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CAVITATION SOLUTIONS
TO HOMOGENEOUS VAN DER WAALS TYPE FLUIDS
INVOLVING PHASE TRANSITIONS

By
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Abstract. In this paper, weak solutions to some special Cauchy problems involving
phase transitions in R’ are constructed. These solutions exhibit the point singularity
known as cavitation.

1. Introduction. In this paper, we prove the nonuniqueness of the following special
Cauchy problem for certain parameters A > 0 in a ball B ), C R®:

u, =V (Vu) (1.1)
in B ) X [0, T, with the homogeneous boundary condition:
u(x, t) = ix, xe€oB,, tel0,T]; (1.2)
and the initial condition:
u(x, 0) = Ax, x€eB,, u(x,0)=0, xeBp. (1.3)

The stress tensor . (F) is defined by ¢(det F)(adj F )T and ¢ : R* — R has a graph
as shown in the van der Waals fluid that decreases in some transition interval. (See
Fig. 1.) This type state function can also be a model in phase transitions in one-
dimensional elastodynamics. For instance, the intervals where ¢ increases represent
two different phases that are separated by the transition interval; see, e.g., [4], [7],
and [10].

Note that Eq. (1.1) can be written in terms of conservation laws of the material in
Lagrangian reference:

{ v(x,1) =V -F(F(x,1t),
F(x,t)=Vv(x,t) forxe B,and >0,
where v(x, ) = u,(x, ), F(x,) = Vu(x, t) and u(x, ) represent the velocity,
deformation gradient, and deformation at time ¢ of the fluid occupying the point
x€B ) in the reference configuration, respectively.

(1.4)
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The uniqueness of the problem (1.1)-(1.3) under certain ellipticity conditions on
Z(F) has been well known (see, e.g., Wheeler [12]). The stress tensor .#(F) we
consider in this paper violates these ellipticity conditions very badly. It is natural that
the uniqueness should fail for (1.1)-(1.3). Obviously, the homogeneous equilibrium
defined by u,(x) = Ax is a classical solution to (1.1)-(1.3) for any A > 0.

The aim of this paper is to construct weak solutions to (1.1)-(1.3) for certain
parameters A > 0 that exhibit certain prescribed point singularities.

We use the same method as that used in [9] to construct weak solutions with point
defects. This type of defect is known as cavitation. Let us mention that in nonlinear
elasticity theory, cavitation can happen for certain materials such as liquid crystals
(see [6]).

Like solutions constructed in [9], solutions we construct in §4 are also of the form

u(x, t) = tf(|x|/)x/|x|, x#0, >0,

where f(s) is a continuous, piecewise C> function, and satisfies f(0) > 0 and
f(s) = As for s > g, for some o > 0. We also assume that u(x, ) = Ax when
t=0 and x € Bp, and u(x,?) = 0 when x = 0 for all £ > 0. At each time
t € (0, p/a) such solutions differ from the trivial solution u, only in the ball B, .
We shall thus call this ball the transition region. We remark that inside the transition
region, the solutions open a hole at x = 0; thus such solutions will be called cavitation
solutions to (1.1)-(1.3).

We remark that since the assumptions on .#(F) and ¢(v) are different from
those of [9], results of this paper differ in many physically related aspects. We shall
see that these solutions undergo phase transitions and some of the solutions contain
shocks inside the transition region (see §4 for details). Furthermore, in general, the
energy reduction criterion (see, e.g., Dafermos [2], DiPerna [3], James [7], and Lax
[8]) fails for most of the solutions when phase transition occurs. On the other hand,
the energy reduction criterion can still hold even when a full phase transition does
occur, mainly due to interactions and cancellations among the shocks; see §5 for
details.

