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1. Introduction. Consider the following experiment. We take a large plate of thick-
ness 2L, composed of a rigid, uniaxial ferromagnetic material with easy axis perpendicular
to the plate. The plate is subjected to a strong applied field parallel to the easy direction
and thus becomes magnetically saturated parallel to this field. Suppose now that the
applied field is slowly reduced in strength. Experimental observation of Bitter patterns
and domain structures suggests that the following scenario is typical of the behavior of
many materials.

1. At some critical value of the applied field, one observes "edge effects" as spike-like
domains of reverse magnetization begin to appear at the surfaces of the plate.

2. As the applied field is reduced further, the entire plate will exhibit a highly oscil-
latory domain structure.

3. As the applied field is reversed in direction, the domains parallel to the applied
field increase in size while the domains in the opposite direction shrink.

4. When the reversed field is sufficiently large, all domains disappear, leaving the
specimen saturated parallel to the field.

This behavior has been modeled empirically using such devices as Preisach models.
But there has been much less success in developing models based on fundamental material
properties that allow one to deduce the behavior described above. In particular, while
the most widely accepted model of ferromagnetic materials, micromagnetics, has been
used to describe such phenomena as domain structures in materials with zero applied
fields (see Miranker and Willner [10]), no one has been able to use this model to describe
the global behavior of a ferromagnetic body as the applied field is varied and the various
solutions lose and gain stability. The goal of this paper is to at least partially remedy this
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Fig. 1. Edge effects at the boundary of a specimen

situation using a relatively new model that employs the techniques of Young-measures
and uses a nonlocal model for the exchange energy.

Young-measures and related techniques have now been established as important tools
in the study of highly oscillatory structures in phase transitions. In ferromagnetism, these
methods have been successfully employed to study the relationship between crystallogra-
phy and domain structure [6] and magnetostriction [7, 13]. Young-measures essentially
"average out" magnetic domains by modeling them in a probabilistic fashion.

The use of a nonlocal model for the exchange energy was originally proposed in [12]
for the purpose of studying hysteresis using Young-measures. Traditional mathematical
models of ferromagnetism (micromagnetics and domain theory) predict a large (and
hence difficult to compute) number of oscillations in the magnetization, but do not allow
one to go to the Young-measure limit. The nonlocal model was shown not to suffer from
the so-called "coercivity paradox" [3] and a discrete version of the model was used to
predict a rich class of hysteresis loops [8]. In this paper we show that the nonlocal model
predicts the behavior described above, including magnetic saturation, the onset of edge
effects, the spread of magnetic domains throughout the specimen, and the reversal of
domains.

The term "edge effects" is used here to refer to the patterns of spike-like domains
that appear at the edges of ferromagnetic specimens (see Fig. 1). James and Kinder-
lehrer [6] showed that in cubic crystals in the absence of an applied magnetic field and
with exchange energy neglected, edge effects arise naturally in constructing a classical
magnetization that minimizes the field energy. In this paper we address the situation in
uniaxial crystals. In [3] we showed that if a sufficiently large magnetic field is applied
in the "easy" direction of magnetization of a homogeneous uniaxial ferromagnetic body,
the body becomes "magnetically saturated", i.e., the global minimizer of the energy is
a uniform classical magnetization parallel to the applied field. As the applied field is
decreased and reversed, this saturated state loses stability. In this paper we show that
it loses stability to a solution that has measure-valued oscillatory edges.

The rest of this paper is organized as follows. In Sec. 2 we define some of the basic, con-
cepts from ferromagnetism with particular attention to applications of Young-measures.
In Sec. 3 we develop a one-dimensional version of the energy minimization problem for
an infinite plate of finite thickness and derive necessary conditions for the existence of
minimizers. In Sec. 4 we find a family of stationary points that include saturated states,
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states that exhibit edge effects, and purely measure-valued states. In Sec. 5 we show that
these solutions are minimizers of the energy. In Sec. 6 we make some concluding remarks.
In particular, we compare the minimizers we obtain for one-dimensional problems with
functions that are periodic in directions parallel to the face of the body.

2. Definitions. In classical mathematical problems in the theory of static, rigid,
ferromagnetic materials, one considers a body fl in a given applied magnetic field ho and
seeks a magnetization field m: £1 —> K-i such that the magnetostatic energy

*(m) = \ [ |h[m]|2 + [ {W(m(x)) — m(x) ■ h„(x)}dx + \(m) (2.1)
J r3 Jn

is minimized subject to the constraint that

|m(x)| = 1 at almost every x G fl.

