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Abstract. In this paper, we will compute asymptotically the eigenfrequencies for
the in-plane vibrations of the general non-collinear Euler-Bernoulli beam equation with
dissipative joints. Many different kinds of dampers are allowed, even within the same
structure. This generalizes a previous result for collinear structures. Matrix techniques
are used to combine asymptotic analysis with the wave propagation method. We will find
that if the lengths of the beams are rational, there will be a finite number of "streams"
of eigenfrequencies, and, like the collinear case, each lies asymptotically to a vertical line.

1. Introduction. In the construction of large space structures, such as a large com-
munication satellite or a space platform, different types of damping devices are commonly
installed at the joints of the beams to suppress the vibrations. Without these damping
devices, or dampers, small vibrations in the structure would persist indefinitely, or even
slowly build up, which could lead to disastrous results. The joint and the damper together
form what is called a dissipative joint. The structural stability of such a configuration of
beams depends on the natural vibrations of that structure. Determining how well these
vibrations are suppressed involves careful analysis. For NASA's proposed space platform,
as many as 40 beams are required in order to make construction possible (information
obtained at a NASA workshop).

Finding the exact values of the eigenfrequencies generally involves solving a highly
complex transcendental equation. Thus, we will need to use asymptotics to find the
first-order solutions. We will use the coupled beam structure, since it is the easiest
type of structure to model mathematically. This structure is a chain formed by linking
together two or more beams end to end, not necessarily collinearly. For now, we will
work only with two-dimensional structures to find the in-plane vibrations, with hopes of
extending this process to three dimensions in the future.
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2. General background. The Euler-Bernoulli beam equation, rriytt + EIyxxxx = 0
with 0 < x < L and t > 0, is a standard mathematical model for a slender beam. Here
to denotes mass density per unit length, and EI is the flexural rigidity of the beam.
Appropriate boundary conditions and initial conditions will ensure a unique and stable
solution [12]. Separation of variables can immediately be employed, giving

y(x,t) = T{t)<t>{x),

mT" = EIX2T,

4>"" + x2^ = o.
The boundary conditions for the ends of the beam determine the eigenfrequencies A.
Each eigenfrequency has an associated eigenfunction <p\j (x). The initial conditions can
be decomposed into a linear combination of the eigenfunctions using an appropriate
Green's function [12]. Thus, the problem is solvable provided that we can find the
eigenfrequencies.

In [5, p. 1668], the case was considered in which two identical beams were linked
together at an angle of 180 degrees by a certain type of dissipative joint, with one end
of the structure fixed, and the other end free. Linear approximations were made for
the angle displacement. Also, to and EI were assumed to be constant throughout the
structure. In spite of these simplifications, the equations governing the eigenfrequencies
were highly complex. However, they could be analyzed asymptotically by removing those
terms that were small if the magnitude of the eigenfrequency was large. The spectrum of
this structure was shown to be given by two sequences, or "streams" of eigenfrequencies,

Afc ~ y/EI/m(4kiT - 7r)2 - EIfel Cl°2 i

and
Afc ~ yjEI/m(Akir + it)2 as k —* oo.

Here, fci,fc2,Ci, and c2 are constants that depend on the damper in the joint.
In [13] the spectrum of the general n-beam collinear structure with the same assump-

tions was shown to have n streams of eigenfrequencies, each of which lie asymptotically
on a vertical line. This paper allowed three other designs of dissipative joints, and even
different types of dampers within the same structure. The four types of dampers possible
for collinearly connected beams are as follows, as mentioned in [5, p. 1667].

Type I: No external forces act on the joint, while the displacement vector and the
beam coupling angle can change during dynamic vibrations.

Type II: The displacement vector is continuous across the joint, while the beam cou-
pling angle can change. External forces may act on the joint, but only those that do not
add a torque force.

Type III: The displacement vector and beam coupling angle are rigid, while any type
of external force is allowed.

Type IV: The beam coupling angle is rigid, while the displacement vector can be
discontinuous. The total external forces acting on the joint must be zero, but a torque
force may remain.
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The work in [13] also revealed a new way to compute the eigenfrequency "streams". For
each beam in the structure, a 2-by-2 matrix was constructed containing the information
about the length of the beam, and the type of damper at the end of that beam. These
matrices then were multiplied together, including a fixed l-by-2 matrix on the left and
a 2-by-l matrix on the right, to form a scalar function. The zeros of this function were
the asymptotic approximations of the eigenfrequencies. However, this work only applied
to collinearly coupled beams.

In a private communication with Chen and West, a specialized non-collinear 3-beam
structure was analyzed, with the beams meeting at 90 degree angles with type III dampers
at the joints, and the two ends of the structure fixed (see Fig. 1). Obtaining the equation
for the eigenfrequencies involved taking the determinant of a 12-by-12 matrix. Using
the Legendre-Tau spectral numerical method, the first few hundred eigenvalues could be
computed, demonstrating that at least six streams of eigenfrequencies could be detected.
From this, it was clear that if there was a method for solving the eigenfrequencies using
matrices, as in [13], the matrices would have to be more complicated.

Later, Chen, along with Zhou [9], studied the vibrating string by decomposing the vi-
bration waves into incident, reflected (including transmitted), and evanescent waves. By
using the equations on how these waves were propagated, the eigenfrequencies could be
computed. It was mentioned in this paper that the same method, called the wave prop-
agation method (WPM), could be used for the Euler-Bernoulli beam equation, and one
collinear example was given. This simplified the process, but some kind of asymptotics
was still needed to solve the equations.

3. Fundamental ideas. In this paper, we will find a way to use matrices to deter-
mine asymptotically the in-plane vibrations for general non-collinear structures. That
is, we will consider planar structures of n-beams, with dampers between the beams, as
in Fig. 2 (see p. 440).

