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Abstract. Exact explicit expressions are obtained for an isotropic tensor-valued func-

tion of a nonsymmetric second-order tensor, and its derivative, without resort to eigen-

vector calculations. These are then used to derive explicit expressions for the material

time derivative of the general strain measures in terms of the deformation rate tensor.

1. Introduction. Isotropic tensor-valued functions of symmetric second-order ten-

sors are used to express various strain measures in the kinematics of finite deformation.

These strain measures are often expressed in a spectral form with respect to the principal

triad of the right stretch tensor (left stretch tensor, if the strain measure is Eulerian)\

Hill [5]. Using the Hamilton-Cayley theorem, a strain measure of this kind can be rep-

resented in the coordinate-invariant form. Ting [14] obtains closed-form expressions for

the general isotropic functions of a symmetric second-order tensor. Among the various

strain measures, logarithmic strain is considered to have certain advantages in constitu-

tive modeling; Hill [6]. However, the relation between the rate of stretch (or deformation

rate) and the material time derivative of the logarithmic strain is very complicated. Hill

[6] obtains this relation in component form with respect to the principal triad of the

right stretch tensor. Later, Hill [7] obtains a relation between the deformation rate and

the material time derivative of a general strain measure. This too is in component form

with respect to the principal triad of the right stretch tensor. Gurtin and Spear [4]

obtain a relation for the Jaumann derivative of the logarithmic strain in terms of the

deformation rate and the spin of the principal stretches. Carlson and Hoger [2] obtain a

coordinate-invariant expression for the derivative of isotropic tensor-valued functions of

a symmetric second-order tensor. Hoger [8] uses this expression to obtain a coordinate-

invariant expression for the material time derivative of the logarithmic strain. Scheidler

[11] provides an alternative proof for Hill's formula [7] when the principal stretches are

repeated. Scheidler [12] then gives approximate coordinate-invariant formulas for the

time derivative of the generalized strain tensors.

The isotropic tensor-valued functions of symmetric second-order tensors, and their

time derivatives have received considerable attention in the kinematics of finite deforma-

tion. Those of nonsymmetric tensors, however, do not seem to have been addressed. In
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this paper, exact explicit coordinate-invariant, expressions are given for general isotropic

tensor-valued functions of nonsymmetric second-order tensors, and their derivatives.

Then these results are used to express the material time derivative of the general strain

measures in terms of the deformation rate tensor.

As an illustration of the application of the isotropic functions of nonsymmetric second-

order tensors, let the deformation gradients of a material neighborhood at time t and

t + At be related by

F(i + Ai) = Ft(At)F(f), (1.1)

where Ft(Ai) is the incremental deformation gradient from time t to t + At. Let Ft{At)

correspond to a constant velocity gradient L over the time interval 0 < £ < At. Then,

L = Ft(0Fr1(0. 0<£<A t. (1.2)

Integration of this rate equation subject to the condition Ft(0) = 1 results in

L = ~ln{Ff(Ai)}. (1.3)

In this example the determinant of F, is positive. However, the results presented here

apply to any real-valued second-order tensor. Similarly, if a material element is subjected

to constant velocity gradient L over the time increment At, the incremental deformation

gradient becomes

Ft(At) — exp(LAi). (1-4)

To our knowledge, there is no explicit coordinate-invariant expression for the logarithm

or for the exponential of a general real-valued nonsymmetric second-order tensor which

may have any set of three eigenvalues, real or complex. In most finite-element codes, for

example, (1.3) is generally evaluated approximately.

Results are presented in a three-dimensional setting. When these tensors admit dis-

tinct eigenvalues, these results directly carry over to any dimensions. For repeated

eigenvalues, the same procedure given for the three dimensions also applies to higher

dimensions, but the computations become rather complicated.

2. Spectral representations of nonsymmetric tensors. Let A be a three-

dimensional real-valued nonsymmetric second-order tensor with eigenvalues A,;, and the

corresponding eigenvectors e,;, i — 1,2,3. Its adjoint then is its transpose, A'. The

eigenvalues are the roots of the characteristic equation,

A3 - IaA2 + IIaA - IIIA = 0, (2.1)

where Ia,Ha5 and IIIa are the basic invariants of A, given by

IA = tr(A),

Ha = 2{Ia - tr(A2)}, (2.2a-c)

HIa = ^{tr(A3) - IA tr(A2) + IIA tr(A)}.
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The eigenvalues may be real or complex. If A is symmetric, it is known that the eigen-

values are real, and the eigenvectors are real and orthogonal. However, for a general,

real-valued nonsymmetric A, the eigenvectors e;, i — 1,2,3, are not orthogonal, and the

eigenvalues may not be real. Since the characteristic equation for A1 is the same as that

for A, their eigenvalues are also the same. Denote the eigenvectors of AT, corresponding

to the eigenvalues Aj, by e,, i = 1,2,3. It then follows that1

Ae, — A;e,;, A. ej = Ajej,
2.3a-c)

ei • ej = 0 if Xi ̂  Aj.