Here h(m) is the resultant magnetic field generated by m (described further below), W
is the anisotropy energy density, and x(m) 's the exchange energy functional In this
paper we consider a nonlocal version of the exchange energy of the form

X(m) := —c I / m(x) • m(y)fc(x, y) dxdy. (2.2)
Jn J n

Here k is a positive, symmetric kernel concentrated at the origin and decaying at infinity
and c > 0 is a material constant. We consider the particular kernel

—7|x —y |

fc(x,y):=-—r -, (2.3)
4?r jx — y|

where 7 is a positive constant and k has been normalized so that

r c ^ r c —7|x—y|
/ / k(x,y)dxdy = / /   -dxdy = l. (2.4)

Jk3 Jk3 4?r Jr3 Jr3 x — y|

This kernel arises naturally in nonlocal problems derived from statistical mechanics under
the assumption that the probability of a nonlocal interaction between two particles is a
function of the distance between the particles. This is a typical assumption in transport
theory.

The vector field h(m) is the resultant magnetic field produced by the magnetization.
For a sufficiently smooth classical magnetization m, the magnetic field is defined to be
the solution of the equations

Curl h = 0, (2-5)

Div h = — Div m (2.6)

and the jump conditions

[H x n = 0, (2.7)
[[h]]-n = —[[m]]-n, (2.8)
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on any surface of discontinuity of m. Here n denotes a unit normal to the surface
of discontinuity and [[•]] indicates the jump of a piecewise continuous function in the
direction n. More generally, for any m G M(f2), where

M(J1) := {m G |m(x)| = 1 a.e.}, (2.9)

the resultant magnetic field due to m is defined to be the unique function h[m] in the
set

>t={he L2(R3)|Curl h = 0 in //"'(R3)}, (2.10)

satisfying

I h[m] • h" — — / m ■ hs Vh1* G A. (2-11)
J Jn

Here H~l(R3) is the usual Sobolev space (cf., e.g., Adams [1]). The existence and
uniqueness of solutions of (2.11) and their continuous dependence on m is guaranteed by
the Lax-Milgram lemma. For more information on the magnetic field and the properties
of the field energy see, e.g., [3, 5, 11, 12].

As we indicated in the introduction, the nonlocal model for ferromagnetic materials
was introduced in order to study measure-valued magnetizations, which can be used to
model wildly oscillating, weakly convergent sequences of classical magnetizations.

Definition 2.1. We define an element of the set M($l) of measure-valued magne-
tizations on the body to be a nonnegative probability measure i/x on R'j parametrized
by x 6 fi, with support on the unit sphere.

Note that a classical magnetization m G M(f2) can be viewed as a measure-valued
magnetization with

i/x := <5(m(x)). (2.12)

Here 6(y) is the Dirac delta function centered at y G R3.
It can be shown that with any weak-star convergent sequence of classical magnetiza-

tions mra G M(f2),
m" —>■ m in L°°(f2), (2.13)

(i.e., jfi mn4> —> fQ m0 for every <f> G L] (f})) one can associate a measure-valued magne-
tization v G A/f(f2) satisfying

lim / F(x, m™(x))dx = f [ F(x, A)d^x(A)dx (2-14)
J n J a J R3

(at least for a subsequence) for any continuous function F : Q x R3 —> R. Conversely, for
any measure-valued magnetization v G M{£l) there exists a sequence mn G M(O) such
that (2.13) and (2.14) hold. See [14] for a sketch of the proof of these results.

We define the total magnetostatic energy of a measure-valued magnetization /t to be

£(M)=4/ |h[m]|2+ f
A Jk3 J n

W(A)d/ix(A) - m(x) • h0(x)

-II
Jn Jn

(ix

(2.15)
m(x) ■ m(y)fc(x, y) dy dx.
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Here m, the center of mass of ji, is given by

m(x) := / Ad^x(A). (2-16)
J R3

The use of measure-valued magnetizations allows one to obtain a rigorous general exis-
tence theory of energy minimizers. For a further discussion of this energy see [12] and
the work of DeSimone [5] and Pedregal [11].

3. A one-dimensional model problem. In this section we formulate a mathe-
matical problem that models the plate experiment described in the introduction. The
physical situation is identical to that studied by Miranker and Willner [10] using the
micromagnetic model.

3.1. Formulation. Let i,j,k be an orthonormal basis of vectors in M3 parallel to the
x, y, and z coordinate axes respectively. We consider the problem of a body of finite
thickness 2L in the x direction, and infinite extent in the y and z directions:

n := {x = xi + yj + zk 6 K° j — L < x < L, —oo < y < oo, — oc < z < oo}.