We will let yi{x, t), 0 < x < lj, t > 0 denote the transverse displacement function of
the jth beam. Since these are Euler-Bernoulli beams, the y^'s satisfy the PDE's

d2 d4
m^2yJ^x^t) + EIfaAyJ(x,t^ = 0' for 0 < x < t > 0' j = 1,2, • • • ,n. (3.1)
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Here, we use superscripts instead of subscripts to ease the notation of partial derivatives.
We will make three simplifying assumptions for this model:

(HI) We will only consider vibrations in the plane of the frame.
(H2) The beams are essentially non-compressible, that is, the change of length of the

beams due to the forces exerted at the ends is negligible.
(H3) Forces exerted on a beam in the direction parallel to the length of the beam are

propagated in a negligible amount of time.
Because of assumption (H2), the longitudinal displacement is independent of the po-

sition within a given beam. Thus, we can denote the longitudinal displacement of the
jth beam by z3{t). Also, because of assumption (H3), the longitudinal force of a given
beam depends only on time; so we can let H3 (t) denote the longitudinal force of the jth
beam. Assumptions (H2) and (H3) together say that the longitudinal stiffness of the
beams becomes "infinite". This is a common approach to structure problems and, in
fact, is the basis of the displacement-stress approach for plates [10, p. 10Iff].

For an Euler-Bernoulli beam, the relevant physical qualities are represented by:

Transverse Displacement =yJ(x,t),

Longitudinal Displacement = zJ (t),

Transverse Velocity =yj(x,t),

Longitudinal Velocity = zj(t),

Rotation = yJx(x,t) = 6J(x,t),

Angular Velocity = y3xt(x, y) = d{ (x, t),

Bending Moment = —EIyJxx(x,y) = M3(x,t),

Shear Force = —EIyJxxx(x,y) = V3(x,t), and

Longitudinal Force = H'J(x, t).

Let us begin by deriving a formula for the total energy in the system. The kinetic
energy in each beam is given by

rl
^ L m(yt)2+ m(zt)2 dx-

/o

Also, the potential energy from the bending of each beam is

rl ii rj5 L 2
xx ') dx.
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So the total energy of the system is given by

£(t) = [ ™{yi)2 + m{zl)2 + EI(yJxx)2dx.
j=i 2 Jo

Since the dampers are energy-dissipating, the rate of change of energy should always
be negative. We can compute this change to be

^£(0 = YlJ0 myiyit+m44t+Eiyixyixt dx-

We can replace myjt with —EIyJxxxx to obtain

d n rl
£{t) = Y] [ -Eiyiy:xxxx + mzt At + EIvlxylxtdx

j=iJo
Ji, rh q

= 2J Jo g^(EIyityix - ElVt vlxx + mxz3tz]tt) dx

= ^EIyJxt{lj,t)ylx(lj,t) - Elyj(lj,t)y3xxx(lj,t) + mljZ3(t)z:tt{t)
3 =1

- EIyli(Q,t)ylx(0,t) + EIy}(0,t)yJxxx(0,t).

Because of assumption (H3), we have that

Hs(ljtt) = Hj(< 0,t) + mljZ{t(t). (3.2)

Hence, we can replace the term mljz3t(t)zjtt(t) by HJ (lj, t)z{ (t) — //'(0, t)zf (t). We can
also regroup the terms according to their position in the structure, giving

Jtm = 0l (0, t)Ml(0, t) - y\ (0, t)V1 (0, t) -H\0, t)z\ (t) - 8?(ln, t)Mn(ln, t)
+ y?(ln, t)Vn(ln, t) + Hn(ln, t)z?(t)

n— 1

+ ^(^+1(0,*)M^+1((M) - yi+1(0,t)Vj+1(0,t) - H3+1(0,t)4+1(t)
3 = 1

- + + Hj(lj,t)zi(t)).

If the beginning or end conditions are either free or clamped, the first six terms will be
zero. The change in energy at each joint must be non-positive; so we have that

-y{+\0,t)V3+1(0,t)} + -z{+1(t)Hi+\0,t)}

- [6{(lj,t)Mi(lj,t) - el+\0,t)M>+1(0,t)} < 0.
(3.3)
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One of the most important ideas needed to simplify the amount of calculations required
for a given structure is to find a convenient basis for the propagating waves. Classically,
the basis is chosen by letting the transverse displacement be

y{(x,t) = {Aje^ + BjeiTIX + C3e'^x + JD,e"iT'3:)eAt^7^.

However, we will find it convenient to consider another basis, using the following new
functions:

cosh(x) + cos(:r) ex + exx + e~x + e~lx
Hya(a;) =

Hyb(a;) =

Hyc(x) =

Hyd(a;) =

2 4
sinh(:c) - sin(x) _ ex + ieix - e~x - ie~lx

2 4 '
cosh(a;) — cos(x) ex — e1

2 4
sinh(x) + sin(a:) ex - ielx — e~x + ie~lx

2 4
One property of these "hybrid" functions is that the derivative of each one is the next,
that is, «.

^ Hya(x) = Hyb(x); ^ Hyb(a;) = Hyc(a;);

^- Hyc(x) = Hyd(x); Hyd(a:) = Hya(x).
ax ax

We now can express the wave propagation in terms of the new basis:

y{(x, t) = (A, Rya{r)x) + Bj Hyb(?7a;) + Cj Uyc{r]x) + Dj Hyd(rjx))ext^EI/m;

z{{t) = (3.4)

H{(0,t) = F3EIrf>ext^lEllrn.

Here, r) = so that A = irf.
Another simplification is, rather than letting each matrix represent all of the informa-

tion about one beam, including the angle between the beams and the type of damper at
the end, we will let each matrix represent one element of the structure, such as a beam
length, an angle between two beams, or a damper. For example, the above example by
Chen and West could be described by the following:

Begin with a clamped end.
Put in a beam of length 1.
Add a type III damper 45° to the left.
Turn 90° to the right.

Put in a beam of length 1.
Add a type III damper 45° to the left.
Turn 90° to the right.

Put in a beam of length 1.
Finish by clamping the end.
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Each line in the description will be represented by a separate matrix. So, in this case,
there will be 9 matrices to multiply together. Although there are more matrices to
multiply, each matrix will be simpler, sometimes even sparse.

