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1. Introduction. This paper completes the extension to third order of compatibility
conditions, in the sense popularized by T. Y. Thomas [11] (see also [12]), which can be
used to study propagation of discontinuities of a vector field defined on a surface in
euclidean space. H. Cohen and the author considered such conditions for a general
tensor defined on a plane in [1]; here the tensor is restricted to be a three-dimensional
vector, but the plane is replaced by a curved surface, extending the work of Cohen and
Wang [6] and the author [8]. The third-order results of [1] were subsequently used to
study acceleration waves in plates [2, 3], and it is hoped that the present conditions may
be useful in similar studies, particularly on shells, where the wave may alter the shape
of the shell, as [6] was used in [4, 5].

This section serves to introduce the topic of the paper and geometrical notation.
Section two describes the kinematic notation and results drawn upon. Section three
derives some commutation relations needed in subsequent sections. Section four quotes
and derives directional derivatives to compare with the partial derivatives derived in Sec.
five. The compatibility conditions are derived in Sec. six for trajectories normal to the
singular curves, and in the final section these results are extended to trajectories oblique
to those normals.

A smooth surface S in euclidean space E® is customarily represented by three scalar
functions

=2'(0% (i=1,2,3; a=1,2), (1.1)

where the z' are Cartesian coordinates indicating positions and the 6%, Cartesian co-
ordinates in E?, label the material points. The summation convention will be used
throughout with the ranges 1, 2, 3, for 7 and 1, 2, for Greek. A moving surface S; then
can be represented by making the ' functions of time, z* = z*(6%,t). In vector notation,
x = x(0%,t). At each point of the surface and at each time ¢, a basis is supplied for the
tangent space of E® by the surface’s tangent-space basis h, = x o, where we are using a
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comma to indicate partial differentiation, and hy, chosen to be perpendicular to h; and
h, and to make (hi, hy, h3) a right-hand system. In these terms, the metric of the surface
has covariant components ho3 = h, - hs and contravariant components h®? such that
h®Yh.,5 = 65. The reciprocal basis then is given by h* = h*7h,, and h® = hj, and the
Christoffel symbols and the second fundamental form of the surface by {; }=h*-hg,,
Qa3 = hy 5 - hs, respectively. These relations imply that

hOhﬁ = {aryﬂ } h"r + Qa3h31 h3.3 = "‘Qgha (12)

The concern of this work is with a vector field ¢, a three-dimensional function of
position on the surface, ¢ = ¢(6%,t) = ¢°hz+¢>hs, where the (contravariant) tangential
and (scalar) perpendicular components of ¢ are, like hg, hs, functions of position on
the surface and time. It is necessary to use the covariant derivatives of the tangential
components to express succinctly even the partial derivative of ¢. From the above
relations,

6.5 = (6f — 6°Q3)ha + (¢ + 6°Qas)hs. (1.3)

One notes the way in which the perpendicular component influences the tangential com-
ponents of the derivative and vice versa. It is the object of this paper to use the method
of singular curves to find compatibility conditions that relate the jumps in the third-
order partial or covariant derivatives involving time of the component functions of ¢ to
the jumps in their directional derivatives, those of first and second order having been
found in [6] and [8] and those of third order not involving time having been found in [9].

The method of singular curves deals with a function that is singular in the sense that
it is smooth except on an oriented smooth curve C; moving on S; and that, for each ¢,
it and all of its derivatives must have limits with respect to 6% and ¢ at C; from the side
to which C; is moving (the positive side of Cy) and the side from which C; is moving
(the negative side of C;). The difference between these limits is called the jump in the
function, denoted by square brackets, for example,

[6%]) = (6%) ™ — (¢%)". (1.4)

The order of the singularity of the function is the lowest order of partial derivative that
has a nonzero jump at C;, order zero meaning that the function itself has a jump. We
shall need a formula for the jump of a product in terms of the factors; this formula is as
follows:

[AB] = A" [B] + [A]BT + [4](B]. (1.5)

For each ¢, we shall have occasion to require the unit tangent of Cy, m = dx/ds,
where s is the arc length along C; according to its given orientation. We need also, in
the tangent plane of S;, the unit normal vector n = hs x m, which is generally not the
normal vector of the Frenet equations. Frequently we shall have occasion to use the limits
of directional derivatives of a singular function as the point of evaluation approaches C
and the direction approaches that of m or n; when it matters whether the limit is from
the positive or negative side of C, which one is meant will be made clear. When either
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is meant, then no indication will be made, for instance, d¢/dm will mean the limit of
the directional derivative of ¢ in the direction m at C; from whichever side is required.
In particular, Hadamard’s lemma states that

[@] _ 49l (1.6)

dm dm

The general assumptions of this paper, following [6], [8], and [9], are that the position
vector X is singular of order two at C;, meaning that h;, h*, h®% and hap are continuous,
but that the Christoffel symbols and 2,3 are not in general continuous across C;, and
that ¢ is smooth except at C;. In addition we assume of ¢ that its limit at C; and
the limit of its directional derivative normal to C; (defined in Eq. (4.2)) from each side
vanish, that is, .