2. Constitutive assumptions. Suppose ¢ : R* — R is a C? function and there
exist 0 < A < a < B < B < C such that (cf. Fig. 1)

(A) p(v) =0 for v=A, B, C and ¢'(a)=¢'(B) =0;

(B) ¢(v) is increasing for 0 <v <a and v > §;

(C) 9" (v) <0 for v e (4, B)U(C, +o0); and

(D) lim,_,. ¢(v) = —co and lim_ _ ¢(v) = +o0c.
Let us define ¥(v, w) = (¢p(v) — p(w))/(v — w) for v # w and ¥(v, w) = ¢'(v)
for v=w.

By assumptions (A)-(D), one can see that there exists a unique v* € (C, +00)
such that ¢'(v*) = ¥(v*, a) = v > 0. Define now

L(v) = min{¥(v, a); ¥(v, v")}. (2.1)

Then for any w € (o, Bl and 0 < g<v,and v € [4,a) and 0 < p < L(v) one
can define functions r(w, q) € [C, +00) and m,(v, p) € (a, B] and m,(v, p) €
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FiG. 1. The graph of ¢ = ¢(v). Here r = r(w,q) and m; =
m;(v, p).

[C, v™) such that
Y(r(w,q),w)=q,  ¥(miv,p),v)=p. (2.2)

Note that 0 < ¢ < ¢'(r(w, q)) as a consequence of (2.2).

REMARK 2.1. As in some phase transition theories, see [4], [7], and [10], a defor-
mation gradient or a phase F is said to be in the a-phase if detF € (0, a), in the
B-phase if detF € (8, +o0), and a phase mixture if detF € (a, f).

3. Admissible solutions. In this section we follow [9]. We also refer to this paper
and Ball [1] for proof of many results of this section.
Let Q c R’ and define

A (Q) ={yeW" "(Q;R’)| det Vy(x) > 0 a.e. x € Q}. (3.1)
Given T >0, we call u: [0, T] — &,(Q) an admissible motion of duration T if
ue C([0, T1; Ww"7(Q; R*)nC'([0, T]; L*(Q; R?)). A motion u(x, ) is called a
weak solution to problem (1.1)-(1.3) if u satisfies (1.3) for almost every x € Q and

u satisfies (1.2) in the sense of trace and #(Vu(-, ¢)) € L,OC(Q) for every ¢t € [0, T]
and, moreover, for all y € C.°(Q,) with Q. =Qx (0, T),

Vu)Vl//) dxdt = (3.2)
JI,

It is easy to see that the equilibrium deformation u,(x, 7) = Ax for (x,1?) € ﬁr
is always a weak solution of (1.1) in the sense of this definition for any 4 > 0.
The uniqueness of this solution under some conditions has been proved by [12]. In
this paper, we shall prove that (1.1) possesses weak solutions other than u,(x, ?)
for some A > 0. These solutions exhibit some point defects in the material as we
shall see in the sequel, and thus be termed as cavitation solutions. Existence of such
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solutions, of course, depends on our admissible class of motions since here we only
allow 1 <p<3in(3.1).

Now let Q=B, ={x¢€ R’ ||x| < p} and consider a radial function vy : B, - R’
defined by y(x) = r(|x|)(x/|x|) for x # 0, where r: [0, p) — [0, co). The following
results have been proven in [1] and [9].

LemMa 3.1. Let y(X) be defined as above. Then y € MP(BP) if and only if r is
absolutely continuous on (0, p), r'(R) >0 fora.e. Re (0, p) and

Pl ove  |H(R)
/0 [|r (B + R
In this case the deformation gradient of y is given by
Vy(x) = (r(R)/R)I +[r'(R) - r(R)/R](x/R) ® (x/R)

forae. x€ B, where R = [x|.

s
]R dR < +oo0.