We seek to minimize the magnetostatic energy over magnetization fields that depend
only on the x direction. Thus, with a slight abuse of notation, we consider classical
magnetizations

in € M(—L,L) := {m G L°°(—L,L) ] [m(x)j = 1 a.e.}

and measure-valued magnetizations u £ A4(—L,L) parametrized by x £ (—L,L).
Remark. Since measure-valued magnetizations depending only on the x coordinate

could represent the limit of a sequence of functions that vary in the y and z directions,
one might object to the restricting of the problem to one-dimensional magnetization.
However, we shall see in Sec. 6 that minimizers obtained over the class of functions that
depend only on x are in fact minimizers over the larger set of functions that are periodic
in the y and 2 directions. This is a large enough class of functions to yield measure-valued
magnetizations with prescribed first and second moments (cf. Theorem 6.2 of [12]). Thus,
in order to ease our calculations, we concentrate on the one-dimensional problem for now
and justify its relevance by doing the comparison with periodic functions in Sec. 6.

Because of the infinite extent of the body, the magnetostatic energy of any admissible
magnetization would be infinite. Thus, we will seek to minimize the energy per unit area
in the (y, z) plane.

We first calculate the field energy. We compute the resultant magnetic field due to a
magnetization field

m(x) = mi(x)i + m 2(x)j + m^{ x)k

(which represents either a classical magnetization or the center of mass of a measure-
valued magnetization) using the classical equations (2.5), (2.6) and the jump conditions
(2.7) and (2.8). We see that these are satisfied by

f —mi(x)i, \x\ < L,
h[m](x) = h(x,y,z) = J (3.1)

I 0, x > L.
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Thus, the field energy per unit area is given by

1 fL- J mi(x)2dx. (3.2)

The anisotropy energy per unit area of a measure-valued magnetization v is given by

J a1(g1(x) + a2(g2{x) + g3(x)))dx, (3.3)

where

.</,(•'•) / X2idi/x(\), i = 1,2,3, (3.4)
J R3

are the symmetric second moments of the measure v. This comes from the following
form of the anisotropy energy for a uniaxial material:

Wa(m) := ai(mj + ajfm? + mj])).

(See [3].)
We consider a uniform applied field in the easy direction of magnetization h0 = hoi.

The interaction energy is then given by

—ho J in i (x) dx. (3.5)

As we indicated above, the exchange energy will also depend only on the center of
mass m of a measure-valued magnetization. Its density per unit area is

rL r

fc(x, y)m(x) • m(y) dy dx
i-L Jn

,;2 rL
= —c— I ni(.r)

47r

7C2

L

■L rL

■L /• OO ,->T, e_7v/(a;_y)2+T.2

m(y) / / =rdrdOdy
-L J o Jo yj(x-y)z + rz

dx (3.6)

/LI n L/J c '•" in(.r) • m(y) dy dx.

Putting all of this together, we get the following magnetostatic energy density for a
measure-valued magnetization v £ M.(—L,L):

fL riS{u)= I -m\(x) + ai(gi(x) + a2(g2(x) + gs{x)) - h0rin{x)
J-L L

7C 2 j J e y m(x) • m(y) dy dx.

dx
(3.7)

We note that the energy of a measure-valued magnetization depends on the measure
only through its center of mass and symmetric second moments. In fact, following the
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procedures outlined in [3, 12], it can be shown that, using the information obtained from
minimizing the energy

£(m •s):=£ -L

C

^ml - homx + a 1(31 + a2(g2 + 93))

, rL rL7

dx

(3.8)
/Av /» AvJ e_7':E_y'm(x) • m(y) dy dx

over the set of functions (m, g) € L°°(—L,L) such that

mix)2 < gl{x), i = 1,2,3, (3.9)

and
9i(x) + g2(x) + g3(x) = 1 (3.10)

almost everywhere, one can construct measure-valued magnetizations of minimal energy.
While this relieves us of the difficulty of dealing directly with the Young-measures, we

must still deal with a point.wise inequality constraint (3.9). To get around this difficulty
we follow the procedure of [2] and introduce slack variables Vi, i = 1,2,3, such that

gi{x) = mj(x) + v?(x), i = 1,2,3. (3.11)

We can now seek to minimize
"1

£(m,v) := J L
^ml - h0mi + ai(ml + v\ + a2(m\ + v\ + m\ + nf))

^ f f e 7'x y'm(x) • m(y)dydx
J-l J-L

(3.12)

l-LJ-L

over (m,v) € L°°(—L,L) subject to the constraint

m\(x) + v\ (x) + m\(x) + v%(x) + m\(x) + v3(x) = 1 (3.13)

almost everywhere.
We can further simplify the problem by using the pointwise constraint (3.13) to reduce

the number of unknowns by eliminating Vj; i.e., we seek to minimize

— fL[m?P 00 1
£(m,v2,v3) := < —1 + -[ml +v\ + m\ + uf ] - h0m1 } dx

f f e 7'a: y'm(y) ■ m(x) dxdy
(3.14)JJ.

over
A := {(m, v2, V3) £ L°°(—L, L) \ ml + m\ +m\ + v\ + v\ < 1}. (3.15)

Here
P := 2ai(a2 - 1) > 0. (3.16)
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As we indicated above, the classical variational problem of minimizing £ over A is
equivalent to the problem of minimizing £ over the set of measure-valued magnetizations
M{—L, L). (This is a direct consequence of Theorem 6.2 of [12].)