We must consider how many different types of dampers there will be for non-collinearly
coupled beams. For any given damper in the structure, either the transverse displacement
or the shear force will be continuous. Likewise, either the longitudinal displacement or
the longitudinal force will be continuous, and either the rotation or the bending moment
will be continuous. Thus, there will be eight possible dampers for non-collinearly coupled
beams, given by the following table:

Type Continuous variables Discontinuous variables
I V, M, and H y, 9, and z
II y, M, and z V, 0, and H
III y, 9, and z V, M, and H
IV V, 9, and H y, M, and z
V y, M, and H V, 9, and z
VI V, 9, and z y, M, and H
VII V, M, and z y, 9, and H
VIII y, 9, and H V, M, and z

The designs for types I, III, V, and VI are given in [5]. Also, a damper of type VII
or VIII could be thought of as turning 90° to the right, which exchanges the transverse
and longitudinal displacement, adding a type V or VI damper, respectively, and finally
turning 90° to the left. Therefore, we only need to consider dampers of type I through
VI.

4. Wave propagation matrices. We need to determine how a wave of the form
(3.4) would propagate through the structure. We will do this by first finding the equations
associated with each element of the structure. These then are converted to matrices that
represent how the vector v = (Aj, Bt, Ci, Dt, Et, F{) is transformed by that element.

We begin by considering the two ends of the structure. When the beginning end of the
first beam is fixed, the boundary conditions are given by yl(0,t) = yl(0,t) = z*(t) = 0.
Likewise, when the terminal end of the last beam is free, the boundary conditions are
yxx(ln,t) = yxxx(ln,t) = Hn(t) = 0. Should the terminal end of the last beam be fixed,
as in the example by [8], these boundary conditions are replaced by yn(ln, t) — yx(ln, t) =
zn{t) = 0.

The boundary conditions at each dissipative joint will depend on the type of damper
involved. Figure 3 (see p. 444) demonstrates a type III damper, which is the easiest to
design. A single dashpot with a damping coefficient of Kj is attached to the joint at a
distance of rj from the center of the joint. The angle from the next beam to the dashpot
is given by 7. If we draw a line from the point of contact of the dashpot to the center
of the joint, the angle from the dashpot to this line is given by 8r

The boundary conditions for this damper can now be computed. We will consider
only linear approximations to the angle displacement. The displacement vector and
rotation are continuous across the damper, giving us three of the six boundary equations:
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Fig. 3

0J+1(O,f) = j/-J+1(0,t) = y^(lj,t), and 2^+1(i) = z^(t). For the other three
equations, we first simplify the notation a bit by letting

a = Kj sin2 7j/VrnEI,

b = Kj cos 7j sin 7j/VrnEI,

c — KjVj sin 6j sin7j/VrnEI,

d = Kj cos2 7j /VrnEI,

e = sin ^ cos 7,/VrnEI,

f = KjTj sin2 6j/VrnEI.

The last three boundary conditions then become

VJ+1(0,i) = V^(lj,t) + aVrnEIy{(lj,t) + bV mEIzj (t) + cVmEI6{{lj,t),
i3r-7+1(0, t) = W (lj,t) 4- bVmEIyj (lj,t) + dVrnEIzj (t) + eVmEI0{ (lj,t),
M-7+1(0,i) = — cVmEIyi(lj,t) — eVmEIzj (t) — fVmEI9j(lj,t).

For a general damper of type III with more than one dashpot, the boundary conditions
will still be the same, except that the constants a,b,..., f will be the sum of the corre-
sponding constants for each dashpot. However, there still will be conditions that govern
these constants, determined by the restriction that the damper is energy dissipative.

To determine this restriction, we substitute the six boundary equations into (3.3). We
find that the rate of change of energy across the damper is given by

(a b c\ (y{+1(0,t)'
-VmEI(y{+1{0,t) zj+1{t) 6Jt+1{0,t)) 6 d e zJt+1(t)

\c e f) \0?+1(O,i),

Since the damper is energy-dissipating, the rate of change of energy across the damper
must be non-positive. Thus we have that the matrix
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is a positive symmetric matrix, i.e.,

wLjw' > 0 for all vectors w € R3. (4.1)

We call Lj the constant matrix for the damper.
For brevity, we will let Vj = (Aj, Bj,Cj, Dj, Ej, Fj) € R6 be the components of the

wave in terms of the new basis after the jth line in the description. Then all six equations
can be written succinctly as r/vj+i — vj * Mj11, where

/ 77 —ia icr] 0 0 ib \
Or/ 0 0 0 0
0 0 rj 0 0 0
0 — icrj ifrj2 77 0 ierj
0 —ib ier) 0 77 id

\0 0 0 0 0 r) /

We can write similar matrices, which represent other types of dampers. For a type I
damper, the boundary conditions can be written as

VJ+1 = Vj- Hj+1 = W- M3+1 = Mj-

M™ =

b d e
1 ' tMEI' ' \fmEl" ' y/mEI

zl+1 = z{ + ; " V' + , " IP + = M3
\/mEI y/mEI \JmEI

e{+1 = ei - . ° - . 6 IP - . f MP
VmEI VrnEI \JmEI

Then the change of energy across the damper is

(a b c\ /Vi+1(0,t)\
_(^+1(0,t) W+1(0,t) M3+1(0,t)) I b d e <0.

y/mEI \c e f) \Mi+l(0,t) J

By labeling the variables as we did, (4.1) holds for this type of damper as well. In fact,
by labeling the variables of the dampers properly, Eq. (4.1) will hold for all dampers.

The boundary conditions for a type II damper are given by

yj+i = yj. zj+1 = zj. Mj+1 = Mj.

Vj+1 = VJ + aVmEIyi + bVmEIz{ + cM3-

HJ+1 = IP + bV mEIyi + dVmEIzJt + eAP;

6[+l =ei-cy}- ez{ - —jJ==MP
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The boundary conditions for a type IV damper are

yi+1 _ HJ + l = H3; ej+1 =

MJ+1 = Mj - cVj - eW - fVmEie{.
The boundary conditions for a type V damper are

yj+1 = yj. Hj+1 = Hj. Mj+1 = Mj.

Vj+1 = VJ + aV mEIyj + bH> + cMj;

The boundary conditions for a type VI damper are

Vj+1 = Vj■ zJ+1 = zj; 6>J+1 = 6>J;

ui+l - Vt + / Q ^ + bz{ + c04;
\fmEI

Hj+1 = W + bVj + dVmEIzl + eVmEiej;
AF+1 = Mj - cV] - eVmEIzj - fVmEI6Jt.