_ 4 _doT doT

¢ =0 _d—n——dn——o, (1.7)
the second and fourth expressions vanishing because of the vanishing of ¢ identically on
the positive side of C;. In consequence, [¢] = 0 and all derivatives of ¢ on the positive side
of Cy have vanishing limits at C;. This is a simplifying assumption of the present work as
compared with (8], [9], and [10]. Since the aim of this work is to find formulas for jumps,
terms that will ultimately vanish will contribute nothing to those formulas. So long as
they will not again be differentiated, they can be discarded; the indication that some such
terms have been discarded will be the use of the special equal sign, =, which first appears
in Eq. (3.19). Because many terms are products of ¢ or derivatives of ¢ in directions
tangential to the singular surface and geometrical quantities that may themselves have
nonzero jumps across Cy, as mentioned in the previous paragraph, it is important to note
the precise effect of the simplifying assumption. In Eq. (1.5), when A is a geometrical
coefficient and B is ¢ or d¢p/dn, the jump in the product will vanish, the vanishing
jump in ¢ or d¢/dn respectively eliminating the first and third terms and the vanishing
of ¢ or d¢p/dn respectively ahead of C; eliminating the second. Then by Hadamard’s
lemma applied twice, the same thing happens with terms involving tangential directional
derivatives of ¢ and d¢/dn, e.g., with respect to the direction tangent to the singular
curve. No such term will therefore figure in the final results nor in calculations after the
specialization indicated by = has been made.

Despite the lack of an assumption of continuity of the Christoffel symbols and Q,p
across Cy, Cohen and Wang [6] showed that

{0 ot i =0 19

It is necessary to recapitulate the relations among partial differentiation with respect
to time, which will be represented by the dot accent, and partial and covariant derivatives
with respect to surface coordinates. These have been carefully analyzed by Cohen and
Wang [6], whose paper should be consulted for details.

2. Kinematics. Much depends upon the velocity vector field v of the surface S; in
euclidean space. The so-called world velocity of S; is then w = v + e4, where e4 is the
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unit tangent vector of the ¢-coordinate curve through each point of space. To represent
the directional derivative with respect to w, we shall use the dot accent. It will be useful
to clarify the use of dots. For vectors, dots are tied to the symbol; ¢|4s is (¢)|as noOt

®|ap- For coordinates, dots are tied to the coordinate expression as a whole but not
including differentiation subscripts; ¢” means @ not the h, component of ¢, and ¢|7/\

means (dﬂ)l ) not ¢_|7>\ and not ((b)r/\, which has no meaning at all. For any tensor field
on S;, we write

. 0¢(04t) _ do

= 57 = (2.1)
In particular, for x(0%,t) representing position on Sy, the velocity v(8%,t) of S, is

_dx ox(0%,t) .

This velocity can be represented relative to the basis of the tangent space, v = v*hy +
v3hg. It is not assumed continuous across C;, but it is assumed to be smooth elsewhere.
If L represents the surface velocity gradient, v , ® h*, then from (1.2) we have

L=L",h,®h®+ L’ h;@h®

) 2.3
= (), — 220"y @B + (18, + auv )by ® B, (23)

We shall have occasion to expand both L§ and L? in terms of the coordinates of m and

n:
L% = Liymm®mg + Lyym®ng + Lymn®mg + Lppan®ng (2.4)
and
L35 = L3 mg + L3ng;. (2.5)
From 52 a2
. X X
= =—"_ —v,_, 2.6
he = 5056 = 3geat V- (26)
we have

Bo = Lahy + L¥hs = (v}, — Q20%)hy + (0%, + Qv s, (2.7)

Then by the perpendicularity of h,, hs,

hy = —L3,h® = —L%¢h, = —(v** + Q%v*)h,,. (2.8)

If the singular curve C; has an intrinsic speed of propagation U normal to itself across
the surface S, then the world velocity of C; can be called z = w + Un. This relationship
among the vectors allows (see [6]) the directional derivative with respect to w to be

written b i
ph=—"C —U-—.
¢ dz dn
While the connected displacement derivatives with respect to z have their uses, it has
been clearly established by the uses made in [2] and [3] of the derivatives with respect

(2.9)
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to oblique trajectories used in [1], that compatibility conditions should be found with
respect to such oblique trajectories although it is more trouble. Accordingly, let there
be added to z a tangential velocity, called ym in [6], to give the tangential velocity

T =2+ ym. Then
d d d

&~ a am
The normal-trajectory derivatives can of course be recovered from the more general
expressions simply by letting « vanish. Finally, since both z and 7 are tangent to the
singular surface swept out in space-time by Cy, there is a version of Hadamard’s lemma
for directional derivatives with respect to each,

(2.10)

ds) _de _dv  [do] _de| _dv o
dz dz dz’ dr dr dr’ '
When ¢ in (2.9) is h,, (1.2) produces
dh, A 3 8
E_ha-i_U{aﬁ}n h,\+UQa5n h3. (212)
With (2.7), this is
dh, [\ A 3 3 A\
e —(L a—}—U{aﬁ}n)hA—k(La—kUQ,\an )h3 (213)
Then by the perpendicularity of h,, hs,
dh; 3 B\ 3a a, B
= —(L°a + UQapn”)h® = —(L°* + UQ3n" )hy,. (2.14)

Both of these formulas are needed later. The continuity of h,, hy at C; together with
(2.11), implies

[L*a +U { a)\ﬂ } nﬁ] =0, [L*44+UQusn°] =0. (2.15)