One relationship worth noting between the measures and their moments is that the
measure-valued magnetizations are nontrivial (i.e., not a single delta function) exactly
when we have strict inequality

mf < gi or v'f > 0 (3-17)

for some i. In this case we refer to a solution as "truly measure-valued". When equality
holds for each i we refer to the solutions as "classical".

3.2. Necessary conditions. In this section we derive necessary conditions for the exis-
tence of minimizers of £. Our necessary conditions will be for relative minimizers which
we define as follows:

Definition 3.1. We say that (rni,m2,rn3,V2,v3) G A is an Lp-relative minimizer of
£ over A (p G [1, oo]) if there exists an e > 0 such that for any (m\, to®, m\, v\, v\) G A
satisfying

\\{mi,m2,m3,v2,V3) - (m\,m\,Tn\,v\,vl)\\Lp(_L,L) < e, (3.18)

we have
£(mi,m2,m3,v2,v3) < £{m[, m\, m\, v\, uf). (3.19)

In addition, a point (mj, m2, to-3, V2,V3) G A is said to be stable when inequality (3.19)
can be replaced by a strict inequality.

We begin with the following standard lemma.

Lemma 3.2. Suppose (mi, m2, ms,V2, v$) is an L°°-relative minimizer of £ over A. Then
for any (ui, u2, «3, u>2, W3) G L°°(—L,L) for which there exists £ > 0 such that

(mi, m2, to3, ^2, V3) + t(u1,u2,U3,w2,w3) G A (3.20)

for all t G (—£,£), we have

0 = J [(mi - hQ)ui + P{m2u2 + m3u3 + v2W2 + ^3^3] dx

3 pL

~C1 / e~^x~v\mi(x)ui(y)dydx.
i=1 J-lJ-l

(3.21)

Also, for any u G L°°(—L, L) for which there exists e > 0 such that (3.20) holds for
all r G [0, e), we have

0 < J [(mi - ho)ui + f3(m2u2 + m3u3 + v2u>2 + v3w3)} dx

3 (3-22)
[ [ e ylx V^mi(x)ui(y)d'ydx.
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Proof. We consider the first case and define / : (—£,£) —> R by

f(r) := £((m1,m2,m3,v2,v3) + t(u1,u2,u3,w2,w3)). (3.23)

The function / is quadratic and is minimized at zero. Setting the first derivative at r = 0
to be zero leads to (3.21).

In the second case we define / : [0, e) —> R as above and note that it is minimized at
the left-hand endpoint of its domain. Requiring the first derivative to be nonnegative at
t = 0 leads to (3.22). □

We can use this lemma to prove the following.

Theorem 3.3. If (mi,m2,?n3,v2,v3) is an L°°-relative minimizer of S over A, then the
following relations hold almost everywhere:

v2(x) = v3(x) = 0, (3.24)

mi(x)[cjK(mi)(x) — m1(x) + h0] >0, (3.25)

mi(x)[cyK(rrii)(x) — f3rrii(x)\ > 0, i = 2,3, (3.26)

where

K(m)(x) := J e-^x-^m(y)dy. (3.27)

Proof. Let U be any measurable set in (~L,L) and let \u be its characteristic func-
tion. Letting (ui,u2,u3,w2,w3) = (0,0,0, —v2xu^) (which is an admissible "one-sided"
variation) and using (3.22) we get

0 < - / v2(x)dx.
Ju

Since U is arbitrary, this and an analogous calculation for v3 yield (3.24). Inequalities
(3.25) and (3.26) follow from the same type of procedure. □

Note that when
m2 = m3 = v2 = v 3 = 0, (3.28)

(i.e., when the magnetization lies completely in the easy direction) conditions (3.24) and
(3.26) are satisfied. Thus, it is natural to search for minimizers for which m\ is the
only nontrivial component. We speak of such functions as "completely transverse to the
plate". For such magnetizations we define

E(m) ■= £(m, 0,0,0,0)

