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Abstract. The force between an infinitely long dielectric cylinder in a constant elec-
tric field and a conducting half space is determined using the separation of variables
technique on the Laplace equation in bipolar coordinates. The force is obtained as a
series containing the relative distance between the cylinder and the half space as a pa-
rameter. This series is not uniformly convergent for the cylinder approaching the half
space and the corresponding force cannot be obtained by performing the limit term per
term. A special asymptotic analysis is presented leading to an analytic expression for
this limiting value of the force.

1. Introduction. The change of the electric field due to the introduction of a con-
ducting cylinder in a constant electric field bordering a conducting half space has been
treated earlier [1]. In this paper a homogeneous isotropic dielectric cylinder is considered
(see also [2]). While the determination of the electric field and resulting force between
the cylinder and the half space is straightforward if using the appropriate coordinate
system, the calculation of the limiting value of the force for the cylinder approaching
the half space is more intricate. Indeed, the series solution representing the force is not
uniformly convergent in this limit. In [2] it was shown by a numerical calculation that
the limit cannot be taken term per term. This pure mathematical problem is solved by
a very careful asymptotic analysis, which could be useful for other similar series as well.

2. Basic theory. The problem is sketched in Fig. 1. An infinitely long homogeneous
isotropic dielectric cylinder with dielectric constant e is introduced in a half infinite space
with dielectric constant £0 filled with a constant electric field E. The remaining half space
is a perfect conductor. The axis of the cylinder is parallel to the boundary between both
half spaces. The distance between the center of the cylinder and the boundary is h. The
resulting electric field and the force between the cylinder and the conducting half space
are looked for.
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Fig. 1. Problem configuration

The problem is essentially two-dimensional. The potential field inside (V-i) and outside
(Vo) the cylinder can be written as the sum of the potential field V due to the constant
electric field and a disturbance due to the introduction of the dielectric cylinder:

vt = v + vdl, (1)
Vo = V + Vdo (2)

where (V is the nabla vector differential operator):

E = - W. (3)

Since the cylinder is homogeneous, isotropic and free from external charges, the basic
equation inside and outside the cylinder is the Laplace equation [3]:

&Vdi = 0, (4)
&Vdo = 0. (5)

The boundary conditions amount to:
1. The field must be symmetric about the i-axis.
2. Vdi must remain finite.
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v = 0°

u=0.45

u = 0 ► y

Fig. 2. Bipolar coordinate system

3. V0 = 0 on the boundary between both half spaces.
4. The potential is continuous on the surface of the cylinder:

Vi = Vo. (6)

5. The normal component of the electric displacement is continuous on the surface of
the cylinder:

av, av„
(7)

For the present geometry the use of bipolar coordinates (u,v) is very well suited (Fig. 2,
[4]). The cartesian coordinates (x,y) can be expressed as

/ x sinhux(u, v) = —a—  , (8)
cosh u — cos v

sinf
y{u,v)=a—  . (9)

cosh u — cos v
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Taking the surface of the cylinder as u = uq, h and r amount to (Figs. 1, 2):

1 r / , ,, acoshwo . .
h = - [x(u0,v = 0)+x(u0,v = 7r) = —— , (10)

2 sinn uq

r = ~[x(u0,v = 0) - x(u0,v = 7r)] = —• (11)
2 sinn Uo

The metric tensor components are ([5]):

a2
9uu 9w 7 r Tot (12)(cosh-u — cost;)-

9uv = 9vu = 0) (1^)

leaving the cartesian form of the Laplace equation unchanged, e.g., for Vdl:

d2Vdi d2Vdi n
-k~T + -~-r = °- (14)aa/ ovz

The electric field Edi takes the form

* f 1 dvdt _ , 1 dvdl _ 1
Edi — WcU — S   rj &u +   Cv > (1^)

t \J9'ILU Oh \J9vv UV J

- _ 1 J dx~ , dy~ i
— j  \ o ~t~ Q f ) (1^)

where

[du du

— ,  i o o f ■ (!')

efu, ev are unit vectors in the bipolar coordinate system, ix,iy in the cartesian system.
Using separation of variables the solution of Eq. (14) can be written as