The former of these conditions and (1.8) have the consequence that, when the operator

on coordinates,
D¢~ do* s ra A 3
dz —'zl‘z—"f'(ﬁ (L Q+U aﬂ n (216)

is defined, and when the analogous operator

De¢™ _do® (A A s A, 8| D¢t Do
e +¢ (LO,—I—U{aﬂ}n +’y{aﬂ}m>— P ~|-'me (2.17)

is defined, they satisfy versions of Hadamard’s lemma,

[Dw] _ Dig"] _ Dy° [Dw] _ Dg*) _ Dy

dz dz dz "’ dr |~ dr ~ dr (2.18)
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Four derivatives derived by Cohen and Wang [6] and misquoted in [8] are needed later:

dm,\ _ dU a 3 (6 Jé] Jel
e dmn/\ L smam m,\+U{)\ﬁ}man + (Lxg + Lgx)m
dn,\ _ dU a 3 07 3
P dmm,\+L BNan n>\+U{/\ﬂ}nan, -
dm’ —gn’\—La memPm* — U A men® o
dz ~— dm pla af ’
dn* du a 8.\ A a, B A8 B
T = am™ + LYnan”n —U{aﬂ}nn — (LY + L7 )ng.
Using the expansion of L®g, one can write, from [8],
Dm?  (dU 5 Dn” dU
=\ 7= nm s —=—|—+Lum '3. .
= (d +L ) - <dm+ >m (2.20)
3. Commutation relations. We recall from [6] the definition
v d2¢> _ d¢é
=g _ 1
and from [9] the further definition
Dlass = D as — D~ 7 — b T @ 09° Q35
bola pa (3.2)

[
— #6295 — Py { } Dlas { 5/3} .

Two commutation relations for directional derivatives for fixed time, which will be
needed later, can be deduced from expressions for ¢35 obtained by iterating

d
grad¢——¢®m+d—¢®n (3.3)
in component form,
dp dgb do
dhe _dm " dn" (3.4)

A number of terms that arise can be simplified using the expression
Q08 = LnmMmams + QnnMang + Qnmnamg + Qnrnang (3.5)

for the second fundamental form, where Q,,, = Q,, by its symmetry. The expression
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obtained (from [9] based on [6]) is not identical to but is equal to

b (d3¢ dndg . d*¢ ., ,d¢ .0, do

amd " dmdn  ldmdn " dm S ™Mdm

d¢
- 2anQmm %) mamgims

d’¢  dn d¢ ¢ ,dé d¢ do
Joo N T N A 2Qmemn
* { dmldn * dmam © 2 dm? dn (dn2 'udm)

dé
dm

d
—(erm + anﬂmm)d_i} (Mmamgns + mengms + nempgms)

¢ dude  d¢ ¢ 2 d¢
+{< —>+2ndmdn+2n dm

dmdn? dmdm 'udm2

d d
_2Q$rm d¢ 2anﬂmn£} (mangns + namans + nengms)

2
+{<glig¢g dy dg d2¢>>_2 £

dn®  dndm  Fdndm H dmdn
do de 2 do
2/,md 2Qm"Q""d 2and NaNgNns,

(3.6)
where 7 is the geodesic curvature of C; and u is the geodesic curvature of the orthogonal
trajectories on S; of the family of curves CY, both defined in terms of covariant directional
derivatives by . .
Because the quantity ¢gs is symmetric in the suffixes a, 3, and 6, the coefficients of
maqngns and nemgns that actually appear in the computation must be equal to that of
nqangms, which appears above. That is,

d [ d%¢ do d?¢ do d?¢ do
%(dmdn”dm) ”(W‘ M*“(W"%)

= n]"j\n’\ = um?®. (3.7)

- (Qz + Qmenn) d¢ 2Q'm'Lan'('i2
dm dn (3.8)
_ Lo dud Lo, &b, ,db
= dmdn?  dmdm Fam? Tamdn ™" dm
do do
pa— 2 —
200 . — am — 20,0 Qnn i’

which can be written more usefully as

d(d¢  d¢\_ de , &b &
dn \dmdn " Tdm )~ dmdn? " “Tdmdn ~ “dn?

(3.9)

dm ) dm M an

d d
(277 + ,u +K - —) ¢ ¢
letting

K = QmmQnn — Q2. (3.10)
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be the Gaussian curvature of the surface. Likewise the coefficient of m,mgns that
actually appears must be equal to that of myngms and n,mgms, which appears above;

2 2
i(d_‘i’_,,é?)HN( s +T,@)

dn \ dm? dn dmdn dm
2 (a2 1 5, 50)
. (3.11)
_ o d_"d¢+2_¢_2d¢ ¢  dp
= dm2dn " dmdm T Mam? T " dn dn? ~ Fam
d¢ 2 d¢
2Qmmﬂmndm (Qr, +anQmm)dn,
which can be written
d [ d? d a3 d? d? d?
4 (L9 _,00)_ Lo +2n ¢—2u ¢—n—f
dn \ dm? dn dm?2dn dm? dmdn dn (3.12)

dn do de
+(% un)d -’ +K)—-.

A pair of commutation relations involving differentiation with respect to time will be
needed later. They can be derived from the equality of partial derivatives,

’¢

= 3.13
ot 868 96~ 6P Bt Do~ (3.13)
and an expression derived in [6],
v 3 3 O
= L3 Yo — L3, 3.14
{aﬂ} Qap + L7 ajp — L7025 (3.14)
expanded in terms of mg and ng:
Yl (P 15(0ma + Qunnin) — Lo (@ + Q™) ) ms
o Dm- (3.15)

+ (Dlg + Ld'y (anma + anna) Q(anm’y + ann7)> ng.

We shall need the coefficient of mg also expanded in terms of m, and n, :

dLﬂmv + dl’ﬂnv + NLmmnY = NLmnmY — NLnmm? 4+ nLynn”
dm dm

+ L3"Q,mn — L3anmn7> Mg

dLm dLnn
+ “mY + =20 + NLynmm” 4+ NLman” + NLymn” — nLp,m?
dm dm

+ L3 Qmem” — L3 Qe | ng,.