The reciprocal vectors of A are defined as

ej = ei/(el • et), i= 1,2,3. (2.4a)

From this and (2.3c) it follows that

e? " = ^iji (2.4b)

when the eigenvalues are all distinct. Note that, while the et's may be rendered as unit

vectors, in general, e^'s defined by (2.4b) are not unit vectors.

When the eigenvalues are distinct, A can be written in terms of the eigenvalues,

eigenvectors, and reciprocal vectors as (spectral representation)

3

A = A,ej <§) e^. (2.5a)

i=1

It follows from (2.3c), (2.4), and (2.5a) that, for any integer to, Am has the spectral

representation,
3

Am = ^ Afe, ® e?, (2.5b)

Now, consider the case where two of the three eigenvalues of A are equal, say A2 = A3.

Then ej and ei are uniquely determined. If A is symmetric, any vector that is orthogonal

to ei = ei is an eigenvector corresponding to A2 = A3. However, if A is nonsymmetric,

it has only one eigenvector, e2, corresponding to A2 = A3. Then the reciprocal vector

corresponding to this repeated eigenvalue is £3, which is orthogonal to ej and e2, i.e.,

Aei = Aiei, Arei = A161,

Ae2 = A2e2, ATe3 = A2©3, (2.6a—e)

e2 • ei = e2 • e3 = ej • e3 = 0.

Now, any vector other than £3, in the plane normal to ei, can be chosen as %2- Once e2

is chosen, then e3, orthogonal to ei and §2, is unique. Noting that e3 is not necessarily

an eigenvector of A, this tensor can be written as follows:

3

A = ^ Aiei <8> e» + /x23^2 0 e3, \xij = • Aej. (2.7a,b)

i=1

1When the eigenvectors e; and ej are complex, e; • ej is the simple product of e; and ej, i.e.,

et ■ ej = (x» ■ Xj - yi ■ yj) + j(x, ■ yj + yi ■ Xj) for e» = x, + iyl and ej = x, + iyj.
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Note that, when e3 is an eigenvector, then /x23 is automatically zero. Representation

(2.7a), therefore, also applies when there are three distinct eigenvalues.

It follows from (2.7) that

3

Am = ^2 ^Tei ® ei + m\™~ V23e2 ® e3. (2.7c)

i—1

Since Ai and A2 are the roots of

A2 — (A] + A2)A + A1A2 = 0, (2.8a)

it follows from (2.7) that

A2 — (Aj + A2)A + AjAil = (A2 — Aj)H, H = /x23e2 <8 63. (2.8b,c)

Note that

HA = AH = A2H, tr(H) = tr(AH) = tr(A2H) = 0. (2.9a,b)

Similarly, if all three eigenvalues are identical, say equal to A, then A can be written

A = Al + /ui2ei (8> e2 + Mi3ei <8> e3 + /.x32e3 <g>e2, (2.10a)

where Hij is defined by (2.7b). For this case, it follows that

pm _ yn-^ + Im(m _ l)Am_2/Zl3/i32ei <g> §2

(2.10b)
+ m\m (fj,i2ei <8> e2 + //i3ei <g> e3 + /<32e3 (g> e2).

Note that, if A in (2.10) is symmetric, any vector is an eigenvector. Therefore, 1^12,^13,

and /i23 reduce to zero. However, if A is nonsymmetric, there will be at most two

eigenvectors. If ei is the unique eigenvector of A, then the unique eigenvector of A 1 is

e2, which is orthogonal to ei. If e2 is an eigenvector of A, then ei is an eigenvector of

A1. In that case /./,i2 = ^32 = 0. If ei,e2, and e3 are all eigenvectors (this is true only

for symmetric A), then /j|2 = ^i3 = /i32 = 0. It follows from (2.10) that

A = Al + H, H = /xi2ei <£) e2 + /Ui3ei ® e3 + /x32e3 ® e2,

H" = ^13/^3261 <S>e2, H3 = 0, (2.11a-e)

HA = AH = AH + H2.

This spectral representation can be used to extend many results obtained by various

authors [14, 2, 8] for symmetric second-order tensors to nonsymmetric tensors.



NONSYMMETRIC SECOND-ORDER TENSOR 587

3. General isotropic tensor-valued functions. Consider a polynomial, tensor-

valued function of A,
n

f(A) = ^fclA!, (3.1a)

1=0

where kt and n (integer) are constants. This tensor-valued function is isotropic,

f(RTAR) = RTf(A)R,

for any proper orthogonal (rotation) tensor R. Denote by / the corresponding scalar-

valued polynomial,
n

f{x) = ^h x\ (3.1b)
i=0

Consider also cases where n —> oo, provided that the function f(x) is defined and suitably

differentiable.