OO

Vdi — y^(A'nenu + B'ne~nu)(C'n cos nv + D'n sinn-u) (18)
n=0

and similarly for Vdo. The symmetry about the x-axis and the finiteness of Vdl lead to

V, = Ea  + V Cne~nu cos nv, (19)
cosh u — cos v '

n—0

• v. 00
V0 = Ea— + V{Anenu + Bne~nu) cos nv, (20)

cosh u — cos v z—■'
n=()

where the first term in each expression is due to the original constant electric field
(expressed in bipolar coordinates). A zero potential on the boundary of both half spaces
requires

An = —Bn, n = 0,1,2,... (21)
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whereas Eq. (6) leads to

Cn = Ane2nu° + Bn, n= 0,1,2,.... (22)

Equation (7) can be rewritten as

FdVi-FdV°
~du ~ ~du (23)

yielding

Cn = j(Bn-Ane2nu°)+(j-l)2Ea, n = 1,2,3,.... (24)

To get Eq. (24) , V has been rewritten as ([6], formula 1.461.2):

• , / oo \

V = Ea—  = Ea (1 + 2 e~nu cos nv I , u > 0. (25)
cosh u — cos v \ z—J J

The unknown constants can be solved from Eqs. (21), (22), and (24):

A = -B = (£° ~ e^2Ea n = 1 2 3
n n e(e2nu° - 1) +s0(e2nu« + 1)' ' '

_ (e2n"o — l)(e0 — e)2Ea _ (26)
n e(e2n«0 - 1) +£o(e2nu0 + 1)' ' ' ' ' * " '

C0 = 0,

leading to

V; = Ea i+4s o y t(l - e^2nu°) + £0(1 + e~2nu°)

Vn = Ea
1 , o V" (£o ~~ £)e"Ue 2nu" + (£o + e)e nu
1 + 2 } ——     —   — cos nv^ £(1 - e-2nu°) +£0(1 + e~2nu°)

n=1 v x 7

(27)

(28)

Taking the limit for e —> oo, and switching the limit with the summation sign (allowed
due to the uniform convergence of the above series) leads to the expressions obtained by
H. Jenss [1] for the conducting cylinder.

3. Force acting on the cylinder. The mechanical stress vector at some point of
the cylinder amounts to [7]:

\ (£o - s) (Ei ■ E0)eu (29)
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leading to the force

K = -
2
i r2rr - -

(e0 -e) {Ei • E0)euy/g^dv (30)
Jv=0

for the complete cylinder, per unit length. Using Eq. (15), the cartesian components of
the force yield

i r2n

i r27T2^-^LKy =

£o ( dV0
e y du

EofdVo
£ \ du

2

U=U 0 i

U — Uq

dK
dv U=U 0 i

2 / \ 2i+ f
(cosh uo cos v — 1) dv,

(31)

(— sinh uq sin v) dv.
(32)

Finally, substitution of (27) and (28) into (31) and (32) leads to

Kx = 27T£o(^o — £2)E2r sinhuo

n(n + 1) cosh uo(e sinh nuo + £o cosh nuo) — n2(esinh(n + l)uo + eo cosh(n + l)tto)
(e sinh tiuq + eo cosh nuo)2(e sinh(n -f l)txo + £o cosh(n 4- 1)iao)

(33)

Ky = 0. (34)

Equation (34) is a natural consequence of the symmetry about the x-axis. In Table 1
the dimensionless force K* defined by

A'- = wfe <35»
has been calculated for several values of uq and £r = e/eq. Since

d/r = cosh uo — 1, (36)

Mo is a measure of d for constant r, i.e., d —> 0 for uq —> 0 and r constant. Ta-
ble 1 shows that for finite £r and Uq —> 0 (i.e., the cylinder approaches the conduct-
ing half space) the force remains finite, whereas for Er —+ oo, Uq —> 0 the values of
K* seem to blow up like tt/uo- The latter case corresponds to a conducting cylin-
der approaching the half space and will be considered first since it is the simpler case.
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Table 1. Numerical values for the dimensionless force
(the symbol signifies that no value was calculated).