In what follows, we call a function u: Q. — R’ a cavitation function if
0 forx=0and >0,
u(x, ) = ¢ Ax forxeB,and =0, (3.3)
tf(Ix|/t)x/|x] forx#0and¢>0,
for some f:[0, co) — [0, co) satisfying f(s) =As for s >0 =p/T.
LEMMA 3.2. Let u be defined by (3.3) and suppose 1 < p < 3. If f isa continuous

piecewise C' function satisfying f'(s) > 0 for a.e. s >0, then u is an admissible
motion and in this case
w(x, 8) = (f(s) = sf ())x/Ix|, >0,
_f(s) [ ’ ()] x X
Vu(x, t) = S I+ |f(s) . |x|®|x|’
fora.e. x € B, and t € (0, T], where s = |x|/¢.
Suppose u(x, t) is defined by (3.3). If f(s) is of class Cc? on [a, b] C [0, o0),
then by Lemma 3.2 one can calculate that (see [2]) on the domain D, = {(x, t) €
Q,|a <s < b}, where s = |x|/t,

u(x, 1) = (f(s) — s£(s))x/Ix],
. i
F(Vu(x, 1) = p(w(s)) [MH ((ff)) _ f(S)f(S)) X X

s Ky x| |x|

where w(s) = f(s)(f(s) /s)2 denotes the specific volume of the fluid, and the dot
indicates d/ds.
From this, the equation in (1.1) on D,, is equivalent to

[sz ~¢/(@(s) (&)4] 7= 20’ (12) (0 - 12). g

N S S

The following result is similar to the one in [9].
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THEOREM 3.3. Let f be a continuous function that is piecewise C % on [0, co0) with
all discontinuities in f at 0 =5, < s, <--- <5, := ¢ and let f be of class c’

on [s;,s.,] forall i =0,1,...,L~1. Suppose that f satisfies the following
conditions:

(1) f(s)=4As forall s>o0;

(i) f(s) > 0 for every s;ésl, i=0,1,...,L;

(iii) [ — ' (()(£(5)/5) 1/ (s) = 2£(5)0" (0())(f(5)/9)*(f(5) = £(s)/5) for every
s#s,1=0,1,...,L;

(iv) s'Lf (s )—f(S,- )= £(s)lp(w(s))) — p(e(s]))] for i=1,2,..., L; and

(v) im__, . p(w(s)) =0.

Then the function u(x, ¢) defined by (3.3) is a weak solution of (1.1) in B, x[0, T]
with T =p/o.

Proof. The proof is similar to that of Theorem 5.1 of [9], which is based on the
divergence theorem. We only make some remarks on the conditions; for details
we refer to [9]. By Lemma 3.2, conditions (i) and (ii) assure that u(x, ¢) is an
admissible motion; (iv) is the so-called Rankine- Hugomot jump condition across the
shock surface 8Bs . > while (v) makes &(Vu(-, t)) € L (B ) for all ¢t € [0, T] and
this condition also has other meaning for the calculation of the total energy of the
solution u(x, t) (see §5). O

In order to solve the equation in (iii) of the theorem, we introduce the following
functions:

ws® 2s5w(s3w - f3)
2 LI’ = 9" (@) f*
Then one can see that the equation in (iii) is equivalent to the following O.D.E.
system:

P(f,o;8)=—, QU,w;s)=

f=P(f,Cl),S), Cl)=Q(f,0),S) (36)

The following result will be frequently used in the next section.

ProrosITION 3.4. Let a >0, F >0 and W > 0 satisfy a® - qz’(W)F4 # 0. Then
there exist an interval [a, a+J) and a unique function f € C? ([a, a+d); R") such

that if w(s) = f(s)(f(s)/s)’,

f=P(f,w;s), a<s<a+d, w=Q(f,w;s), fla)=F, w(a") =w.