Substituting the spectral representation of A from the preceding section into (3.1),

we obtain      
f(A) = f(A) + f'(A)H + if"(A)H2,

3

f(A) = E/m* <g)®i'
i=i

3

f'(A) = ® e*,

1=1

3

f"(A) = 53/"(Ai)ei®ei, A = A - H,

(3.2a-e)

i=1

H = 0 if

H = 1 (H2 - (Ai+A2)A + AiA21}, H2 = 0 if A: ^ A2 = A3, (3.3a-f)
A2 — Ai

H = A - Al, H:i = 0 if Ai = A2 = A3 = A.

Repeatedly applying the Hamilton-Cayley theorem, the polynomial tensor-valued func-

tion (3.1a), including the considered cases with n —> oo, can also be represented as

f(A) = aol + ai A + 02A2, (3-4)

where ao, ai, and a2 are functions of the basic invariants (Ia, Ha, and IIIa) of A. If the

eigenvalues of A are distinct, substitution of (3.2) into (3.4) results in

/(A;) = ao + oiAj + a2A2, i = 1,2,3. (3.5)

If two of the three eigenvalues are identical, say A2 = A3, then, from (3.2) and (3.4),

f{\) = ao + ai A, + a2A2, z = l,2,
(3.6a,b)

/ (A2) = a\ + 2a2A2.
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Similarly, if all three eigenvalues are identical, say equal to A, then (3.2) and (3.4) yield

fW — ao + ai^ + 02X2,
(3.7a-c)

f'(\) = a1+2a2X, f"(X) = 2a2.

In each case, the corresponding set of three linear equations can be solved to obtain ao, ai,

and a2. However, the solution of (3.6) can also be obtained from the solution of (3.5) by

taking a limit as A3 goes to A2. Similarly, the solution of (3.7) can be obtained from that

of (3.6) by taking a limit as A2 goes to Ai = A. Therefore, only (3.5) needs to be solved

for the coefficients ao,«i, and a2- The special cases of repeated eigenvalues are then

treated by this limiting process. Note that, when A is symmetric, (3.6b) and (3.7b,c)

are immaterial, since H = 0 in such a case. For symmetric A, when the eigenvalues are

repeated, f(A) can be expressed as

f(A) — aol + ai A if Ai ^ A2 — A3,

f(A) = aol if Ai = A2 = A3 = A.

The coefficients are now obtained uniquely from

/(Aj) = ao + aiAj, i— 1,2, if Ai 7^ A2 = A3,

/(A) = ao if Ai = A2 = A3 = A.

(3.8a,b)

(3.9a,b)

Expression (3.4) for f(A) is valid whether or not A is symmetric. The coefficients

change, depending on whether the eigenvalues are real or complex. To find the eigenval-

ues, rewrite (2.1) in the following equivalent form:

A3 - 3aA - 26 = 0, A = A - IA/3,
(3.10a-e)

a = —IIA'/3) 6 = IIIa'/2, A'= A - (Ia/3)1.

If b2 — ai < 0, all three roots of (3.10a) are real and distinct. Then, the coefficients are

given by

a 0

-ai

02

1

A

A2A3 A3A1 A1A2

A2 + A3 A3 + Ai Ai + A2

1 1 1

/(A1XA2 — A3)

/(A2XA3 — Ai)

/(As)(Ai — A2)

(3.11a)

where

A — —(Ai — A2XA2 — A3XA3 — Ai),

x T /0 , 0 ^ f 2n7r + 4>\ , _i ( b \ (3.11b—d)
An = U/3 + 2Va cos I     I , <j) = cos I 1 .

If b2 — a3 > 0, only one eigenvalue is real, say, Aj. Then the complex eigenvalues are

given by

A2 = a + i/3, A3 = a — if3,

01 = (Ia — Ai )/2, /3 = \/Ha — a2 — 2aAi, (3.12a-e)

Ai = Ia/3 +{b+ sjti2 - a3)1/3 + (b- Vb2 - a3)1/3.
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In terms of Ai,a, and /?, the coefficients are given by

Oo
-Oi

a2

r^,2
1

A

+ (32, X\ (Ai — 2a) Aj (a2 — /32 — cvAi)

2a -2a a2 - (32 - \\

1 -1 a — Ai

7(Ai
/R

f/P J
(3.13)

where
fR = Re{f{a + if3)}, fl = Im{/(a + i/3)},

„ „ (3.14a-c)
A = (Ai - a) + /? . V y

For example, if /(A) = ln(A), then /R and /' are given by

/R = \ ln(a2 + /32), f1 — tan-1 ((3/a). (3.15a,b)

Similarly, if /(A) = eA, then

fR = eacos/3, /I = easin/3. (3.16a,b)

Note that, when /3 goes to zero, /T//3 goes to f'(a).