u0 d/r K: (er = 5)
5.30 10"13

K* (sr = 10)■=T3~ K* (er = 100)~~ =TT K*u0/n (sr —y oo)
3.79 10"1210.0 1.1 104 7.96 10" 1.14 10"

2.57 T0=»5.0 73.21 1.71 10-
1.34 hp 2 =5"

3.69 lO"6
2.94 10 "2

6.11 10-
2.0 2.762 2.04 10 0.0195

8.81 10~21.5 1.352 5.75 10" 0.1287 0.0641
1.0 0.543 0.2331 0.3688 0.5587 0.1863
0.5 0.128

3.14 10- 2
0.8807 1.5650 2.7260 0.4630

0.25 1.6507 3.4730
5.00 10"30.10 2.2444 5.7813 21.916 0.8651

0.05 1.25 10" 6.6587 0.9305
0.04 8.00 10" 0.9441
0.03 4.50 10-'

5.00 10"5
56.149 0.9579

0.01 2.4413 7.0757 86.784 0.9858
1.25 HT5
5.00 10~7

0.005 95.915
0.001 2.44357 7.0956 100.226 0.9986

1.25 10"7
5.00 10- 0

0.0005 7.09574 100.381
0.0001 2.44360 7.09578 100.431 0.9998

4. Limit value of the force for a conducting cylinder approaching the half
space. In this section the asymptotic behaviour of K* for er —> oo and uo —> 0 is looked
at. For the conducting cylinder the nondimensional form of Eq. (33) yields

n(n + 1) coshuo sinhmxo — n2 sinh(n + l)uo
Kx = —2tt smhw0 >  2 7 r  —■ (37)

sinh nuo sinh(n + 1)mo

The statement at the end of the last section amounts to

limo = (38)

which has to be proven. The main problem in taking the limit of Eq. (37) for Uq —y 0
is that the limit and summation sign cannot be switched. Indeed, it is not difficult to
check that the limit for each single term in the series for uq —y 0 tends to zero (for n
fixed). This phenomenon can be better understood if one realizes that the series is not
uniformly convergent in uq over the interval [0, a] where a is some positive real number.
No matter how small uq is chosen it is always possible to find a value of n big enough
to yield a significant contribution of nuo■ The key in the present asymptotic approach
is that, although uo —> 0, no assumption is made about the size of nuo. Looking at the
expression

r . —K* . , n(n + 1) cosh uo sinh nuo — n2 sinh(n + l)«o
I = ——u0 = U0 sinh U0)  —2 —  — 

z—; sinh nun smh(n + l)uo
^ N (39)

= u0 sinh uo ̂ 3 7T -
n=1 n
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one can write

Nn = n cosh Mo sinh nuo — n2 cosh uuq sinh Uq

~ n sinh nuo — n2«o cosh nuo, Uq —+ 0,
OO

~ n
k=0 \ ptTTji_ m J' (40)

°° 9jL

~-n^(""o)2fc+1(2fe + 1),. uo —> 0,

Dn ~ sinh2nu0[enu°(l + Uo) — e~nu°(l — iio)]/2, uo —1• 0,

sinh3nuo, «o —> 0.
(41)

Hence
_°° OjU JS, „2fe+2

. Uo^°- (42)
t^l ( + " rZ1 Slnh nU°

Since according to [8]

1

= g ^ (i + l){i + 2)c-(2i+3)nuo

i—0

(43)
sinh3 nuo e3nu°(l - e-2"«°)3

ill
2

z=U

Eq. (42) is equivalent to

i~-suif;^fc+if;(*+1}2(i+2)f;n^(e~(2i+3)M(T, u0-o. (44)

Defining

(2k + 1)!fc=i \ ' i=0

sfc = $>v, (45)
n=l

it is not difficult to prove that

Using this expression and

1 -q
it is possible to find an explicit expression for St-'-

Sk — q—y—-- (46)aq

So = t3—, (47)

Vk a^fcV
Sk = (f^T' ^

where the coefficients a- are determined by a recursive relation:

a(i] = 4fc) = 1.