Then the corresponding matrices Mj for the other five types of dampers are given by

M) =

(r\ —ia 0 — c 0 ib \
0 77 0 0 0 0
0 c q —if 0 —e
0 0 0 77 0 0
0 —ib 0 —e r] id

\ —ibrj2 0 0 ier) —idr\2 77 / \0 0 0 0 0 77 /

( q 0 0 0 0 0\
iarf 77 0 —icr] ibrj1 0
icq 0 q —if icq 0
0 0 0 q 0 0
0 0 0 0 77 0

-">2 n fl 1/jn  1/^n^

=

M„IV =

/ l 0 0 0 0 0\
iaq l —C77 0 ibq 0
0 0 l 0 0 0

cq 0 i/77 l e77 0
0 0 0 0 l 0

Mj =

/ 77 —ia 0 —c bq 0\
0 77 0 0 0 0
Oct] —if icq 0
0 0 0 77 0 0
0 0 0 0 77 0

\ —ibq 0 cq 0 —idq l / \ 0 —677 0 icq —idrj2 77 /

/ 77 0 0 00 0 \
iaq2 77 — cq2 0 0 —bq

0 0 77 0 0 0
C772 0 i/772 77 0 ier;
brj 0 ze77 0 r] id

V0 0 0 0 0 77 /

and M/1 =
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Notice that there are patterns between some of these matrices. We have that

MjU = —r)2Mj(-l/r])T, M]v = -r]Ml/(-l/ri)T, Mjl =-rfMj (-l/rjf.

We will take advantage of these patterns later.
The matrix for turning an angle 4> is given by

Mansle =
3

( cos (f> 0 0 0 sin 0 0
0 cos 0 0 0 0 — sin (
0 0 1 0 0 0
0 0 0 1 0 0

— sin ̂  0 0 0 cos (f) 0
V 0 sin 6 0 0 0 cos d>

Mlength -
3

The matrix for a single beam of length I is given by

/Hya (It)) Hyd(Zr?) Hyc(^) Hyb(Zf?) 0 0\
Hyb(^) Hya(Z??) Hyd(^) Hyc (Irj) 0 0
Hyc(i?j) Hyb (l-q) Hya (Irj) Hyd (It]) 0 0
Hyd (Itj) Uyc(lr]) Hyb (lr]) Hya [lr]) 0 0

0 0 0 0 1 0
V 0 0 0 0 0 1/

Finally, the two ends of the structure need to be converted into matrices. If the final
end of the structure is either clamped or free, the boundary conditions can be put in the
form

vn • Mn = 0,

where

Mc|amp

(I 0 0\
0 0 0
0 0 0
0 1 0
0 0 1

\0 0 0/

and Mliee =

(0 0 0\
1 0 0
0 1 0
0 0 0
0 0 0

\0 0 1/
Other types of end boundary conditions can be obtained by combining a damper with
an end. For example, the boundary control used in [12] can be obtained by considering
a type III damper immediately followed by a free end.

By combining all of the matrices together, we get the equation

vi • (M\ • A^2 * -'^3 • * • A/n) = 0.

This gives us three equations with six unknowns. The other three equations come from
the fact that the beginning end is clamped, which can be put in the form vi •M£lamp = 0.
This says that A\ — D\ = E\ = 0; so only the second, third, and sixth columns of
(Mi • M2 • M3 • • ■ Mn) will be important. We can express this by letting

M0clamp =
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Then there will be a nontrivial solution to the wave equations if and only if

det(M0 • Mi • M2 ■ ■ ■ Mn) = 0. (4.2)

Let us denote G = Mq- Mi- M2 • • • Mn. Then whenever rj is a solution to |G| = 0, A = ir]2
will be an eigenfrequency of the structure.

At this point, the work we have done is similar to the wave propagation method in [9].
We are essentially determining how six different types of waves are propagating through
the structure, but the WPM is disguised in this setting because of our unusual basis. Yet
this basis will help us later in taking the asymptotic estimates.

5. Asymptotic estimates. So far, we have found a way to compute the exact eigen-
frequencies of the linear equations. However, for any nontrivial structure, the roots of
the determinant in (4.2) will be almost impossible to obtain. Thus, asymptotic approxi-
mations seem reasonable. To solve for rj to a sufficient degree of approximation, we will
need to estimate (4.2) to the highest two orders of r), as seen in [5].

Unfortunately, the highest orders of -q cancel as we take the determinant of G. Rather
than trying to keep even more orders of 77, we will try a different approach. We would
like to be able to take the determinants of each matrix, causing the highest powers of rj
to cancel before they were multiplied together. We can do this, by converting to larger
matrices.

We can think of a 6-by-6 matrix as a linear function F* : Vg —* Vq. This induces a
linear map on the set of all tensors F* : T(Ve) —> T(Vq). In particular, F* maps every
alternating covariant tensor of order 3 onto itself; thus, F* : A3(Ve) —> A3(Vq). This
induction map is an anti-homomorphism, that is, if H* = F, o G„ then H* = G* o F*.
See [2, p. 204] for details. By combining this transformation with a transpose, we can
create a suitable homomorphism.

What this transformation amounts to is this: There are 20 ways to pick 3 rows out of
the six, and 20 ways of picking 3 columns in the matrix. We can consider all 400 ways
of forming a 3-by-3 submatrix from the original, and take the determinants of all 400
matrices, forming a 20-by-20 matrix Nj. Then finding the determinant of G is the same
as finding the product of the Nj's. The 3x6 and 6x3 matrices convert to 1 x 20 and
20 x 1 matrices.