If b2 = a3 7^ 0, all three roots of (3.10a) are real and, among them, two are identical.

Then the coefficients are obtained by taking the limit in (3.11) as A3 goes to A2, or in

(3.13) as (3 goes to zero, arriving at

Ai/(A2) — A2/(Ai) , , x
flo —  : 7 1- a2A] A2,

Ai — A2

Qi = ~ Q2(Ai + A2), (3.17a-c)

/(Ai)-/(A2)-(A1-A2)/'(A2)
°2 (Ai - A2)2

where

Aj = |Ia ~t~ 2\/a, A2 = — \Zo. (3.18a,b)

Note that, when A is symmetric and A2 = A3, from (2.8),

A" — (Ai + A2)A + AiA21 = 0. (3.19)

In this case we substitute (3.17) into (3.4) and in view of (3.19) obtain

f(A) = A,/(A?)-y(A,) t + /(AO - /(A2)a (3 20)
Ai — A2 Ai — A2

The same result is obtained from (3.8a) and (3.9a).

If b2 — a3 = 0, all three roots of (3.10a) are real and identical. Then, by taking limits

in (3.17) as A2 goes to Ai, obtain

ao = /(A) — A/'(A) + ^A~/"(A),

a\ — /'(A) - A/"(A), (3.21a-c)

a2 = |/"(A).

Note that, if A is symmetric and Ai = A2 = A3 = A, then A — AI. In this case,

substitution of (3.21) into (3.4) results in

f(A) = /(A)l. (3.22)

This equality is the same as the one obtained from (3.8b) and (3.9b).
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4. Derivative of isotropic tensor-valued functions. Now, consider the derivative

of the isotropic tensor-valued function f(A) with respect to a scalar variable t, when A

is a differentiate function of t. Denote the derivatives of A and f(A) with respect to t

by A and f(A), respectively. In general, A can be expressed as

3 3

A = ^^(e, -Ae j)e,;i8)ej. (4.1a)

i=lj=l

*

This can be split into a part A, coaxial with A, and a (noncoaxial) remaining part Na,

A = A + Na. (4.1b)

When Ai ^ A2 ̂  A3 ̂  Ai, then

3

A = • Aet)ei ®e,;, (4.2a)

i=i

Na = AX - XA,

3 3 1-5

X = EEA._r.(^ ^-ej)ei ® ej. (4.3a,b)
i=1j=1 1 i

When Ai 7^ A2 = A3, then

* .
A = (ei • Aei)ex <8> ei + ^(e2 • Ae2 + e3 • Ae3)(e2 <E> e2 + e3 <8> e3)

+ (e2 • Ae3)e2 <g> e3,

Na = Nx + Nh, Nx = AX- XA, Nh=HY- YH,

1 ^ ̂
X = ® ej ~ (% • Aei)ej (2) ei},

(4.2b)

A1 — Ao1 2 j=2

Y = —— (e2 • Ae2 - e3 • Ae3)e3 <g> e2
~A^23

-(e3 • Ae2)(e2 <8> e2 — e3 ®e3),

(4.3c-g)

2^23

where A = A — H; see (3.2). When the eigenvalues are distinct, a coordinate-invariant

expression for Na is obtained by solving (see Appendix A)

ANa - NaA = AA - AA for Aj ^ A2 ̂  A3 ̂  Ai, (4.4a)

to arrive at

Na = —= ' 5—{18IIli, A -6IIa'1IIa'(A'A + AA')II4, + 27IIIA, 1 A v ;

+ 2IIA, A'AA' - 41l2A, (A'2 A + AA'2)

—9IIIa< A'(A'A + AA')A' - 611A'A,2AA'2},

for Ai ^ A2 ̂  A3 7^ A,.

(4.5a)



NONSYMMETRIC SECOND-ORDER TENSOR 591

When Ai ^ A2 = A3, clue to the presence of Nh, it is not trivial to find a coordinate-

invariant expression for N^. However, by solving (see Appendix A)

A% - NXA = AA - AA, (4.4b)

a coordinate-invariant expression for is obtained,

na = \ {(Ai + A2)(AA + AA) - 2Ai A2A - 2AAA}. (4.5b)
(Ai - A2)

Differentiate (3.1) with respect to t, and substitute from (4.1) to obtain

f(A) = f'(A)A + Nf for Aj / A2 ̂  A3 + Alf (4.6a)

f(A) = f'(A)A + i/"(A2) tr(AH)(e2 <E> e2 + e3 ® e3)

+ i/'"(A2) tr(AH)H + Nf for A, ^ A2 = A3,

f(A) = /'(A)A + i/"(A)(HA + AH

120

where the tensor f'(A), coaxial with A, is given by

+ \f"\ A)(H2A + AH2 + HAH)

+ 23/""(A)(HAH2 + H2AH)

+ t^/""'(A)H2AH2 for Aj = A2 = A3 = A,

(4.6b)

(4.6c)

f(A) = ^ifciAi"1, (4.7a)
i=0

and Nf is the noncoaxial part of f(A) such that

• Nfez =0, i = 1,2,3, for Ai ^ A2 =/= A3 ̂  Ai,

ei • Nfei = e2 • Nfe3 = e2 • Nfe2 + e3 • Nfe3 = 0 for Ai ^ A2 = A3.