1 C7 fL fL , , (3-29)— h0m>—— J y e 7 rn(x)m(y) dx dy.a
We now derive necessary conditions for completely transverse magnetizations to be

energy minimizers. Part of our result is a smoothness condition that depends crucially
on our choice of a kernel through the following lemma. (The lemma is elementary and
can be verified via direct computation.)
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Lemma 3.4. For any to E L°°(—L,L), it follows that K(m) E W2'°°(~L, L). Fur-
thermore, if m is continuous on [—L,L], then K{m) E C2([—L,L]) and satisfies the
differential equation

K{m)"(x) - 72K(m)(x) = ~2-ym(x) (3.30)

and the boundary conditions

K(m)'(L) — —7 K(m)(L), (3.31)
K(m)'(—L) = «fK{m)(-L). (3.32)

Conversely, given m E L°°(—L,L), K(m) is the unique solution of (3.30), (3.31), and

(3.32).
We now derive basic necessary conditions for transverse minimizers.

Theorem 3.5. Suppose (m, 0,0,0,0) E A is an L°°(—L, L)-relative minimizer of £ over
A. Then the following hold.

1. The function m (has a representative that) is continuous and piecewise smooth.
2. Whenever

\m\ < 1, (3.33)

the Euler-Lagrange equation

m(x) = cryK(m)(x) + ho (3.34)

is satisfied.
3. The constraint equation

m(x) = 1 (3.35)

holds if and only if the variational inequality

c"/K(m)(x) + ho > 1 (3.36)

holds.
4. Similarly,

m{x) = -1 (3.37)

if and only if
cyK(m)(x) + ho < —1. (3.38)

Proof. Assume that (to, 0,0,0,0) E A is an L°°(—L,L) minimizer of £ over A.
We first claim that (3.34) holds almost everywhere on the measurable set U := {x E
(-L, L) | \m(x)\ < 1}. This follows from (3.21) since we can take a "two-sided" variation
(u, 0,0, 0,0) in (3.20) to be the characteristic function of any measurable subset of the
set U£ := {a; E (—L,L) \ \m(x)\ < 1 — e} for any e > 0.

We now note that (3.25) implies

m(x)[cjK(m)(x) + /iq] > m(x)2; (3.39)
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SO

sgn(m(x)) = sga(cyK(m)(x) + h0) (3.40)

almost everywhere that m/0. These imply

\m(x)\ < |cyK(m)(x) + h0\. (3-41)

Note that (3.41) implies that the inequality (3.36) (respectively (3.38)) holds at almost
every point at which (3.35) (respectively (3.37)) holds.

Since cjK(m) + ho is independent of the representative of the equivalence class m G
L°°( —L, L), it follows that there is a representative of m such that conditions 1, 2, and
3 hold for each x G (-L, L). By Lemma 3.4, cryK(rn) + h0 is in L, L) and thus
is in Cl([—L,L]). The continuity of cyK(m) + h0 implies that the representative of m
chosen above is continuous; a simple bootstrap argument and Lemma 3.4 imply that it
is piecewise smooth. □

We introduce the following terminology for a function satisfying the necessary condi-
tions for minimization.

Definition 3.6. We refer to a continuous, piecewise smooth function m : (-L, L) —>
R satisfying

\m{x) | < 1, (3.42)

and (3.34), (3.36), and (3.38) as a transverse stationary point of the energy £.
Equations (3.30) and (3.34) can be combined with the first result of Theorem 3.5 to

give us the following local description of a transverse stationary point.

Corollary 3.7. Let m be a transverse stationary point of the energy S. Then the
interval (—L,L) can be decomposed into a finite collection of subintervals such that on
each subinterval exactly one of the following hold:

1.771=1,
2. m = —1, or
3. \m\ < 1, and the differential equation

m" = 72(1 — 2c)m — 72/iq (3.43)

is satisfied.

4. A continuum of stationary points. In this section we exhibit a family of
stationary points for the one-dimensional model problem formulated in the previous
section. We reiterate the following remarks about our solutions:

• Our results depend in a critical way on the specific choice of the anisotropy energy
and the kernel of the nonlocal exchange energy.

• As one would expect, the character of our solutions depends on the strength of the
exchange forces as embodied in the parameter c.

Our family of stationary points exhibits the following properties:
1. When the applied field ho is large in magnitude, the saturated state m = sgn(/i())

is a stable stationary point. (In fact, it is a global minimizer for very large values of /iq.)
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2. At a critical value of the applied field, the saturated state loses stability to an "edge
effect" solution that is saturated in the middle of the plate and oscillatory (measure-
valued) on the surfaces.

3. If the exchange parameter c is sufficiently small, the oscillatory edges encroach on
the plate as the magnitude of the field is reduced. Below another critical magnitude of
the applied field, there is a stationary point that is measure-valued in the entire plate.