We will consider the following basis for A3 (V<;):

Ai = u> 1 A u>2 A Xq — ui\ A W3 A uj§ An = A uj2 A ujq Ajg = 103 A UJ4 A ujq

A2 = Ul\ A UJ2 A U>4 A7 = LUi A UJ4 A W5 A12 = A W3 A U)q Aj7 = LO\ A U5 A W6

A3 = uj 1 A UJ3 A UJ4 A8 = UJ2 A UJ3 A W5 A13 = uj\ A 004 A ujq Ajs = ui2 A uj5 A ujq

A4 = LO2 A U3 A UJ4 Ag = UJ2 A UJ4 A W5 A14 = U>2 A W3 A UJq Ajg = W3 A W5 A UJq

A5 = u>i A u>2 A tc>5 A10 = UJ3 A UJ4 A W5 A15 = u>2 A UJ4 A ujq A20 = UJ4 A u>5 A

This basis determines the ordering of the elements of Nj. For example, the entry in the
9th row and the 16th column of Nj is given by taking the determinant of the submatrix
obtained from the 2nd, 4th and 5th rows, and 3rd, 4th and 6th columns of Gj. Using
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this pattern, we can compute the matrices Nj. The end matrices Nq and Nn are the
easiest to compute:

^clamp = ^ 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0j 1) 0) 0) 0) 0) 0)

jyclamp = ^ Q) Q) Q) 0 1; Q) Q) Q) Q) 0j 0j 0j Q; Qj 0j q)T
N%ee = (0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)T.

To display A^angle, we will let re = cos 4> and a = sin <j>. Then A^angle =

( K2 0 0 0 0 0 0 Kd 0 0 0 kct 0 00000 -a2 0 \
0 k2 00000 0 kg 0 0 0 kct 0 0 0 0 0 0 —a2
0 0 reOOOOO Oo-OO 000000 0 0
0 0 OkOOOO 0000 OOO-crOO 0 0
0 0 00k000 0000 OOOOo-O 0 0
0 0 000100 0000 000000 0 0
0 0 000010 0000 000000 0 0

-Kff 0 00000 k2 0 00 -cr2 0 0 0 0 0 0 —kct 0
0 —kct 00000 0 «;2 00 0 —a2 0 0 0 0 0 0 —kg
0 0-CT 00000 0k00 000000 0 0
0 0 000000 0 0 ft 0 0 0 0 0 0 -cr 0 0

—kct 0 0 0 0 0 0 —cr2 0 00 re2 0 00000 —kg 0
0 —kg 0 0 0 0 0 0 —g2 00 0 k2 0 0 0 0 0 0 —kg
0 0 000000 0000 010000 0 0
0 0 000000 0000 001000 0 0
0 0 OtfOOOO 0000 000k00 0 0
0 0 OO-crOOO 0000 0000k0 0 0
0 0 000000 0 0 cr 0 00000k 0 0

-cr2 0 0 0 0 0 0 KG 0 0 0 KG 0 0 0 0 0 0 k2 0
V 0 -G2 00000 0 kg 0 0 0 kg 0 0 0 0 0 0 K2 )

To display jvjength, we need to break the 20-by-20 matrix up into smaller pieces.
Fortunately there is a pattern that we can utilize. First, let us introduce the variables

1/ = Hya(Z7?);

U = Hyb (Zr?);
V — Hyc(lr]);
W = Hyd(7r/).

If we let A be the 4x4 matrix
(Hya(7?y) Hyd(Irj) Hyc(/^7) Hyb

Hyb {Irj) Hya (Z77) Hyd(/?y) Hyc(Z77)
Hyc(/77) Hyb(/r7) Hya(/r?) Hyd(lri)

\Hyd (Irj) Hyc (Irf) Hyb (lr]) Hya (Irj) J
and B be the 6x6 matrix

(T2 -UW TW - UV TV -U2 W2 - TV VW -TU V2 - UW \
TU - VW T2 - V2 TW - UV TW -UV W2 - U2 VW - TU
TV -W2 TU - VW T2 -UW UW - V2 TW - UV TV- U2
U2 -TV TU - VW UW - V2 T2- UW TW - UV W2 - TV

UV - TW U2 - W2 TU - VW TU - VW T2 - V2 TW - UV
\V2-UW UV - TW TV - W2 U2 - TV TU - VW T2 -UW J

A =

B =
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then

7-length

(A
n; o

0
B
0
0

0
B
0

0\
0
0
A)

w

\0
To display the large matrices for the dampers, we will also need to introduce some

new variables. Let

t — be — cd, r = ad — b2,

u = be — ae, g = af — c2,

s = ce — bf, v = df — e2,

1 = adf + 2bee — e2d — e2a - b2f.

Then, after dividing by a factor of rj, Nj =

( V —if icrl 0 *e77 —ibq2 sq 0 0 0 0 00000000 0
0 q 0 0 0 0 -ibr? 0 0 0 0 00000000 0
0 0 77 0 0 0 -icn 0 0 0 0 00000000 0
0 —icq iaq2 7? 0 0 — uq 0 —ieq ibq2 0 0 000000 0 0
0 0 0 0 7? 0 -icrj 0 0 0 0 00000000 0
0 0 0 0 0 77 -if 0 0 0 0 00000000 0
0 0 000 0 7/ 0 0 0 000000000 0
0 0 0 0 —icq iar/2 gq q —if icq 0 0 000000 0 0
0 0 0 0 0 0 iari2 0 77 0 0 00000000 0
0 0 000 0 icrj 0 0 7/ 000000000 0
0 ieq 0 0 —idrt/2 0 tr^ 0 0 0 77 0 —icq0 0 0 ibr? 0 0 0
0 0 ierj 0 0 —idr? —vri 0 0 0 0 77 —if 0 0 0 ier] 0 0 0
0 0 0 0 0 0 -idrf 0 0 0 OO77OOOOOO 0

—ibr]2, sr] uri2 ier) rr1^ —iwrt2 —idrj2 —vq —tq2 —icq iaq2 grj 77— if icq u-q2 ieq —ib-q2 sq
0 —ibq2 0 0 0 0 rrj 0 —idq2 0 0 0 ia.772 0 77 0 0 0 0 —ibq2
0 0 —ibri2 0 0 0 —tri2 0 0 —idq2 0 0 icq 0 0 q 0 0 0 —icq
0 0 0 0 0 0 -ieri 0 0 0 OOOOOO77OO 0
0 0 0 0 —ibq2 0 —urj 0 —ier] 0 0 0 0 0 0 0 iar)2 77 0 —icq
0 0 0 0 0 —ibq2 srj 0 0 —icq 0 0 0 0 0 0 icq 0 77 —if