In general, f'(A) can be expressed as

f'(A) = 6(,1 + 61A + 62A2, (4.7b)

where the coefficients 60,61, and 62 are functions of the eigenvalues of A and can be

obtained by replacing /(A) by f'(\) in the relevant expressions developed in the preceding

section. However, a closed-form coordinate-invariant expression for the noncoaxial part,

Nf, is not produced through differentiation of (3.1). Hence, consider (3.4).

Differentiation of (3.4) results in

f(A) = (ZiA + o2(AA + AA) -|- col -I- c\ A -I- c2A2, (^-8)
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where the unknown coefficients co,ci, and c2 are functions of A and A. Comparing the

noncoaxial terms in (4.6) and (4.8), we obtain the coordinate-invariant, expression for Nf

in closed form as

Nf = ai(A — A) + a2(AA + AA - 2AA) for Ax ̂  A2 ± A3 ̂  Ai, (4.9a)

Nf = ai(A - A) + a2(AA + AA - 2AA) - a2 tr(AH)(e2 <8> e2 + e3 ® e3),

for Ai 7^ A2 = A3. (4.9b)

Substitution of (4.9) into (4.6) results in

(4.10a)
f (A) = ai A + a2(AA + AA) + {f'(A) — a\ 1 — 2a2A}A,

for Ai ^ A2 7^ A3 ̂  Ai,

f(A) = (Xi A -t- a2(AA -1- AA) -1- {f (A) — o,\ 1 — 2g2A}A

+ ^{/"(A2) - 2a2} tr(AH)(e2 ® e2 + e3 <g> e3) (4.10b)

+ |/"'(A2) tr(AH)H for X1 + A2 = A3.

Therefore, to complete the derivation of the derivative of f(A), it is only necessary to find
*

a coordinate-invariant expression for A in terms of A and A. When all three eigenvalues
*

are distinct, a simple method is to note that A is coaxial with A, and write

3

A = y"V(AEj)Ej, E; = ei<g>ei for Ai 7^ A2 ̂  A3 / Ai. (4.11a,b)
i= 1

Observe that, since E;, i = 1,2,3, is coaxial with A, it can be written as

E, = cxqI -I- a\ A + a2 A2,

where the coefficients al0,a\, and a\ are obtained from

Q!q + oi\\j + a2A2 = 6ij, j = 1,2,3.

This yields the following coordinate-invariant expression for E;:

E, = ^^ ^ {A2 - (Aj + Afc)A + AjAt:l}, (4.11c)

where i, j, and k are permutations of 1, 2, and 3. Substitution of (4.11a) into (4.10)

results in

3

f (A) = ai A + a2( AA + AA) + V^{/'(Aj) — a-[ — 2a2A,;} tr(AE,)Ej,
f~t (4-12a)

for Aj 7^ A2 7^ A3 ^ Ai.
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When any two of the three eigenvalues are equal, say Ai ^ A2 = A3, the tensors coaxial

with A can be expressed with respect to the orthonormal bases {Ex, (1 -EO.H} as

follows:

A = AjEi + A2(l — Ei) + H,

f (A) = /'(A1)E1 + /'(A2)(l - Ei) + /"(A2)H, (4.13a-c)

A = tr(AEi)Ei + Htr(A) - tr(AEi)}(l - Ei) + «iH,

Ei=ei®ei = -——— (A - A21), A = A - H,
Ai — A2

H = — ~~ (^1 + A2) A + A1A2I},
A2 — Aj

(4.14a-c)

where the coefficient a 1 is still unknown. However, it is not necessary to evaluate a\, in

order to obtain an explicit expression for f(A). Substituting (4.13) into (4.10) in view

of (3.17), and noting that EiH = H2 = 0, we obtain

f(A) — cl\A + a2(AA -|- AA) H- {/'(Ai) — a\ — 2&2^i} tr(AEi)Ei

+ - 2a2}{tr(A) - tr(AEi)}H

+ |{/"(A2)-2a2}tr(AH)(l-E1)

+ !/'"(A2) tr(AH)H for Aj ^ A2 = A3.