4. For relatively small values of c we have a complete picture of the magnetization
curve: as the applied field is reduced, solutions go from saturated to measure-valued
with transitions exhibiting edge effects in between. For larger values of c the picture is
less clear. We can show existence of stationary points exhibiting edge effects for applied
fields close to the fields at which saturated states lose stability. However, we have not
"connected" these solutions to a family of solutions defined for all h0, and (as we shall
see in the next section) we have no stability result for nonsaturated solutions in this case.

4.1. Saturated solutions. We refer to states with m=lorm=—las saturated. In [3]
we examined (in a much more general setting) the question of when saturated states were
relative minimizers of the magnetostatic energy. In this section we review our previous
results for the specialized problem we are addressing in this paper. We first determine
when a saturated state is a transverse stationary point. For definiteness we examine
to = 1. For this function we need only check (3.36), i.e., we require that for x € (—L, L)
we have

1 < c~/K(l)(x) + h0
(4-1)= 2c[l — e 1 cosh 72;] + ho-

This holds if
ho > 1 - c(l - e~27i). (4.2)

Similarly, m = — 1 is a transverse stationary point if

ho < -[1 - c(l - e"27i)]. (4.3)

In fact, we can say much more: the stationary points are actually relative minimizers.
The following theorem is a special case of Theorem 4.5 of [3].

Theorem 4.1. If \h0\ > 1 then the saturated state m = sgn ho is a global minimizer of
£ over A-

Furthermore, if
±ho > 1 -c(l -e"2^), (4.4)

then the saturated state m = ±1 is a stable ZZ-relative minimizer of £ over A.
Of course, this raises the natural question: what happens when the saturated state

loses stability? In the next section we show that as the applied field is varied past the
limit of stability of the saturated state, a stationary point exhibiting edge effects exists.

4.2. Edge effect solutions. We now show the existence of transverse stationary points
such that

1. to is even,
2. there exists x € (0, L) such that to = 1 on [—x, x\,

and
3. \m\ < 1 on [—L, —x) U (x, L\ .
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While it is possible to find such an m using the local conditions described in Corollary
3.7, we have found it easier to search for K(m). More specifically, we seek x G (0, L) and
K : [-L, L\ —> R such that

E-l. K is even.
E-2. In (-L, —x) U (x, L), K satisfies

K" — 72(1 — 2c)K = —27/10, (4.5)

and
\cryK + ho\ < 1. (4.6)

E-3. In (— x, x), K satisfies
K" - 72A' = -27 (4.7)

and, in addition, the variational inequality (3.36) holds, i.e.,

C7K + ho > 1.

E-4. K G C2([—L,L]). In particular, K and K' are continuous at ±x, and

cyK(x) + h0 = I. (4.8)

E-5. K satisfies the boundary conditions (3.31) and (3.32), i.e.,

K'(L) = -7 K(L),

K\-L) = 1K{-L).
Constructing m from this K is straightforward.

Theorem 4.2. If x G (0, L) and K : [—L, L] —> K satisfy the conditions E-l-E-5, then

f cyK(x)+h0, xe[-L,-x) U(x,L],
m(x) :=i (4.9)

LI, X € [ — X, xj

is a transverse stationary point.
Finding K satisfying the conditions above is a tedious but routine exercise in ordinary

differential equations. Solutions can be found as follows.
4.2.1. Case I. c = 1/2. In this case, after implementing conditions E-l through E-5

and using (4.9) we get

f c^(B + A\x\-7/iox2) + h0, x G [-L, —x) U (x, L),
™(x) := < , r _ (4-10)LI, x G [—x, xj

where

A := [1 + 7(L - x)]~1{h0{2jL + 72(L2 - x2) + 2) - 2} (4.11)

B := 7"1 [fto(2L7 + ^V) ~ A(1 + L7)], (4.12)
and where h.Q and x satisfy

, 2fin — 1 — r, — 27L + 72(L2 — x ) + 22 tanh 7X — 27X -I  — 
1 + 7 (L — x) (4.13)1 + 7(L - x)

=: Ti(x).