(3.7

Furthermore, if aw-F? # 0 then s3w(s) - f(s)3 #0 forany s€ (a,a+9).
Proof. The existence is standard as in the general theory of O.D.E. We prove the
second part. Suppose that sgw(so) - f (sO)3 = 0 for some s, € (a,a+ ). Then
f (o) = f(sy)/s,- Consider the functions f,(s) := f (sp)s and w,(s) := [ (s0)3/s3 ;
one can see that they solve (3.6) and f,(s,) = f(s,) and w,(s,) = @(sy). Thus a
standard uniqueness theorem in O.D.E. (see, e.g., Hale [5]) shows that f(s) = f,(s)
and w,(s) = w(s) forall s € [a, s,) . This is a contradiction since AW-F#0. O
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4. Construction of cavitation solutions. Let x4 > 0 be given and suppose one solves
the following ordinary differential equation:

f=P(f,w;s), @=0(,w;s), [fO)=u, w0)=A (4.1)

By Proposition 3.4, the problem (4.1) can be solved on [0, ) for some § > 0.

Define p(s) = s6/(f(s)4) and /(s) = L(w(s)). Since p(0") =0 and /(0") > 0, one

can find 0 < 7 < such that
66

0 < p(s) < % <min{v, I(s)}, Vse(0,1]. (4.2)

Now one can define the following functions on (0, 7]:
m,(s) = m(w(s), p(s)), i=1,2;

0,(5) = pls) [(@)3 : mz<s>} - [¢ ((@)3) - ¢<m2<s>>] .

By assumption (D) it follows that lim_, . 6,(s) = —oco. Therefore one can choose
5, €(0, 7) sothat 6,(s) <0 forall s€[0,s,].
Case 1. There exists o € (0, 5,] such that m (g) = (f(cf)/a)3 for some i=1,2.
In this case if one defines f(s) = f(s) for 0 <s <o and f(s) = %ﬂs for s>o,

A

then by Theorem 3.3 it follows that the function f gives a solution to (1.1)-(1.3)
through (3.3).
Case 11. For any s € (0,s,] and i =1, 2, one has m,(s) # (f(s)/s)3.
It is easy to see that in this case
m,(s) < my(s) < (f(s)/s)’ (4.3)
for all s € (0, 5,]. Now we consider the following problem:
gs)=Pg,w;s), ws)=0(g,w;s),
g(sl)=f(s|), w(51)=m1(51)-
Since sf‘ - ¢'(ml(s|))f(sl)4 >0 and sfm,(sl) - f(sl)3 < 0, thus by Proposition 3.4,
Eq. (4.4) can be solved on s € [s,, s, +6) for some J > 0. Let gq(s) = s(’/g(s)4 CIf
T€(s,,s, +0) and 7 < 2s, then 0< g(s) < (2°%)/(f(s))}) <v forall s€ls,, 1].
Therefore, the following functions will be well-defined on [s,, 7]:
r(s) =r(w(s), 4(s)), C<r(s)<v’,

0(5) = q(s) [(@)3 - r(s)] - [w ((@)3) . «»(r(s))] .

Note that since r(s,) = m,(s,) and 6,(s,) < 0, we can choose s, € (s, , 7] such that
0,(s) <0 forall s €[s,, s,].

Subcase 11.1. There exists o € (s,, s,] such that r(o) = (g(a)/a)3.

In this case, we define

(4.4)

f(s) fors€[0,s,),
f(s) = g(s) forsels, o), (4.5)
8(9)

2’5 fors>o.
o
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Then again by Theorem 3.3, this function f gives a solution to (1.1)-(1.3).
Subcase 11.2. For any s € (s,, 5,], r(s) # (&(s )/s)
In this case, by (4.3), it follows that r(s) < (g(s)/s)3 . We now consider the
following problem:

h(s)=P(h,v;s),  o(s)=0Q(h,v;s),
h(s,) = &(s,), v(s,) = r(s,).
First of all, it follows from Proposition 3.4 that (4.6) can be solved on [s,, 5, + 9)
for some J > 0; using similar arguments as in [9], we can extend the solution to

a maximal interval [s,, s,,); and using the same argument and the second part of
Proposition 3.4 we can also prove that 5,, < +0o and