\ 0 0 0 0 0 0 -ibq2 0 0 0 0 00000000 77/

(ti3 —if 7]^ 0 -CTj2 0 0 0 0 0 0 -erf 0 0 ib-q2 -stl 0 0 0 0 0
0 7/ 0 0000 0 00000 0 ibr] 0 0 0 0 0
0 cr]2 r/3 —iari2 000 0 000 0 erf2 0 iur/ ibri2 0 0 0 0
00 Or;3 000 0 000 0 0 0 erf2 0 0 0 0 0
0 —erf2 0 0 rf3 0 0 0 erf2 0 idrf2 0 0 0 —itrf 0 0 ibrf2 0 0

9 9 2*322 2 2 2 i 2ib-q —sr] —cq —iurj cq 77 —ifq —iari —gr) cq —itrj idq vq rq —iw —itq eq iuq ibq —t
0 ibrf2 0 0 0 0 r/3 0 —iarf2 0 0 0 idrf 0 rrf 0 0 0 0 ibi
0 0 0 —erf2 0 0 0 r/3 —ifrf2 0 0 0 0 idrf2 vrf 0 0 erf2 0 0
00 0 0000 Of/3 0000 0 idrf2 0 0 0 0 0
0 0 0 -ibr)2 0 0 0 0 cr]2 r/3 0 0 0 0 -itrf idrf2 0 0 0 -e
00 0 0000 0 0 0 7j3 0 0 0 cr/2 0 0 0 0 C
00 0 0000 0 00 erf2 rf3 — ifrf2 —iarf2 —gri erf2 0 0 0 0
00 0 0000 0 0000 r/3 0 -iarf 0 0 0 0 0
00 0 0000 0 0000 Or/3 -ifrf2 0 0 0 0 0
000 0000 0 0 0000 Or/3 00000
00 0 0000 0 000 0 0 0 erf2 r/3 0 0 0 0
00 0 0000 0 00 —ibrf2 0 —erf2 0 —iurj 0 rj3 —iarf2 0 —c
00 0 0000 0 0000 0 0 -erf 0 0 rj3 0 C
00 0 0000 0 0000 0 ibrf2 -srr -erf2 0 erf2 rf3 -i,

V00 0 0000 0 000 0 0 0 ibrf 0 0 0 0 rf'

nP1 = -v3nJ(-i/v)t,
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rIV

fr)2 —iff] 0 —cry ier]2 0 0 6?72 isry 0000 0 000 0 0 0 ^
0 77 0 0 0 0 0 0 br]2 000000000 0 0
0 cr) T]2 —iar] 0 0 —ier/2 0 ur] br]2 000 0 000 0 0 0
000 r/2 0 0 0 0 -ier]2 0000 0 000 0 0 0
0 0 0 0 rj2 0 0 Oct? 000000000 0 0
0 0 0 0 cr] r)2 ~iJ7l —iar] ~9 C77OOO 0 000 0 0 0
0000 0 0 rf 0 -iar] 0000 0 000 0 0 0
0000 0 0 0 r]2 -ifr] 0000 0 000 0 0 0
0000 0 0 0 0 rf 000000000 0 0
0000 0 0 0 0 cr\ r]2 000 0 000 0 0 0
0 ieri2 0 0 —idrft 0 0 0 itr] 0 r?2 0 0 0 cr? 0 0 —br]2 0 0

.2-2 ■. 2 j 3 2 2 - -.2 2 r 2 . 2 •br] is-n ier] —ut] itr] —iar] —vt] —rr] iwri itr] crfr] —ifr/ —iar] —g cr] ier] —ur] —br] —isi]
0 677 0 0 0 0 —idr7^ 0 —rr] 0 0 0 ry 0 —iar] 0 0 0 0 —br]
0 0 0 ier/2 0 0 0 —idr]^ —vq2 0 0 0 0 r]2 —if77 0 0 ier]2 0 0
00000 0 0 0 ~idv3 0000 0 77 0 0 0 0 0
0 0 0 —bry2 0 0 0 0 itr/ —idr/3 000 0 cr/ r/2 0 0 0 —ierf2
0 0 0 0 brj2 0 —ier/2 0 ur) 0 000 0 0 0 ?72 —iar) 0 —cr]
00000 0 0 0 -ieri2 0 000 0 000 r]2 0 0
0 0 0 0 0 0 0 —bri2 ~^sl2 —ieri2 000 0 000 cr] r] ~^Jrl

\0000 0 0 0 0 -bri2 0 000 0 000 0 0 rf !

and
AT/1 = rfNji-l/nF.

At this point, the equation |G| = 0 can be replaced by the equation

Wo • N, ■ N2 ■ ■ • ATn = 0.

For convenience, let 5 = iV0 • Ni • N2 • ■ ■ Nn.
There is a method to all of this madness. Before, we had to keep many orders of 77 to

insure just one order of 77 after taking the determinant. Now, we can approximate these
matrices to find the first two orders of 77 easily.

Since the complex conjugate of any eigenfrequency is another eigenfrequency, we will
only consider eigenfrequencies A with nonnegative imaginary part. Also, the real part of
A must be non-positive, since the dampers are all dissipative. Ignoring the false solution
A = 0, we have that

7t/2 < arg(A) < ir.

Since A — ir/2, 0 < arg(?7) < 7r/4. We can use this to take estimates on the exponential
powers of 77. For example, elri ellr* as |?7| —> 00. If we let x = elr>, then we can get the
first two orders of 77 by using the following for j\rjensth (after multiplying by

(I
ivrlength

3
0
0

\o

0
B

0

0

B
0

0\

A)

where

A =

/2xl 2xl 2xl 2xl\
2xl 2xl 2xl 2xl
2xl 2xl 2xl 2xl

\ 2xl 2xl 2xl 2xl)
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and

( 21 i ( (1 — i)x21 \ • 21 , ■ ■ 21 , ■ ( ( — 1 - i)x'4-1 I v / —ix +1 —ix +1
+l + t / V -i+»

B =

-x21 - 1
(("-i

(l + 0*2iN\ 2x21 + 2 / (1 - O®21 ^ Ca-Ox2'^ _2zx2'+2i Z'(-1-0®"
+1-1 ) v + 1 + * / V +l + » / V -l + »

(1 - i)x21 \ x2( + 1 l2I + 1 (d-)*2'
+l-i J \ +1 + ?