(3.16)
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The left side of (3.13) is

¢T;E=%+q‘b,w{jﬁ}+¢ {aﬁ} (3.17)

and can be expanded using (3.15) and an expansion for ¢>|'aﬁ available by partial differ-
entiation with respect to t of @43, used in previous work on geometrical compatibility
conditions in [9]. We have (cf. (2.9))

: d d d*¢ do
Plas = (E B U%) {(dm2 B ndn) Mallis
¢  do ¢ do
* (g * 1) s+ nama) + (G gy nama

This differentiation requires the commutation relations (3.9) and (3.12) and results in
the simplified expression:

(3.18)

2
¢]aﬂ Uﬂd 5 Ma™Mg
A3 U d?¢
* (‘U dmdn® ~ dm dn?

3¢ e d*¢
+<dzdn2_Ud_3+2Ln"d )nang.

) (Mmang + namg) (3.19)

The right side of (3.13) can be obtained by partial differentiation of

(g (o) o).
from [8], where it is Eq. (4.25). So, in somewhat simplified form,
d_drr—Ld)’amﬁ + %d’,anﬂ
o
L St (ot ot) B
+é, { Jg } :

(3.21)



644 R. S. D. THOMAS

where the partial derivatives of m, and n, have been expressed in terms of their covariant
derivatives, which give rise to terms containing Christoffel symbols, collected above into
the final term.

When the above two expressions for the equal partial derivatives, (3.21) and (3.17)
elaborated by (3.19), are equated, and the term common to both is dropped, the result
as a whole is of no particular interest, but the equality of the coefficients of n,mg gives
one commutation relation needed later and the equality of the coefficients of ng is the
other commutation relation sought. (It could be separated into two relations, but they
will be needed together.)

The first equality simplifies to

¢ N ¢
dmdzdn ~— dzdmdn’
where (3.16) has been used. The second equality (that of the coefficients of ng) simplifies
to

(3.22)

i s~V + o= U= G0
%{j:i _vl? (%+an+Lmn+Uu> 3—Z+Lnn%}na
={ (w0~ ) 5 Ve o
+ {dijli2 —UZST? +2Lnn327f}na,

(3.23)
where (3.15) has been used.
A commutation relation in coordinates that is needed below can be derived by com-
parison of two equal but different expressions, the n terms in ¢, from (4.3) and (4.2)
in (8],

a (9? - Ud—¢) _ & Lo, (g + Lo + Lonn + Uu) 49 1.9 (3.2

dn \ dz dn dzdn dn? dm dm dn
Equating the coefficients of h, and the hj respectively gives
D?¢> Nir3 Mo 6 dau D¢* dUu Dg¢*
D D¢a (e} [e3
™ — ¢°Qegn® (L3> + UQ2N)
and
d*¢? 3,130 Y s daUu d¢® au d¢?
dndz_¢ (L +UQ,\n )Qag’n - Uﬂ+%+Lmn+an %— %"'Lnn %
d2¢3 30a,.08/r13 ¥
= = ¢°Qgn" (L6 + UQaqn?),

or more usefully
D2¢a N D2¢a d d2¢3 N d2¢3

Dndz  dzDn % dndz  dzdn (3.25)
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4. Directional derivatives. Since the goal is coordinate expressions, it is necessary
to introduce coordinates for quantities other than ¢ = ¢°h, + ¢*h3, ¢ 5, L, m, n, and v.
The first directional derivatives of ¢ are

3
2 = (B - wgm ) ha + (G + 600 o,

CZZ g¢a di:” (4.1)
i = (o #0507 ot (407000
The jump in the normal directional derivative of ¢ is defined to be
%= [‘;—‘f:] - ([%‘f] - [¢Banﬂ]> he + ([‘?3] +[¢°Qupn ]) hy  (42)
If we let
vl vl 0= [BE] w2, @3)

we can note that, while 9,13, are not the coordinates of X, hence the use of different
letters, they are equal to those coordinates on account of the simplifying assumption
on ¢ without that on d¢/dn. On account of this much simplification, the first-order
compatibility conditions (from [6]) become just

[6%] = ¥°ng, [6°] = -UY*, [6%] =4°ns, [9°] = —Uy®. (4.4)

The second-order directional derivatives are:

i - (g—"i 0,50 2 g~ 3 P - n¢393”5> h
(Q%inag N Dﬂaﬁ P 4 Qo sn® tfdi’ ] aﬁmﬁmé) e
" (2%f9aﬁn + o0 =25 Q"" n” + 1™ Qagm? ‘5:;3 aQamﬁna> ha,

d’¢ D v a6 48° x5 ded . g
dmdn (pmpn — 9 hplgmin” = G lgn” — o m

DY
-3 DT:nB +n¢3ﬂgmﬁ) h,
D D DQyp
+ <F¢—Qa[3m + —¢—Qa5n + % —— Dm —no* Qg gm
d2 3
qujin - ¢3Q;’;Qaﬂmﬂn") hs.

(4.5)
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Again let

= d? d g . [d?
Y= |G | = o= [ 2], (49

and also, in coordinates,

~ D2¢)\ D(f))‘ D2¢)\ = d2¢)3 d¢3 d2¢3

A _ - 3 _ _ .
v ‘[DnZ ”DmJ [m?] v [dn2 “de [d 2] (47)

Again, these are not in general the coordinates of ):Z;
~ z 3 DQA
X = (W — [#7Qopinn7] 2 [%Qw] l(ﬁd ) h,
(4.8)
D¢a (e 045 a
+ (2 [ 5 Zagn ] [¢> ﬂJ + 8 - [¢397905n7nﬁ]) h;.