It is easy to show that Tj is strictly monotone, so that this equation has solutions
x G [0, L\ for ho G [(1 + -yL + 72L2/2)~1, 1 - 1/(2(1 - e"2^L))].
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4.2.2. Case II. c < 1/2. Similarly, in this case we get

Hi(x), x e[-L,-x)U(x,L\,
™{x) ■=■{, ^ r - -i (4'14)

1, x G \—x, x\

where

Hi(x) \= cy (B cosh7\/l — 2cx + ^4sinli7\/l — 2c\x\ H —- ] + ho. (4.15)V 7(1- 2c))

As above, /I and B can be found in terms of ho,x,L,^, and c by solving a system of
linear equations obtained from E-l, E-4, and E-5. Finally, using the constants obtained
above and Eq. (4.8) we get a transcendental relationship between ho and x of the form

h0=T2(x). (4.16)

Again, it is easy to show that T2 is monotone so that there is a unique solution x G [0, L\
for h0 G [hc, 1 - 1/(2(1 - e"2^))] where

hc := ' — — ̂ C\l — (cosh7\/l — 2cL + V/F^2csinh7VT^2cL)-1]-1. (4.17)

4.2.3. Case III. c > 1/2. As we shall see below, when c < 1/2 we can show a complete
continuum of stationary points parametrized by ho- In these cases the stationary points
go from saturated to edge-effect to measure-valued as the magnitude of the applied field
is decreased. For c > 1/2 this is not possible. As we indicated above, the saturated
states to = ±1 are stable when ±ho > 1 — c(l — e~2^L). However, in this case we can
only show the existence of edge-effects solutions locally in a neighborhood of x — L,
h0 = 1 -c(l -e~2~>L).

In particular, we get

f fi2(x), xG [-L, -x)U(x,L\,
m(x) := | i _ r _ ^ (4.18)

x G [—x, x\

where

H2(x) ■= C7 ( B cos7\/2c — \x + A sin ~/\/2c — l|a:| -I— —r ) + ho, (4-19)V 7(1-2c);

and where A and B can be obtained in the same way as above. Once again, (4.8)
can be manipulated to get a transcendental relationship of the form ho = T:i (x), where
Ts(L) = 1 — 1/(2(1 — e~2lL)). In this case, we cannot show that X3 is monotone.
However, T-^(L) < 0 so that there is a solution with edge effects with (ho,x) close to
(L, 1- 1/(2(1 -e-^L)).

4.3. Purely measure-valued solutions. As we remarked in the previous section, for
c < 1/2, the edge-effect solutions found above lose stability to stationary points that
are purely measure-valued. We construct these measure-valued solutions by seeking
K : [—L, L\ —> R satisfying the following conditions.
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M-l. K is even and in C2([—L, L\).
M-2. In all of K satisfies

I\" - 72(1 - 2c)A" - -27/i0, (4.20)

and, in addition,
\cf)K + ho\ < 1. (4.21)

M-3. K satisfies the boundary conditions (3.31) and (3.32), i.e.,

K'(L) = —'yK(L),
K'(-L) = jK(-L).

Once again, constructing m from K is straightforward.

Theorem 4.3. If K : [—L,L] —> K satisfies conditions M-l M-3, then

m cyK + ho (4.22)

is a transverse stationary point.
4.3.1. Case I. c = 1/2. In this case, after implementing conditions M-l through M-3

and using (4.9) we get

m(x) := h0[ 1 + cy(2L + 7(L2 - x2))]. (4.23)

Note this satisfies the inequality (4.21) if |ho| < (1 + 7L + 72L2/2)_1.
4.3.2. Case II. c < 1/2. Similarly, after implementing conditions M-l through M-3

we get

m(x) := h0
2c ( cosh7\/l — 2 cx ,1 ~  : ,      . + 1

(1 — 2c) \ (cosli7\/l — 2cL + v/1 — 2csinh7\/l — 2cL)
. (4.24)

Again, note that (4.21) is satisfied if |/io| < hc, where hc is defined in (4.17).

4.4. Summary. Let us put the various types of solutions found above together to get a
more complete picture. We display the solutions in a magnetization diagram which plots
the applied fields ho versus the average magnetization M := ^ f^L m(x) dx. The cases
c < 1/2 exhibit similar overall pictures (see Fig. 2 on p. 282).

1. For | h0| > hs, where

hs := 1-1/(2(1 -e"2^L)), (4.25)

the saturated solution m = sgnho is a stationary point.
2. For hc < |h0| < 1 — 1/(2(1 — e~2lL)) there are stationary points exhibiting edge

effects. The solutions are saturated in the center of the plate with measure-valued (oscil-
latory) edges. The measure-valued regions become larger as the magnitude of the applied
field is increased. The critical field hc is given by

hc := ——-——^-[1 — (cosli7\/l — 2cL + \/l — 2csinli7\/l — 2cL)~']~1, (4-26)
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Mk

Measure-valued

Saturated

for c < 1/2 and

Fig. 2. Magnetization curve for c < 1/2

1 + 7-L + 7 1/2)" (4.27)

when c = 1/2.
3. For |/i0| < hc the stationary points are purely measure-valued. The function m is

linear in /to-
For large values of c we can no longer show the existence of a continuum of stationary

points. In particular, as was noted in [2], if hs < 0 then there is a range of values of
ho in which both saturated solutions are relative minimizers of the energy (i.e., there
is hysteresis). Since we have multiple equilibria, we expect some sort of hysteresis loop
of stationary points. We cannot at this time show the existence of such a structure of
solutions analytically. However, we have shown that close to the critical value of the
applied field at which the saturated states lose stability, there exists a continuum of
stationary points exhibiting edge effects. (See Fig. 3.)