(4.12b)

The same result is obtained by taking limits as A3 goes to A2, in (4.12a). Note that,

when A3 goes to A2,

(E2 — E3)/2 —► (A2 — A3)H, (E2 + E3) —► (1 — Ei) as A3 —► A2.

Using Rivlin's identities [10, Eqs. 4.22 and 4.25] in (4.6c) and noting that all three

invariants of H are zero, we arrive at

f(A) = /'(A)A + |/"(A)(HA + AH)

+ |/'"(^){tr(AH2)l + tr(AH)H + tr(A)H2}
(4.12c)

  f"" I \\J fW AHMH ±fr( AHIH'L
24 J

+ Tm/'""(A) tr(AH2)H2 for Aj = A2 = A3 = A.

+ ^/""(A){tr(AH2)H + tr(AH)H2}

The same result is obtained by taking limits as A2 goes to Ai = A in (4.12b). Note the

following limits in (4.12b) when 6A = Ai — A2 goes to zero:

<5AEi + H —> A - AI, 6AE1 - H —> —(A - AI)2,
OA

- o, - 2o2A,} - i/'"(A) + |/""( A) + "(A),

^/"(A:i - 2«2 - - g/""(A) - M «A - 0.
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Alternatively, by substituting (4.1) and (4.7b) into (4.10), f(A) is expressed in terms

of the noncoaxial part of A as follows:

f(A) = aiNA + a2(ANA + NaA) + 60(A - NA)

+ \bx {A(A - Na) + (A - Na)A} (4.15a)

+ |MA2(A - Na) + (A - Na)A2} for Ai ± A2 + A3 + \u

f(A) =aiNx + a2(ANA + NAA) + 6n(A~NA)

+ ifo1{A(A-NA) + (A-NA)A}

+ ^2{A2(A-Na) + (A-Na)A2} (4.15b)

+ i{/"(A2)-2a2}tr(AH)(l-E1)

+ |/"'(A2) tr(AH)H for Ai ^ A2 = A3.

Therefore, alternate expressions for f(A) are obtained by substituting (4.5) into (4.15).

However, these expressions are more complicated than (4.12). It is worth noting that the

expressions that result from substitution of (4.5b) into (4.15b) when A and A are sym-

metric, are the same as those obtained by Carlson and Hoger [2], When the eigenvalues

are distinct, it follows from (4.11b) that

E,;AE, = tr(AEj)Ej. (4-16)

Substitution of (4.16) and (4.11c) into (4.12a) results in another alternate expression for

f(A). This is the same expression obtained by Carlson and Hoger [2] for symmetric A.

When the eigenvalues A2 and A3 are complex, say,

A2 = a + i/3, A3 = a - i/3,

(4.12a) can be rewritten as follows:

f(A) = asiA + a2(AA + AA) + {/'(Ai) - aA - 2a2Ai} tr(AEi)E

+ i(/'R - a, - 2a2a){tr(AER)ER - ^(AE'JE1} (4.12d)

- i(/'[ - 2a2/3){tr(AE')ER + tr(AER)E1},

where

El ~ (^ _a)2 + p2^A2 ~ 2aA +

ER = (Aj -a)2 + /32^A" ~ 2aA ~ Al^Al _ 2a->1^'

E1 — —— ^ i (.32i {(^1 — a)A" + (a2 - (32 - A2)A - Ai (a2 — (32 - aAi)l},
p{(Ai - ay + fiz}

fR = R e{/'(a + i/3)}, /" = Im{/'(a + i/3)}.

(4.17a-f)
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Observe the following limits when f3 goes to zero:

Ei —> -—-—(A — al), ER —> 1 — Ei,
A\ — Ot fj

f'1 -> /f|"(a), f'R - ai - 2a2a -» as (3 -> 0,

where

A = A-H, H =—^-{A2 - (Ax+a)A + aAil}. (4.18a-g)
ol — Ai

This shows that (4.12d) reduces to (4.12b) when the eigenvalues are real and equal.

5. Strain rates. The general material strain measure, E, in the kinematics of finite

deformation is expressed as an isotropic tensor-valued function of the (symmetric) right

stretch tensor U,

E = f(U), (5.1)

where f is in the class of functions considered in Sec. 3. The material time derivative

of this strain measure can be related to the stretch tensor U and its rate U, using the

results obtained in the preceding section. The deformation rate. D, is related to the

stretch rate by
D = |R(UU_1 + U~1U)Rt, (5.2)

where R is the rotation tensor, defined through the polar decomposition of the deforma-

tion gradient, f = RU. Therefore, the stretch rate U can be expressed in terms of D

defined by
D = RtDR,

without resorting to eigenvalue calculations; see Hoger [8], Mehrabadi and Nemat-Nasser

[9], and Scheidler [13]. Here we seek to obtain a simple coordinate-invariant expression

for U in terms of D. This may involve the eigenvalues of U, but requires no eigenvector

calculations.