Under the present simplifying assumptions on ¢ and d¢/dn, the second-order compati-
bility conditions are as follows: first the geometric,

(0] = Pnans and [65] = FPnang; (4.9)

then the kinematic,

(3] = ~U¢tny and [¢4] = ~Udna,

) . ) . (4.10)
[6°] = U™ and [¢°] = U*Y°.
The formulas (4.10) were obtained by equating expressions known to be equal in the
limit at C; and then taking jumps in those equations. Many terms do not vanish until
jumps are taken in them, as can be seen in [8]. It will simplify further work substantially if
terms whose jumps will vanish are neglected because when jumps are taken—as they will
be—their jumps will vanish even when multiplied by some geometrical quantity whose
jump does not vanish. It is therefore as though the above equations had come from the
following statements, which are not themselves true but which lead to true statements
when jumps are taken. They are needed in what follows:

. D2 p™ 2 43
¢f§i—U—¢nA and ¢>,\——Ud¢

¢ =U? D2 and ¢° = UQd ¢3 ‘
Dn? dn?’

Similar statements from which the first-order kinematic compatibility conditions (4.4)
can be derived in their fully simplified form are just the vanishing of the four quantities
involved,

O = ¢% = 6" = ¢° =0. (4.12)
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The third-order directional derivatives not involving time are obtained by differenti-
ating the expressions (4.5):

d*¢ D3¢~ D¢® Q% mP 5D96,7m o N 5 DQgm®

dm3 <Dm3 = 3D et = 20" = = gmT = 9N b emT = D
d2 3 de® DQgmP D2QempB
3=t P Qam — —d‘fn e + $° 0 sm"m® Qm — ¢*— L | ha

D2g° D¢™ DR,
+<3 ¢’ Qupm? + 322° DQagm? — 70, QM MO sm?

Dm Dm Dm
oD Qopm? | dB¢*  dg® . , DQXm” 5
+¢ Dm2 am3 —3%97]771/ Qagm 3¢) Dm Qagm )hg,
(4.13)
@*¢ _ [ D% DQuenfQgm’  D¢°n” | ¢ o, g
dm2dn Dm?Dn Dm Dm? 2 dmdn o™
dg® DQgmP  Dg® o D¢*Qsn’ . g
T an Dm Dn e GmT - —p—Sm

+ ¢3Qf,n"95,,m7flgmﬁ) h,

2 1o (o] B 2 po B
+(2D¢ Q4 DO Dagm® | D24 Qagn

DmDn *# mn Dn Dm Dm?
¢ de*Q2n"Qazm?
dm?2dn dm
_d¢3Q‘,’;n’7 _3

d¢ a, N Jéi
p in Qnm Qasm” | hg,

— Q"M Qe smP +

Qapm® —

(4.14)

d3 D3 a D A DO N By 243
¢ _ ( ¢ ¢ Qs nPn — ¢ VLR 5 40 gann

dmdn?2 ~ \ DmDn?2 Dm Dm dmdn Y
de¢® DQnY  de3 DQSnY  ,D*Q%nY 4248

dn Dm dm Dn ¢ DmbDn _ dnz °™
o D¢6 o DQs,n" o
+6°Q Qoyn n"QGm” -2magnnmﬂ -¢° ——m ) o

n

Dn?
, DY d¢*  dg® dQ2Qagn'nP
_ 43 Y o) B a Tnh — 3 Y
¢ Dn ™ + dmdn?  dm AL ¢ dm
D?¢° D¢* DQgpn® , De* DQg5n? N o D?Qapn” h
DmDn Dn Dm Dm Dn DmDn »
(4.15)

D2 (e d 3
+ <—¢Qc,5mﬂ — ¢>’\Q)‘n9$n’7n7ﬂa5mﬁ - 2d;¢;lQ$n"Qaﬁmﬁ

+2 Qapsn” +2
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% _ ( l;f: ~ D¢>\Q,\g;2?;nﬁm B Dfﬂvmé Qonf ¢7DQ75n Q508
+ (31373’: Qasn’ + 3%‘5 b %’Z"B L 23;5"" — #0220 Qgn®
(4.16)

Using the notation x for [¢|aﬁ5n°‘n5n5], which is available as the coefficient of n,ngns
in the expression (3.6) for ¢, s, we also need

z 3 Ha a 2 a
5= |~ Do~ W~ Wy iy + R |

. D3¢a

7]

(4.17)
and
= d3¢3 d,u d¢3 d2¢3 d¢3 d(f)S d3¢3
v = [W_%%_ udmdn—3 dm i dn] [dn3] (4.18)

With the notation needed all in place, the third-order geometric conditions of [9] under
the simplifying assumptions of this work can now be written out:

¢ aBs = mﬁ (mamﬂné + mangms + namﬂmé)
laB
7
+ m(manﬁm + NaMmgns + NangMms) (4.19)
+ J*nangng,
and
?0455 =— n1ﬁ3(mamﬁn5 + mangms + negmgms)
73
(mangng + nomgns + nangmg) (4'20)

" am
+9°n

Nangns.