(1 + i)x2' \ _2I . n i 1 /(l-O^2'_ , _ _ ' + 1 + .

(1 - i)x21 \ 2ixil_2i f(l-i)X2' \ f(l + i)x2'\ 2x2l+2 f(l -i)x2'\
— 1 — i J \ — i J V +1 ~ ̂  / V +1 + i J

-xzl - 1 a-O-2^ ix2'-i ix2'-i f(l + 0-2'
— 1 — i / V +1 _ ®

We can also simplify iVj through N^1 a bit by considering only the last two orders of
rj. In each instance, there may be up to three cases per type of damper.

The type I damper has three possibilities: either r = ad —b2 ^ 0, r = 0 but a + d ^ 0,
or a — d = 0. This determines whether the highest power of r/ in TVj is 3, 2, or 1. We
refer to the three possibilities as type la, type lb, and type Ic dampers. The simplified
matrices are given as iVja,7Vjb, and Njc.

The type II damper must have an rf term. So there is only one way it could reduce.
We refer to the simplified matrix as TV]1, which contains the terms of Nj1 of order r/2 and

7?3.
The type III damper has two cases, one in which / ^ 0, which we call a type Ilia

damper, and one in which / = 0, called a type 111b damper. Note that in a type 111b
damper, c and e must also be 0, because of (4.1). We refer to the simplified matrices as
iVjIIa and iV™b.

The type IV damper will have three possibilities, depending on whether the matrix
L is of rank 3,2, or 1. The three cases will be called type IVa, type IVb, and type IVc
respectively. The corresponding simplified matrices will be iVjVa,7Vjvb, and ArjVc.

The type V damper will have two cases: either d ^ 0, called a type Va damper, or
d = 0, called a type Vb damper. The corresponding simplified matrices will be A^Va and

The type VI damper has three possibilities. Either g = af — c2 / 0, giving a type Via
damper, 5 = 0 but a + / ^ 0, called a type VIb damper, or a = f = 0, called a type Vic
damper. The corresponding simplified matrices are referred to as jV?VIa, iV7vlb, 7VjVc.

Finally, we will let /Vangle = 7Vangle. Then (4.2) can be approximated to two orders of

r] by considering the equation

S = N0 • Ni • N2 ■ ■ ■ Nn — 0. (5.1)

To compute the positions of the streams of the eigenvalues we proceed as in [13]. If
the lengths are all integers, we can divide (5.1) by factors of 77 to obtain an equation of
the form

f(x) + ^ - 0(V~2) (5.2)
V
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for some polynomial functions f(x) and g(x).
In order to get A = irj2 to first order, we need to solve (5.2) to second order in

rj, where x = e"1. To first order, x ~ r, where r is a root of f(x) = 0. This gives
r\ ~ —i log |r| + arg(r) + 2kn, where k is an integer. We need one more order of 77. So let
us suppose that

for some c. Then

Tj ~ —i log |r| + arg(r) + 2kn + — + 0(k~2)
k

etr> ~ relc/k ~ r ( 1 + ^ j ~r + + 0(k 2).

Then f(eir>) ~ f(r + ic/k) ~ icrf'(r)/k + 0(k 2), and g(elv) ~ g(r) + 0(k x). Since
2ki], (5.2) becomes

so that

This gives

icrf'ir) + gjr) ^ 2
k 2/C7T

ig(r)
c =

27rr/'(r)

Then

77 ~ i log |r| + arg(r) + 2kn + + 0(k 2).
2 rjrf'{r)

Ak = irj2 ~ (arg(r) + 2kir)2i — log2 |r|i + 21og |r|(arg(r) + 2kir) - +0(k :). (5.3)
rf (r)

If |r| = 1, this reduces to

Xk = jf/7? + (arg(r) + 2/c7t)2j + Oik'1). (5.4)rj'[r)

In this case, the sequence of eigenfrequencies is called a linear stream. When |r| / 1, the
sequence if called a parabolic stream, since the eigenfrequencies lie on a parabola.

6. All streams are linear. In this section, we will show that parabolic streams are
impossible, regardless of the configuration. This amounts to showing that all roots of
f{x) in (5.2) have magnitude one. Let us first suppose that all of the beams have integer
lengths, so that f(x) is a polynomial.

Lemma 6.1. If f(x) is a polynomial, and the leading coefficient of f(x) has the same
magnitude as the constant coefficient, then for all roots r, |r| = 1.

Proof. Because the leading coefficient has the same magnitude as the constant coef-
ficient, the product of all the roots of f(x) must have magnitude 1. So if any root does
not have magnitude 1, there will be some root for which |r| > 1. Then there would
be a sequence of solutions Afc to l^l = 0 such that Re(Afc) ~ log|r|\/Afc as Afc —> 00.
But log |r| > 0; so the real part of these eigenvalues would be positive. Moreover, the
approximations we made from S to S are valid for | — 7 < arg A < n for some 7 > 0,
as shown in [13]. Thus, |G| = 0 would have a sequence of eigenfrequencies with positive
real part. But this contradicts the fact that the dampers were chosen to be dissipative.
Thus, parabolic streams will not exist. □
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Theorem 6.2. For any configuration of the beams, and any combination of dampers,
the roots of f(x) will all have magnitude 1. Thus, the eigenfrequencies will approach a
finite number of streams, each lying asymptotically to a vertical line.

Proof. Let us first suppose that all beams are of integer length, so that f(x) is a
polynomial. Prom the above lemma, it is enough to show that the leading coefficient of
f(x) has the same magnitude as the constant coefficient. We will prove this by observing
some patterns in the matrices Nj. Notice that for each entry in 7Vjength, the leading
coefficient in x is the complex conjugate of the constant coefficient. We can express this
relationship by the equation

-21 ^length (1/-) = ^length

A similar relationship occurs in the other matrices, mainly because the other matrices
do not depend on x. Thus, since Njngle is real,

7V,angle(l/x) = N*ngU(x).

