-h"-b)/(M,+1"-q/2).

ExaMPLE 2. Consider a system consisting of »n parallel bars of cross sections
F,, lengths [, elastic moduli E;, yield stresses ag,,, and coefficients of thermal
expansion «;, (i =1,...,n) (see Fig. 3). The system is subjected to a variable
load P, < P(t) < P, in a variable homogeneous temperature field 6, < 6(¢) <
6, - Assume that the material constants do not change in the temperature interval

[6., 6] and that at P = 6 = O the system is free from internal stresses. The
kinematic constraints for the strains 4, of the bars are

Al=u (i=1,...,n),



KINEMATICAL APPROACH TO SHAKEDOWN ANALYSIS 717

T

F1G. 3. Parallel bar system

where u is the horizontal displacement of the right ends of the bars. The imag-
ined elastic stress response to the external load and temperature field in the i-bar is
expressed as

=(A-0;-0)-E;=u’-E/l,—a;-E,-6.
From the equilibrium equation
(4
P=ZFJ'”1
J
(4
=Zu “E; - Ffl; —ZEJ.-FJ..aj.B,
j J

one finds
= (P+ZEJ‘F;"“1‘9)/(ZEJ"FJ/IJ)-
J j
Thus
nfj,-=r;1ag(nf
=———£JEIEFJ//IIJ +lli max{f) LVZ‘_,: Eﬁ;ll l,a,],BL- g EII;;JI l,.aj } ,

€
n .=m1nn‘
Li PO ¢

P -E/l; E Y, EFa, [, E;Fja, ]
E F/l + mln{OU [Z /l ~lLao;l, 0, - -——.—l.a.- .
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From the above formulae and (25) we have

= 1 (P, —P)-E]
W—mlaxzy-{ ZEJF]/I + (6, -0

ZijFjaj _liail}’
JUJrty

1 > EFa
W_W max{P +Z— max[ [Z F/l -l

>, EFjo;
]
EF . ZEFa
__PL_Z: }'t.mln[eu [EEF/[ liail,

>, EFa;
el

b

(26)

The shakedown factor is
c=min(W™, W), (27)
For this problem the collapse factor is obtained as k, = ), 0y, - F;/ max(P;, —P,).

We see that, in contrast to the shakedown factor, the collapse factor does not
depend on self-equilibrated thermal stresses.

For two bars of the same material and of the same constant cross section F, with
lengths / and 2/ and with P, = -2P, /3, P, = P, 6 =0, (27) leads to the same
result as the one obtained by the static approach (see [11]):

k,=min(W~', W) = min(2F, - o, /P,, 9F,-0,/SP,) = 9F,-a,/5P..

Conclusions. As in limit analysis, also in shakedown analysis, the kinematic and
static approaches might be equally usable to solve practical problems. The advantage
of one approach over the other depends on the particular problem. For those prob-
lems where the structure is subjected to various kinematic constraints, the kinematic
approach seems to be preferable. This is the case for the last example considered in
the previous section. For the constrained bar system we could obtain the shakedown
factor in an explicit analytical form ((26), (27)) using the kinematic approach. With
the static approach we would need to solve a mathematical programming problem
for every particular case. Another advantage of the kinematic approach is the fact
that it gives a picture of the deformations of the structures at collapse and possible
inadaptation modes (incremental, alternating, or mixed) as is shown by the examples
considered in this paper. On the other side, the static approach has the advantage of
giving a possible distribution of the residual stresses when the structure shakes down.

The main objection to the application of Koiter’s theorem is its complexity (one
has to deal with time integrals over a compatible plastic strain rate cycle). In our
study, this difficulty could be overcome, although only for the class of problems under
consideration. We hope that this work can contribute toward a broader application
of the kinematic shakedown approach.
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While efforts were made to generalize Melan’s linear shakedown theorem to ge-
ometrically nonlinear problems (see [18] and the literature cited therein), similar
efforts concerning the Koiter theorem are not known to the best of our knowledge.
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