Denote the eigenvalues of U by Aj, i = 1,2, 3. The deformation rate D is decomposed
*

into a part D, coaxial with U, and a remainder part Nd, noncoaxial with U, as follows:

D = D + Nd,

3

D = Vtr(DEi)Ei for Aj ^A2^A3^A1.
(5.3a-d)

D = trpEOEi + |{tr(D) - tr(DE!)}(l - Ej) for Ai ^ A2 = A3,

D = tr(D)l for Ai = A2 = A3 = A,

where E,, i = 1,2,3, are defined below by (5.8). Denote by U and Nu the coaxial and

the noncoaxial parts of U, respectively. Then, from (5.2), it follows that

* * *

U = UD = DU' (5.4a, b)
UNu + NuU = 2UNDU.
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Following Scheidler [13], (5.4b) is solved to obtain

Nu = TT 2 {IuIIIuNp + IIuUNdU - IIIu(UND + NDU)}. (5.4c)
lullu — UiU

Prom (5.3) and (5.4), an expression for the stretch rate U is obtained in terms of D as

follows:

3

u = Ku + ^{Ai tr(DEj) - tr(KuEj)}Ej for Aj ± A2 ̂  A3 ̂  Ax,
i= 1

U = Ku + {Ai tr(DE!) - tr(KuE1)}E1 for Ai 7^ A2 = A3,

TJ = D for A1 = A2 — A3 == A,

Ku = tt 2 ttt {IuIIIuD + IIuUDU - IIIu(UD + DU)}. (5.5a-<i)
lu^u - fflu

Substituting (5.2) and (5.5) into (4.12), the material time derivative of a general strain

measure (5.1) is explicitly given as follows:

I. Distinct eigenvalues:

3

E = Ke + 5Z{Ai/'(Ai) tr(DEj) - tr(KEE,)}EM (5.6a)
i= 1

Ke = 2 {0lIIIu(IuD - UD - DU) + a3UDU}, (5.7a)
lullu — Ulu

E, = (Ai_Aj)1(A;— Afc){U2 - (A, + Afc)U + AjAfcl}, (5.8a)

_ (Aj + Xk)f(Xj)

(Ai — Aj)(Ai — Afc)'

a3 = aillu + a2(IuHu - IHu) = ^2 (5.9a,b)
i=1 Ak)

where i,j,k are cyclic permutations of 1, 2, and 3.

II. Repeated eigenvalues (i) Ai ^ A2 = A3:

E = Ke + {A1/'(A1)tr(DE1) - trO^E^Ex, (5.6b)

Ke - T TT 2 TTT {a1IIIu(IuD - UD - DU) + a3UDU}, (5.7b)
lullu - WAu

Ej =|^r(U-A2l), (5.8b)

_ o\ /(Ai)-/(A2) Ai + A2 ,
1 ~ 2 (A, - A2)2 + M-

a3 = 2A;A;/(Ai) (5.9c,d)
(Ai — A2) Ai — A2
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III. Repeated, eigenvalues (ii) Ai = A2 = A3 = A:

E = A/'(A)D. (5.6c)

It should be noted that (5.6b) can be obtained by taking limits as A3 goes to A2 in (5.6a).

Similarly, (5.6c) can be obtained by taking limits as A2 goes to Ai = A in (5.6b).

Concluding remarks. Many results, obtained in the past by various authors for

isotropic tensor-valued functions of symmetric tensors, can be shown to remain valid

even for nonsymmetric tensors when the eigenvalues are distinct. For symmetric tensors,

repeated eigenvalues result in a lower-order polynomial tensor equation than provided

by the Hamilton-Cayley theorem. This is not the case for general nonsymmetric tensors.

The material time derivative of any material strain measure of the general form (5.1)

can be represented explicitly and in a coordinate-invariant form, in terms of the de-

formation rate tensor D, and the stretch tensor U and its eigenvalues An without an

eigenvector calculation; the eigenvalues of U are given explicitly in terms of its invari-

ants, as discussed in Sec. 3.