(4.6)

s =0 (Wi, h(s,) =0,  su(s)—h(s)’ <0 (4.7)

forall sefls,,s,,).
ProrosiTION 4.1. Let (h(s), v(s)), s €[s,, s,,) , be the extended solution to (4.6).
(1) If va(sM) — h(sM)3 < 0, then there exists s, € (s,, 5,,) such that
W(v(sy), (h(s3)/s5)") = 55/ (h(s;)*).
(i) If s3,0(s,) = h(s,,)> = 0, then h(s;;) = 0; thus & € C*([s,, 5,,)) -
Proof. We first prove (i). This suppose va(sM) - h(sM)3 < 0. We consider

6 3 3
0509 = 1 [(@) —v(s)} - [(p ((@) ) - «»(v(s))} S @y

Note that 6,(s,) = 6,(s,) < 0. On the other hand, by (4.7) and the mean value
theorem it follows that

h 3 "
6,(s,,) = ((M) —v(sM>) (0(s,)) —&)9" (&), 4.9)

Sm

where C < v(s)) <¢&, <¢, < h(sM)3/313u- By the assumption (C) in §2 one has
0,(s,,) > 0; thus by the intermediate theorem, there exists an s; € (s,, 5,,) such
that 6,(s;) = 0. This is just the conclusion of part (i). Now we prove case (ii). It
suffices to prove that lims_,sa 0(s)=0. Let 5, /' s,, be such that

nlinolo 0(s,) =V = limsup 0(s). (4.10)
Sy,

By (3.5) and the mean value theorem, foreach n =4, 5, ... wehavea 7, € (s,, 5),)
such that
2s,5,v(sn) 1,3,

h(s,) 16T, —4h(z,)To0(T,) (v(z,))(0(z,) " - w"(v(rn»h“(r(} 0
We claim that the sequence {z)(rn)}°° cannot have any subsequence converging to

n=4
a number / € (0, +o0]. Suppose it had such a subsequence converging to some

o(s,) =
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l € (0,+]. If /] = 400, then V' = +co. On the other hand, in (4.11), letting
n — oo we would have V < +oo since (p"(v(sM)) < 0. This is a contradiction. If
0 <! < 400, again by (4.10) and (4.11), we would obtain

257 1
V= S " SM 4 < !
255, — 0 (V(sy )R (5,1
which also contradicts the definition of V' being the limsup ; thus the claim holds.
Therefore lim,_, _ v(t,) = 0, which combined with (4.11), shows that V' =0. O

Define o to be s, if case (i) of Proposition 4.1 holds, or let o =s,, if case (ii)
holds. Then define

f(s) for0<s<s,;

. g(s) fors, <s<s,;
= 4.12
11) h(s) fors, <s<o; ( )

(h(o)/o)s fors > o.

Then as before it follows from Theorem 3.3 that this f gives a solution to (1.1)-(1.3)
through (3.3).

Finally, the construction in Case I, or (4.5) in Subcase II.1, or (4.12) in Subcase
I1.2 shows the existence of cavitation solutions to (1.1)-(1.3) for any given initial
value u >0 (cf. (4.1)).

5. Exchanges of total energy. For any admissible motion u : [0, T] — .MP(Q) ,
define the total energy at time ¢ € [0, T'] by

E(t,u;Q)=/ (%lu,(x,t)|2+d>(detVu(x, z))) dx. (5.1)
Q

Here ®(v) is a positive function satisfying ®'(v) = ¢(v). In this section we shall
discuss exchanges of total energy for cavitation solutions u(x, ¢) constructed in §4.

The following result is useful in computing the total energy of cavitation solutions;
a similar version of the result can be found in [9].

LEMMA 5.1. Let f € CZ((a, b); R") satisfy Eq. (3.4) with w(s) = f'(s)(f(s)/s)2
and 0 < a < b. Then the following identity holds in (a, b):

& (%(f(s) _sf) + @(w(s)))

3 3 3
-4 [% (37 - s7(5)" + @5y ) + f(—s’—'j—“’@mw(s»} .