a(.fc) = + (A: + 1 - j = 2,..., k - 1. (49)
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Equation (49) also yields

(50)
i=1 i= 1

leading to
k

_J2ai=kl (51)
i=i

Using Eq. (48) in Eq. (44) leads to

(52)

I o1;2fyfc+1 ^(z + lKz + 2) ̂ l2ar+V(2'+3)*°P • ^
^ (2fc + i)!^ 2 [(2* + 3)uo]2fc+3 '

or, using Eq. (51),

T 0r(® + 1H! + 2)r fc(2fc + 2)
<2' + 3>3 "o^0' (53)

The expression in k is again of the form (45). Summing explicitly yields

2i + 3J~-2E(i + 1)2(i + 2)2' <54>

After splitting into partial fractions the calculation is complete:

u0 -> 0,
— yv-r u) j (55)

 2 > Wo^O.

It demonstrates that the first term in the asymptotic expansion of K* (Eq. (37)) in u0
is indeed tt/uq.

5. Limit value of the force for a dielectric cylinder. For a dielectric cylinder,
Eq. (33) can be written in the form (using er = e/eo and (35)):

K* = 2-7r(l — e^)sinhuo

[n(n + 1) coshuo(er sinhnuo + coshnuo) — ri2{eT sinh(n + 1)uq + cosh(n + l)uo)]E (.er sinhnuo + cosh nuo)2[£r sinh(?i + l)uo + cosh(n + l)uo] (56)

= 27t(1 - £2) sinh uo E
n=1 Dn

Nn and Dn now take the form

Nn ~ern[sinhnuo — {nuo) cosh nuo] +n[coshnuo — (nuo)sinhmio] +0(uq), uq —> 0,

(57)
sr cosh nuo + sinh nuo

Dn ~ (er sinhnwo + coshnwo)3 1 + Mq
er sinh nuo + cosh tiuq

, uq ► 0. (58)



356 GUIDO DHONDT and MANFRED KOHL

Consequently the leading term of K*/[27t(1 — £2)],uq —* 0, yields

n= 1

. . , ern smhntio — (nuo) cosh nuo + n cosh uuq — (nun) sinhmxo , .
J-i = sinhito >  1; —   — ttt (59)

' [er smh nuo + cosh uuq j

The numerator of a typical term in Eq. (59) can be written as

sinhUo|—£rn^(n«o)2fc+1^^yy " n ^)T } (60)

and the denominator yields

1 - 8 ^ (*+!)(? +2) /£r - lV c-(2i+3)nMn ^
(er sinhnwo + coshnwo)3 (er + I)3 2 \er + 1

using the same strategy as for the conducting cylinder, J_i is transformed into (compa-
rable to Eq. (54))

J ~ 1 Y"(£r~1
■uq | 2(er + l)3 ^ \er + 1

1 1

i 00

twE £r — 1
2(er -f l)3 \er + 1

L(i+1)2 (i + 2)2 J
1 1

.(» + l)2 (i + 2)2_

1 A /gr - 1
(£r + I)3 ^ Ur + 1

(62)

wq -> 0,

which vanishes for a finite £r (can be checked through appropriate combination of terms).

This shows that the leading term of K* remains finite. The next term of A'*/[27r(l — £2)]
yields

^ Nn [er cosh nu0 + sinh nu0]
J0 = -Mo sinh u0 > r r^r : r tz~ (63)

[er smh nuo + cosh mtoj4

where Nn has the form (57). The numerator after the summation sign amounts to

Nn[er coshraxo + sinhnwg] = n |£r ^ ^ ~ £r(nuo) j- sinh(2nwo)

+ n |er — (nuo) ^£r ^ ^ | cosh(2nuo) + n(mzo) ^

Substitution of Eq. (64) into Eq. (63) yields

J0 = —u0 sinh uo j (jr ^ ^ L(0'~~ erL{\,\)

'e2 + 1 \ , /1 — £2 \ n(nu0)

(64)

+ erL(0,0) - L(1,0) + Yi
^ \er sinh nuo + cosh nun]4
1=1 L J

(65)
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where

Wi) = g g <66)