Directional derivatives involving time will be needed. From (4.5), (4.17), and (4.18) in
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(8] come:

d2 D2¢a - o
dzd(iz - (dsz = 67sm L5 — Ug?Qyym Qfn
d¢$ gy 3DQ§ B8 au 30a,8
m g T e = g o n
dg® d¢®
_ 30a,,8 _ Z¥Y r3a _ 112¥Y 0o,y h
Lpm®°Qgn dmL Ude”’n o

(4.21)
+(ﬁ& 4 ,

T P*AWMPL3, — U QgmPQon”

(e

D¢ ﬁ o Qaﬁ B U o ﬁ
iz Qapm? + ¢ 4z + ¢5 Qapn

+an¢aﬂa6nﬂ D¢ at U%Qaén‘S) h3’

+

¢ (D2¢°‘ DQﬂ iy

doan = \Gopm = 8" Qen L3 — U7 Qs Qn” — ¢ W gn? 57

dUSaB 3aﬁd¢ d(b&a'y

L2 o . DETaL
* (dzd —¢° Qg L% — Ug* Qg Qayn” + _anﬁ
D Do
_iq(ﬁ Q‘Yﬁm - an¢79wm + DiLJ + U 0 Qa'yn'y h3,
(4.22)
d? D2p> ’ ’
Wg’ B { dzq: = $7L% L — UgT0en’ L — U™ 05 L,

a 4’ d¢® o
- U2¢WQ757169)\7Z)\ — 2d_z - 2U—d—Q )\

DL  DUQR du
—¢° ( Tt *n*—U(d +an> &’m*)}ha

d?¢? .
+ { dj; — $° L3, L3 — U¢*Q,en’ L3 — Ug*Qn L2,

(4.23)

D (67
—U?¢*Q,sn°Qn* + 2Dd¢ L3 + QU%Qa[mﬁ

3
+¢~ DL, + DUSYar sy (U + Lom ) Qaam™ ) ¢ hs.
dz dz dm
Using the general formula, from (2.13) and (2.14),

d(A°h, + Bhy) [ DA® o L e
- = { — — BL* +UQgn’) tho

(4.24)

+ {AO(L“Q + UQxan?) + %} hj;

further, partly temporal, directional derivatives can be calculated from (4.5) (because
these expressions will not be differentiated again, terms whose jumps will vanish will be
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dropped):
d3¢ - d‘i(ﬁ
dz dm? dzdmdn
d3¢ N D3¢a d2 ¢3
dzdn? (dan2  dn?
d3 ¢3 D2¢a
(dzaln2 + Dn?
From (4.22) differentiated again and with the usual simplification,
¢
dz2dn
5. Partial derivatives. We take the second covariant derivative (3.1) of the vector
field from [9],

(4.25)

and

(L + UQ:M)) ha
(4.26)

(L + UQMrn)) hs.

=0. (4.27)

Bioa = Bas =05 { 5|
= (Bs = 070} - 6.0 - 650 - ') &
+ (675 + (') 15 + Bns — 6°Q208)hs.
From this we obtain directly, using (2.7) and (2.8) above,
Biy = (87, — 0" Qp0% — 6700505 — 672500
— G5 L%y — (¢°Q)r L + 03, L5 — 67 L 50059,
— §5905 — #2905 - 67,05 - ¢%.05 - 6°05,

_ ¢3Qg|7 _ ¢ﬁ3’yL3cx + (PSLBQQ%Q(S’Y _ ¢J3Laéﬂi _ (¢5Qg)|'yLaé)ha

+ (¢?57L86 - ¢0L3590#39§y + ¢_|CI/JQ(YY + ¢TTBQO'7
+ ¢>_|‘fyﬂa,e + ¢’|‘;Qa(3 + d’aﬂam., + ¢y

— 65 L% Q) — (6°Q5) 1, L% + 6y, — $° 25 — 6° 2500, — $°2520,)hs.

(5.2)
In order to be able to compare this expression with one based on directional derivatives,
three transformations need to be applied to it. All of the dotted ¢ terms except the two
that formulas are sought for, % and %, must be replaced. This replacement is done
for first derivatives by using the expressions (4.12) and, where an expression is a second
derivative, using the expressions from which the second-order kinematic compatibility
conditions come when jumps are taken, (4.11). The factor % can be dealt with exactly
like ¢|°b because the difference between the two expressions, according to Eq. (8.30)
of [6], is ¢° times a geometrical coefficient and so can be ignored here since its jump
will vanish. The second transformation is to expand covariant derivatives in terms of
directional derivatives using the formulas

D" D" A6 dg®
D mg + Dn ng, ¢,/j = m mg + n ng, (5.3)

Ps =
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and the same iterated and similar formulas applied to 5 ,L3* and L®,. The third
transformation is to insert components of the tangent and normal vectors m and n
in each term except for ¢| By and % This can be done by replacing each
subscript § (or v respectively) by a dummy suffix, say e, and multiplying the
term by 65 in the form mmg + n°ng (Eq. (6.25) of [6]). The result of these
expansions is a substantial expression, which is not worth looking at and which
was formed by the Mathematica package “Ricci” [7] running on a NeXT computer.
(Without this combination of facilities, these calculations would not have been
completed.)

We take the second partial derivative of ¢ with respect to time from [8],

b= (§* +207L>, + ¢7L>, + PP LT\LY., — VL3 L3
_ 2¢3L3a _ ¢3L3a _ ¢3L37La7)ha (5.4)
+ (¢3 + 2¢’YL37 + (15’7L37 _ ¢3L37L3'y + (ﬁ/\L‘Y)\L:;—y)hg,

and differentiate it partially with respect to #* to obtain

G = (B5 + 20015 +207LS, + @) LS + 919, + SRLILS
+ ¢ LY, LS + 9" LILS ), — o\ L L* — ¢V L3\ L*
— ¢7L§1L|/\ _ 2¢’/\L3°‘ _ 2(]'53L3a _ ¢3 i3
= 8° L — $%LV LS — $° LT LS — LY LG, )ha
— (2¢7L3 + ¢7L3 + $*LYL3 + §° — $* L L3)0%h,
+ (6% +207LS + ¢7LY + ¢ LYLY — ¢ L3 L% — 24°L3
— ¢ L3 — ¢ L3 LY)Qarhs
+ (200 L5 +267L3), + ¢\ L3 + ¢713

+ONLILS + ¢° L]\ L3 + ¢°LIL3

+ 6% — 65 LPTLE — P LYV LE - 6°L3VLE ).