For the damping matrices, only the highest order of 77 will contribute to f(x). As long as
the matrix is either purely real or purely complex to the highest order of r/, we will have

Nj(l/x) ~ ±NJ{x).

This is the case when the damper is of type la, lb, Ic, II, Ilia, Illb, IVa, Va, Vb, Via,
or Vic. The only exceptions are types IVb, IVc, and VIb. We will deal with these three
cases later.

Because of these patterns in the matrices, as long as there are no dampers of type
IVb, IVc, or VIb, we have that

xdf( l/x) = ±f(x),

where d is the degree of /(x). Prom this, we can conclude that the leading coefficient of
/(x) is plus or minus the complex conjugate of the constant coefficient. Thus, they will
have the same magnitude.

Even though the matrices for the type IVb, IVc, and VIb dampers are not purely real
or purely complex, the above pattern will be maintained after the matrix is multiplied
on both sides by ,/Vlength. The details are as follows.

Because for this setting we are only interested in the leading and constant coefficient
in x, we can replace jv|enst by a simpler matrix,

/0
jylength B

B

0\

°/
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Any time there is a damping matrix, it will be between two length matrices. However,
there may be an angle matrix multiplied either before or after the damping matrix. Thus,
the most general format for which the damping matrix could appear is of the form

P = Nl.Ifh . 3. ^damper • N£fle • jvje+nf h. (6.1)

What is interesting is that, even though Njamper is neither purely real nor purely complex
for dampers of type IVb, IVc, or VIb, the entire product in (6.1) still satisfies

x21*-*21 *+2P(l/x) = P(x).

This has been verified with MATHEMATICA. Thus, the leading coefficient of f(x) will
still have the same magnitude as the constant coefficient, even when dampers of type
IVb, IVc, and VIb are involved.

Next, let us consider the case where all the beams have rational length. Finding a
lowest common denominator d, we can express each lj = rrij/d. By letting y = xl^d, xlj
will equal ymj, so the equation /(x) = 0 for lj = rrij/d will be the same as the equation
f(y) = 0, where f(x) is the equation for the system with lj = mr From the previous
case, all solutions to f(y) = 0 must have magnitude one, and since x = yd, all solutions
of f[x) — 0 will have magnitude one.

Finally, there is the case where one or more of the beams have irrational length. We
can approximate this case to arbitrary precision in the case for which the beam lengths
are rational. Since the roots of the equation f(x) = 0 have magnitude 1 for all such
approximations, and f(x) depends continuously on the parameters li,h, - ln, then all
solutions to f(x) = 0 must have magnitude one when the beam lengths are irrational. □

7. An example. We now can use the large matrices to find the approximate eigen-
frequencies of Fig. 1. The two dampers are both of type Illb, and we will let the matrix
Lj, which describes the dampers, be given by

{K/2 K/2 0V
= L2 = K/2 K/2 0

\ 0 0 0,
After multiplying out the 9 matrices, and dividing by ??4, we find that (5.2) holds, with

f{x) = —4((3 + 3i)x6 — x5 + (3 + i)x4 + 2x3 + (3 - i)x2 — x + (3 — 3i))

= —4(a: + i)(( 1 + i)x2 + x + (1 — i))(3x3 — (2 + i)x2 + (1 + 2 i)x — 3 i)

and g(x) = —4K(2x6 + (2 — 3i)x4 + (—2 — 3i)x2 — 2).
By substituting the six roots of f(x) into (5.4), we have that the six streams of

eigenfrequencies are approximately as follows:

Ai,fc ~ 0 + (2nk — tt/2)2i;

A2,k ~ 0 + (2nk - 2.71756161)2z;

A3,fc ~ 0 + (2?rk + 1.14676529)2i;

A4,fc ~ -0.73654372^ + {2i:k - 1.15536425)2i;
As,fc ~ —0.54770276A' + (2trk - 4.04101037)2i;
A6,fc ~ -0.04908685AT + (2ttk + 0.48398550)2i
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These results agree with the eigenfrequencies given in [8]. Notice that three of the six
streams lie on the imaginary axis, making it appear as though there were only four
streams of eigenfrequencies. The following table gives the exact values of the first three
eigenfrequencies in each stream and compares these with the values given above. One
can see a rapid convergence in each stream to the vertical line, especially when the real
part of the stream is small. The exact values were computed using Newton's method on
Eq. (4.2).

Eigenfrequency Exact value Approximate value Error
A5,i -.73638885+ 5.030004* -.54770276+ 5.027349? 0.2
A2,i 12.648041* 12.713672i 0.1
Ai,i 22.373285* 22.206610* 0.2
A4'i -.73219254+ 26.186625* -.73654372+ 26.294549* 0.1
A6,i -.04889164+ 45.798548* -0.4908685+ 45.794601* 0.004
A3ji 55.198084* 55.204165* 0.006
A5,2 -.54770525+ 72.662051* -.54770276+ 72.681768* 0.02
A2,2 96.998715* 96.999039* 0.0003
Ai'2 120.903392* 120.902654* 0.001
A4,2 -.73623564+ 130.189924* -.73654372 + 130.211066* 0.03
A6,2 -.04904502 + 170.310350* -.04908685 + 170.311795* 0.001
A3,2 188.050075* 188.050096* 0.00002
A53 -.54756328 + 219.281537* -.54770276 + 219.293021* 0.01
A2,s 260.241239* 260.241240* 0.000001
Ai,3 298.555535* 298.555533* 0.000002
A4,3 -.73640152 + 313.070718* -.73654372 + 313.084419* 0.01
A6'3 -.04906775 + 373.784831* -.04908685 + 373.785824* 0.001
A3'3 399.852861* 399.852862* 0.000001

Much of the work in this paper required the use of the symbolic manipulator MATHE-
MATICA running on a SUN Microsystems workstation for the computation of the large
matrices.

Although this paper analyzes a linear model of a physical system, the experimental
data cited in [5] and [6] indicate that this model is an accurate one. However, we still are
only considering vibrations that occur within the plane. Hopefully, analysis for structures
that do not lie in a plane can be done using a similar technique, and this will be treated
in a future work.
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