Analogously as for the conducting cylinder one can show that

^(i + l)(i + 3) f 1 rij=i (2^ + 7 + j) \ (er — 1V
^ 6(i + 2) j 2^+2)0+^ [(i + 2)2]fc JU + V' U°"

(67)
and

i(nu0) 4 v~> (»+ !)(« + 3) (er - lV 1E nyuu o J 1 ^r—\
n_i (ersinhrzuo + coshrazo)4 ^(er + I)4 6(« + 2) ^£r + 1,/ i + 2' (68)

u0 -> 0,

leading to the following expression for J0:

4 ~ (i + i)(i + 3) /£f._iV
•'"-"STTiFg 6(i + 2) (stpiJ "• (69)i=0

where

,,_(<$ +1\ 1 2fc + 2 er y, (2k+ 3) (2k+ 2)
~ V 2 J i + 2^0(i + 2)2fc 2(* + 2)2 t^o + 2)2fc

00 1 - ' 2X1\ 1 — til- _L OVOl- J_1\ 1 /1 _ -2v—". 2k +1 / £r + 1 \ 1 \ (2k + 2)(2k + 1) 1 /1 — B.
£r t^0 (* + 2)2fc ~ V 2 yl 2(i + 2) (i + 2)« + iT2

Through summation M yields

M = (*±±) I f + e/'2^ + X)

(70)

j V(J2-D2; o'2-i)3 r(j2-i)2

£2 + l^ l (j*(j* + 3)^ + /^1-e2^ 1 (71)

2 J 3 \ U2 - I)3

where j — i + 2. Consequently

4 Ai/£r-iy-2f/£2 + n 2j2 i(3j2 +1)
j«~-77^wE^ - £r(er + 1)4^ 6 [er + 1J \V 2 J (f - 1) r (f - l)2

3(j2 + 1) f£r + 1\ 32{j2 +3) (I - £2\ j2 — 1 \
' (f ~ 1) { 2 / (j2 !)2 y 2 ) f /' Mo^°'

(72)
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Splitting into partial fractions yields:

2 f o 1 1= 2+—t-—r, (73)
j2 - 1 j - 1 j + 1

j(3j2 + 1) -l + 3j , 1 + 3 j
+ (74)

(J"2 - 1)2 2(j — l)2 2(j + l)2

Jr22+iV = J + ^-r + ^TT' (75)U2 - 1) 3 - 1 J + 1
J-V + 3) = 1+ -l + 3j l + 3j (?6)
0"3 - l)a 2(3- l)2 2(i+ l)2

Substitution of Eqs. (73)-(76) into Eq. (72) reveals that

2j2 j(3j2 +1)
(f - 1) £r (j2 - l)2

2^-2 ,o\l /„ _ , \ j~2jU2 +1) _ {4+l\ fu2 + 3)1 =r 0'2"1) V 2 J (J2-1)2 / ^U + iJ

and, consequently,

"°_o- <ra)

The series in Eq. (79) is related to S_2 which can be obtained from So through repeated
application of the inverse operation of Eq. (46):

5fe_! = f % d£. (80)
Jo s

This yields, starting from So in Eq. (47):

SL^-lnU-?), (81)

{J2'1
j2

(77)

S_, = ■ r^«, (82)
7o s

which cannot be expressed in elementary functions ([6], formula 2.728.2). So the final
expression for K* is

2tt (e2 - l)2 ] er + 1 ^ 1 f er — 1\3 * <83>
3(£r + l)4) 2 ijO'MnH-l

Evaluation of Eq. (83) agrees with the values in Table 1 for uq <C 1.
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6. Conclusions. The force between a dielectric cylinder in a constant electric field
and a conducting half space has been determined using the separation of variables tech-
nique on the Laplace equation in bipolar coordinates. The force has been obtained as
a series containing the relative distance between the cylinder and the half space as a
parameter. Due to the nonuniform convergence of the series in this parameter, a special
asymptotic analysis was needed to find the limiting value of the force as the cylinder
approaches the half space. It was shown that for a dielectric cylinder the force remains
finite whereas for a conducting cylinder the force is inversely proportional to the relative
distance.
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