(5.5)

Since this expression will not again be differentiated, it is permissible to simplify it by
the elimination of terms containing ¢ and ¢3, of which there are a goodly number. For
comparison with the corresponding expression based on directional derivatives, as above
the dotted ¢ terms except those sought, ¢>|Ct\ and ¢>3/\ need to be replaced and the covariant
derivatives expanded in directional derivatives. The result of this expansion is again a
substantial expression, which exists only in the format of “Ricci”.
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The third of the partial derivatives needed is obtained by differentiating the expression
(5.4) with respect to time to obtain

b= (5% 420010, 420000, 4 PIL0, + B, + LY,
+ (z)/\L'y)\Lu7 + ¢/\L‘Y}\LQ~, _ ¢7L37L30 _ ¢7L37L3a _ ¢7L157L3a _ 2¢3L3a
_ 2¢3L3a _ ¢3L3a _ ¢3L30 _ ¢3L3A’Law _ ¢3L37La7 _ ¢3L37La7)ha
+ (7 +207L%, + L7, - $* LV LE, + 9P LVAL%, ) (~Lha)
(0420700 + ¢ L0, + QPLLO, — ¢V LB L3 — 263 L%
_ ¢3L36 _ ¢3L37L67)Laéha
+ (d)é + 2(i)7L67 + ¢7L67 + d})\L'y/\Lé_y _ ¢‘7L37L36 _ 2(2'53[/36
_ ¢3L36 _ ¢3L3’YL67)L3,5}13
+ (6% = LI, — LI, - $PLPEE, + 28713, + 3§71,
+ @V, + MLVNLE, + QML ALE, + MLV ALP)hy.
(5.6)
Again, terms containing ¢ and ¢ and (by (4.12)) ¢* and ¢ can legitimately be removed
to give the simplified form
b= (3" +30L%, —3°L*)h, + (¢° + 367 L%, )hs. (5.7)

This expression then requires the same expansion as the previous partial derivative to
p

produce an expression for comparison with the directional-derivative version of the same

quantity. This has been done in “Ricci”.

6. Compatibility conditions. The expression (3.19) for a;; in terms of direc-
tional derivatives, with each vectorial expression expanded into coordinates by the for-
mulas stated in Sec. two or derived in Sec. four and the now usual simplification, can
be compared piece by piece with the same quantity computed in the fifth section to give
expressions for —T; and d)f—dw’ which appear in that form in the section-five formulas.
The resulting expressions, true only when jumps are taken, are:

. 2 b
or = MUz memy

Dn
D3¢a dU D2¢a
- (U DmDn? T %W) (mgns + ngms) (6.1)
D3 ¢a D3 ¢)a D2 d)a D2 ¢6
- , nn—m—5 — L*
* <dan2 v Dn? 2L Dn? *"Dn? )anV
and
?Bv = U dn? m@m'y
d‘3¢‘3 dU d2¢$
< dmdr2 * dm dn? ) (mpn, +ngms) (6:2)

d.3 ¢.5 d2 ¢3
(dzdn2 B + 2Ly dn? ) nomy:
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When jumps are taken, a further simplification comes from using (4.72) and (4.18):

[TJ; Ui Uy’
5y = MUY MMy = — = (mgn, + ngm.)

wg : 24 (6.3)
+ e —Uy° +2 [ nnw] ngn.,.
The tangential formula needs (4.7;) and (4.17). So
[ﬁ] = UUQ/;amﬁm“r T "Dm (mpny + ngm)
(6.4)

D,(Zoz Ea D2¢a o D2¢6
+ < dz _Uw +2 |:Lnn Dn2 :| - [L é Dn2 ngny.

For the remaining formulas, it is necessary to have qf) » in terms of directional deriva-
tives. This is obtained by partial differentiation with respect to t of ¢ A, which has already
been used above. From (3.20), performing the partial differentiation using d/dz—U d/dn,
the result is

; d¢  dU d?¢ ¢ d do
P = {dz3dm  dz dmdn Udzdmdn * E(L ~Un G dm

U)o
2 2
_U%{did(fn_UdijnJ“(Lm’"—U")%_%%}m*
3 2 3
(i B e~ Ui+ as (i * Lot a4 U) 52
(i ) £ B 1 2]
{dzdn ZZQ+(ZU+LW+LM+UN)3—¢+LM f} na
{dzd(fn U%J’(Lm’"'m’)%_%%}

X {memA + (Lmn + Lpm + ZU + U/L) }

d?¢ dL¢ [(dU do do
+{dzdn —U 5+ <d—+an+Lmn+Uu> d_+L""dn}

X {— (U/J,+ ﬁ) my + Lnnn,\} .
dm
(6.5)

In the above expression, lines three and six can be replaced at a stroke using the pair of
commutation relations (3.23). The expression can then be simplified by the removal of
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terms involving differentiation of ¢ only in the directions m, z, or a combination of them
or of d¢p/dn and its similar derivatives:

. 2 3
bio (Mo Aoy,

dz dn? dzdn?
2
Ud ¢ {— (U,LL+ ﬂ) my +Lnnn,\}

dn? dm
B dU d&¢ 2 (66)
- U{(_U——dmdn2 T dm dn? +“UW) ™
P e &2
* (clzdn2 - UW * 2Lnnd?> n,\} i