Proof. The result follows from a long but direct calculation using (3.4) and (3.6). O
Suppose now that f(s) satisfies all the conditions of Theorem 3.3 and let u be
defined by (3.3) and w(s) as before. By the lemma above it follows that

L—1

E(t,u; B,) = (4n’[3) lcb(z’)(;f/f —a’)+ Y ('K (s)) j;H] . (52)
=0
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where
6 3
K(s) = ®(a(s)) + [ : ;( - (f () _ w(s)) 4 (p(w(s))} (f%) - w(s)) .

On the other hand, from relation (iv) of Theorem 3.3 one can verify that for every
i=1,2,...,L it follows that

1K) = @0 s ~ LT 00 Ny, (5.3

where for any function G: R — R” having only discontinuities of the second type,

[GI(s) = G(s") — G(s7).
Therefore by (5.2) and (5.3) we have proved the following result.

THEOREM 5.2. Let f(s) satisfy all the conditions of Theorem 3.3 and let u be defined
by (3.3). Then it follows that

L
E(t,u;B,) - E(0,u; B) -%Zsqu]] (5.4)

where [K](s;) is given by formula (5.3).

Formulas similar to (5.4) have been well known in the literature on the systems of
conservation laws; we only refer to [2], [3], [7], and [11]. Unlike the case considered in
[9], solutions constructed here do not generally satisfy the following energy reduction
criterion:

E(t,u;Bp)<E(O,u;Bp). (5.5)

From (5.4) it is quite clear that the possible failure of (5.5) is caused by phase
transitions in the solutions, a case that is much different from that discussed in
[9]. Nevertheless, in some circumstances, we can still use formula (5.4) to get some
information about the energy changes of the cavitation solutions we constructed in
§4.

In what follows, we use the same notations as in §4. We first prove the following
result, which corresponds to Case I in §4.

ProOPOSITION 5.3. Let u be a cavitation solution to (1.1)-(1.3) as defined in Case I
of §4.

(i) If m,(o) = (f(O')/O’)3 , then E(t, u; Bp) < E(0, u; Bp).
(i) Suppose m,(g) = (f(a)/a)3. Then, if ®(C) < ®(A4), it follows that
E(t, u; Bp) > E(0, u; Bp);

and if ®(4) < P(C) and 5, > 0 (cf. (4.4)) is sufficiently small, the following
energy reduction criterion holds:

E(t,u; B,) <E(0,u; B,).
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Proof. The conclusions follow from the basic assumption (C), (5.3), and (5.4).
We omit the details but only remark that in part (ii) it suffices to choose s, > 0 so
small that

[KT(s) >0, O0<s<s,. (5.6)

This condition is determined by the solution of problem (4.1) and thus only depends
on u>0. O

Case II considered in §4 renders more complicated situations about the changes of
total energy for the cavitation solutions defined by (4.5) and (4.12). As indicated in
the proof of the previous proposition, the general consideration of the energy changes
in this case relies on the more delicate analyses on the global geometric shape of the
graph of ¢ and the solutions of the O.D.E.s involved. We do not intend to give a
complete discussion on this issue; instead we shall present the following result, which
states that under some condition solutions defined by (4.5) and (4.12) do reduce the
total energy as time evolves.

PRrOPOSITION 5.4. Let u be a cavitation solution to (1.1) defined by (4.5) or (4.12)
in Case II of §4. Suppose ®(4) < P(C) and s, > 0 satisfies (5.6). If s, —s, >0 is
sufficiently small, then

E(t, u; Bp) < E(0, u; Bp).

Proof. The proof is similar to that of Proposition 5.3 and thus is omitted. O
Finally, we close this paper by pointing out that it follows from Propositions 5.3
and 5.4 that

THEOREM 5.5. If ®(A4) < ®(C), then there always exist cavitation solutions of (1.1)-
(1.3) that reduce the total energy.
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