Appendix A. Consider the equation

AX — XA = B, (A.l)

where A and B are general nonsymmetric tensors such that

tr(B) = tr(AB) = tr(A2B) = 0. (A.2)

Denote the eigenvalues of A by Aj, i — 1,2,3. First, consider the case where all three
*

eigenvalues are distinct. In this case, the general solution X can be split into a part X,

coaxial with A, and a (noncoaxial) remaining part Nx,

X = X + Nx,
3

X = ^(e, • Xet)ei ® et, (A.3a-c)

i= 1

tr(Nx) = tr(ANx) = tr(A2Nx) = 0,

where e, and e,. are the eigenvectors and reciprocal vectors of A, corresponding to the
*

eigenvalue Aj, i = 1, 2,3. The coaxial part X has the form

*
X — cyqIl -f- ol\ A Q2A2, (A.3d)

where a^,a\, and ct2 are constants. Now, consider only the noncoaxial part Nx and

seek to obtain a coordinate-invariant expression. Pre- and post-multiply (A.l) by A and

subtract to obtain, in view of (A.3),

A2Nx + NXA2 - 2ANXA = AB - BA. (A.4)
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It follows from Rivlin's identities [10, Eqs. 4.22] and (A.3) that

ANXA = Ia(ANx + NXA) - (A2NX + NXA2) - HANX. (A.5)

Substitute (A.5) into (A.4) to arrive at

CNX + NXC = AB - BA, (A.6a)

where

C = 3A2 — 2IaA + IIA1 - (A.6b)

Following Scheidler's [13] procedure, this can be solved for X as follows:

X = -^C(AB-BA)C, C = Icl-C, (A.7a)
Illc

which can be rewritten as

(4I13a, + 27IIIA/)X = 411^,(A'B ~ BA') - 9IIIA'(A,2B - BA'2)

— 3IIA'A'(A'B - BA')A'.
(A.7b)

The same result is obtained by Mehrabadi and Nemat-Nasser [9], and Guo et al. [3]

assuming that A is symmetric and X is skewsymmetric. A similar result is obtained

by Balendran and Nemat-Nasser [1] for the case where A is skewsymmetric and X is

symmetric. Note that IIIA = 0 for skewsymmetric A.

Now, consider the case where two of the three eigenvalues are equal, say A2 = A3.

Let the eigenvector and the reciprocal vector corresponding to A2 = A3 be e2 and e3,

respectively. Then, X can be expressed as

X = X + Nx, (A.8a)

(A.8b)
X = (ei • Xei)ei <S> ei + \{e2 • Xe2 + e3 • Xe3)(e2 <E> e2 + e3 ® e3^

+ (e2 • Xe3)e2 <£> e3,

Nx = Nx + Y|, % = AY2-Y2A,

Y1 = (e2 • Xe2 - e3 • Xe3)(e2 ® e2 — e3 <8> e3) + (e3 • Xe2)e3 ® e2,

1 3
Y-2 =   — ^{(ei • Xej)ei ®ej - (e_, • Xe, )e, ®ei},

Ai — A2 ^—'1 2 J=2

(A.8c-f)

where

A = A - H, H = 1 {A2-(A1+A2)A + AiA21}. (A.9a,b)
A2 — A1

Substitute (A.8) into (A. 1) to obtain

Y1 = -1—(e2 • Be2 - e3 • Be3)e3 O e2
2/i23

(e3 • Be2)(e2 <S» e2 - e3 (S> e3),

(A.10)

2m23
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where /u.23 = e2-Ae3. Note that it is not trivial to obtain a coordinate-invariant expression

for Yi. When A is symmetric,

M23 = e2 • Be2 = e3 • Be3 = e3 • Be2 = 0.

Then Yi is not unique. It follows from (A.9) that

A2-(Ai + A2)A + A1A21 = 0, AH = HA = A2H, H2 = 0. (A.lla-c)

Hence from (A.8)

A% + %A = (Ai + A2)Nx, HNjfH = 0, (A.12a,b)

and

H(A% - %A) - (ANX - %A)H

= 2(HANx + %AH) - H(ANX + %A) - (A% + %A)H (A. 12c)

= (A2 - Ai)(HNx + %H).

Pre- and post-multiply (A.l) by A, and subtract to obtain, in view of (A.8) and (A.12),

A2% + %A2 - 2ANXA = AB - BA + (Ai - A2)(H% + %H). (A.13)

Substitute (A.11) into (A.5) to obtain

ANXA = A2(A% + %A) - A^NX. (A. 14)

Substitute (A.14) into (A.13) to arrive at

(Ai - A2){A% + NXA - 2A2Nx} , A _
    (A.15)

= AB - BA + (A! - A2)(H% + NXH).

Now, pre- and post-multiply (A.8d) by A, add together and substitute (A.11) to arrive

at

A% + NjA = (Ai + A2)Nx- (A.16)

Substitution of (A. 16) into (A. 15) results in

Nx - (Ai _! Az)2 (AB - BA) + (Ai j- — (H% + %H). (A. 17a)

Hence, it follows from (A. 11c) and (A. 12b) that

1

(Ai — A2)

Substitute (A. 17b) into (A. 17a) to arrive at

H% + N^H = ——— {H(AB - BA) + (AB - BA)H}. (A.17b)

n- = (aT^?(ab-ba)

{H(AB - BA) + (AB - BA)H}.

(A. 17c)

(Ai — A2)3
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