The two versions of ¢, (5.5) and (6. 6) can now be compared component by compo-
nent to produce the formulas for ¢ 5 and @3 °y- The only rule needed to produce compat-
ibility between (5.5) and (6.6) is the expansion of the second fundamental form by (3.5)
n (5.5). Again this comparison was done in “Ricci”, the result in simplified form being

. 2 po 3 a
[4a]= [2U£D¢ ru2 20 ]m,\

dm Dn? DmDn?
LB gy Dot (AU gy ) 2 +2UL% D71,
Dn3 dzDn?2 ~ \dz " | Dn2 5 Dnz |
(6.7)

Using (4.71) and (4.17), the above formula simplifies to

5] = 200

=T my
Dm
I L sza dU D2¢° D¢
2,7 _ = v a 7 ¥
(s B a0 B () 5 oo 12 5] ) e
(6.8)
The other formula is
au d2¢3 d3¢3
3| - 2
[¢*’\] B [2Ud dn? U dmdn2] "
9 dd¢$ d3¢.5 dU d2¢d (69)
-2 - +3ULyn | — ,
[U Udzdn2 (dz ) dn? ] "

which simplifies, using (4.72) and (4.18), to

2,73 3 2 43
6] =, 4 (U%3 2w _ [(dU 3UL,m> MD na (6.10)

dm dz dz dn?

The third pair of formulas requires ¢ expanded in directional derivatives. This is
easily obtained by differentiation of ¢ with respect to time using d/dz and d/dn:

d¢ _,d¢ _ d¢ (6.11)

6=3 VUn =z Voo
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The second term is available as the coefficient of n) in the expansion (6.6). The first
term needs to be taken from Eq. (4.14) of [8],

. 2 2 2
dz2 dzdn dn? (6.12)
dU do dU do '
The expression wanted is
dé _ e aUu d*¢ A3 dU d*¢ , d3¢
- P Gaan Ve Ve T
- i U Uﬂ+g+L7nn+an %
dz dm dm (6.13)
d’U dU dL,,\ d¢ [dU d*¢ '
- (@ g bt UG > dn (E Ul"") dzdn
N dUu d2¢ , 3¢
=W dz dn? dzdn?’

The two versions (5.7) and (6.11) of ¢ are now comparable in “Ricci” with the derivatives
of vectors all expanded in coordinates. The formulas produced are

e D3¢ D3¢ dU D?¢~ D2¢P
3 2 _ 2ra
[67] = [ U —— +3Uan2+3U<d +UL,m>——Dn2 3UL5Dn2]
(6.14)
and
[63] L8 g B oy 99+UL &9 (6.15)
dn3 dzdn? ") dn? | ‘

These simplify, using (4.7), (4.17), and (4.18), to

e} 2 240
[6°] = —U%e 4 307 w +3U[(§—+ULM> %]"3[]2 [LQB%—fQ] (6.16)

and

‘ z 3 2 13

[¢3] = —U3y® + 302 df +3U [(‘;—U + UL,m> %J . (6.17)

7. Oblique trajectories. The usefulness of compatibility conditions with oblique

trajectories, which can be chosen to be bicharacteristics of the partial differential equation

being studied, has been well established. Nor is it difficult to find them. The operator

d/dr was defined in Sec. 2 in terms of d/dz and d/dm. To produce compatibility condi-

tions using d/dr it is necessary only to replace d/dz and its iterates in the results of the
previous section by their equivalents in terms of d/d7 and d/dm,

D¢” 3 D¢® B D¢*
dz _ dr ' Dm’

(7.1)
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and correspondingly for ¢®. When this formula is iterated, as it must be, commutation
relations like those of Sec. 4 of [8] would be needed except that the terms in which they
are needed are already assumed to vanish. Accordingly, the commutation relations (4.1)
of [8] are not needed. When (7.1) is applied to expressions (6.1), (6.2), (6.7), (6.9),
(6.14), and (6.15), they still simplify as they did in Sec. 6, and the results are the six
kinematic compatibility conditions of third order for a surface vector field under the two
simplifying assumptions set out in Sec. 1:

Ta

[ |o:9'y] = U mgm., — (msny + ngm,)

Dm
D,d:)a D,(Za = D2¢a D2 ¢6 (72)
+ ( dr - Dm “Ullfa + |:2Lnn Dn2 _Laé Dn2 :|> ngn.,y
and -
— . z dU?
[¢fﬁv] = nU¢ mgm., — %‘(m,@nv + ngm,)
. - i (7.3)
di3 du3 < d2 3
+ (% - ’7% — Uy +2 [Lnnd—1‘(f2]> NgMN.y,
ot DUQJ)“
[¢|>\] = me
z Dy Dy D*¢P  (dU D?*¢°
2 a a — R
+{U P> —2U i +2U~ D + [2UL 5 Dn? o +3ULn, Dn? ny
(7.4)
and
oy dUS : dw3 dp®  [(dU d2¢?
37 - 2,73 w- o[ bl
[@%] = - my + {U P — U + 2U~ o [(d +3UL,m> dn2] ny,
(7.5)
and - .
(6% = —usge 430?20 g2, BY°
o T ¢£m D2 (76)
+3U[(d—+UL,m) Dt UL%g DnQ]
and

:, 3 3 29’
[6°] = Uy +3U2di - 30 ‘ff’ +3U [(‘fi—U - ULnn> ‘-id%] S )

When L = 0, these six formulas reduce to those of [1].
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