5. Stability of edge-effect stationary points. In the previous section, we noted
our result from [3] concerning the stability of saturated solutions. In this section we
discuss stability of the nonsaturated solutions found above. We show stability (actually
global minimization) only for values of c < 1/2 for which there is no hysteresis.

Theorem 5.1. Let ho,j, and L be given and K be as defined above. Let c < 1/2 and
suppose that m : [ — L, L) —> [—1,1] is a stationary point of the form constructed above,
i.e.,

M-l. to is even and continuous.
M-2. There exists x £ [0,1/) such that m(x) = 1 and //.„ > 1 cjK(m)(x) for

x G (—x,x).
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Saturated

/

/
Saturated

Edge-effect
h0

Fig. 3. Magnetization curve for c >> 1/2

M-3. For x G [-L, —x) U (x, L] we have \m(x)\ < 1 and

m(x) = cyK(m)(x) + h,Q. (5.1)

Then m is a stable global minimizer of E (defined in (3.29)).
Proof. Let v ^ 0 be an admissible perturbation of m, i.e.,

\m + v\ < 1. (5.2)

Note that this implies
—2 < v(x) <0 for x € \x,x]. (5.3)

Some routine calculations using (5.1) and the Cauchy-Schwarz inequality yield

rL ... rL rL
E(m + v) — E(m) =— f v2—^ f f e 7'x v^v{x)v(y) dx dy

2 J-l 2 J_L J L

4- / v(a;)[l — ho — cyK(m)(x)\ dx
J —X

>— J v2—If J e ^X~v^v(x)v(y) dx dy
L

>

>0.

\~c{ l-e~^) Lv2
L

This completes the proof. □
Remark. Note that the case where m = — 1 on (—x,x) can be treated in the same

way.
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6. Conclusions. We conclude with a few remarks.
We first note that we have not ruled out the existence of stationary points that would

oscillate between saturated regions of opposite sign with the saturated regions separated
by measure-valued regions. Existence and metastability of such solutions (particularly
for large values of c) remains an open problem.

Second, we note that one might object to the setting of the one-dimensional problem
in the first place. After all, Young-measures that depend only on the variable x arise
as the limit of sequences that are periodic in the y and/or z directions. Fortunately,
there is no way to lower the energy per unit area of a plate whose (measure-valued)
magnetization depends on x by a perturbation that is periodic in the y and z directions.

To see this, consider a periodic classical magnetization m(x,y,z) £ M(fi) such that

m(x,y,z) = m(x,y + Lv,z + Lz) for every (x, y, z) € fi. (6.1)

For such a magnetization, the energy per unit area of the plate is given by

£P(m) := y~T I f f D(x,y,z)dzdydx, (6.2)
ljyL'z J-L JO J0

where the energy density D is defined by

D{x, y, z) := - ;-m(x, y, z) ■ h[m](x, y, z) + W(m(x, y, z)) - h0 ■ m(x, y, z)

/L rOC pOO/ / k(x,y,z;x',y', z')m(x,y, z)m{x',y',z')dx' dy' dz'.
-L J — oc J oe

(6.3)

-L J — oc -

Note that if we assume that the kernel takes the form

k(x,y,z;x',y',z') = g{\(x,y,z) - (x',y',z')|) (6.4)

then the energy density is periodic in y and z if m is periodic as well.
Now suppose that the one-dimensional measure-valued magnetization /i minimizes

the energy 5 over M.{—L,L). Suppose further that there is a periodic magnetization
m 6 M(f2) such that

£p(m) < £{n). (6.5)
We now define

and note that

Furthermore, we have

mn(x,y,z) := m(x,ny,nz) (6.6)

mn m in L°°(f2). (6-7)

£p(m) = £p(mn), n= 1,2,3,.... (6.8)
Thus, if we let u € be the measure-valued magnetization corresponding to the
sequence m,, we have

£(f) < hm £p(mri) = £p(m) < £(/x), (6.9)
n—»oc

which contradicts the assumption that minimizes the energy.
In light of this observation, we could just as well have posed the problem of minimizing

the energy per unit area of any magnetization that is periodic parallel to the plate. We
can always lower the energy of such a function by rescaling, taking a weak limit, and using
the resulting measure-valued magnetization which depends only on the x-direction.
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