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1. Introduction. This paper completes the extension to third order of compatibility
conditions, in the sense popularized by T. Y. Thomas [11] (see also [12]), which can be
used to study propagation of discontinuities of a vector field defined on a surface in
euclidean space. H. Cohen and the author considered such conditions for a general
tensor defined on a plane in [1]; here the tensor is restricted to be a three-dimensional
vector, but the plane is replaced by a curved surface, extending the work of Cohen and
Wang [6] and the author [8]. The third-order results of [1] were subsequently used to
study acceleration waves in plates [2, 3], and it is hoped that the present conditions may
be useful in similar studies, particularly on shells, where the wave may alter the shape
of the shell, as [6] was used in [4, 5].

This section serves to introduce the topic of the paper and geometrical notation.
Section two describes the kinematic notation and results drawn upon. Section three
derives some commutation relations needed in subsequent sections. Section four quotes
and derives directional derivatives to compare with the partial derivatives derived in Sec.
five. The compatibility conditions are derived in Sec. six for trajectories normal to the
singular curves, and in the final section these results are extended to trajectories oblique
to those normals.

A smooth surface S in euclidean space E:i is customarily represented by three scalar
functions

xi=xi(6a) (i = 1,2,3; a = 1,2), (1.1)

where the xl are Cartesian coordinates indicating positions and the 9a, Cartesian co-
ordinates in E2, label the material points. The summation convention will be used
throughout with the ranges 1, 2, 3, for i and 1, 2, for Greek. A moving surface St then
can be represented by making the xl functions of time, xl = xl(0a, t). In vector notation,
x = x(da,t). At each point of the surface and at each time t, a basis is supplied for the
tangent space of E3 by the surface's tangent-space basis hQ = x.Q, where we are using a
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comma to indicate partial differentiation, and h3, chosen to be perpendicular to hi and
ho and to make (hi, I12, h3) a right-hand system. In these terms, the metric of the surface
has covariant components hap = ha ■ Yip and contravariant components ha& such that
h°n'h-,,g = Sp. The reciprocal basis then is given by hQ = hai h7, and h3 = h3, and the
Christoffel symbols and the second fundamental form of the surface by { p } = hQ • h;37,
Q,ap = hQila • h3, respectively. These relations imply that

hQ,/3 = I | h7 + f2Q(gh3, h3ji(3 = —f2^ha. (1.2)

The concern of this work is with a vector field 0, a three-dimensional function of
position on the surface, 0 = 4>(9a,t) = <p^hp+cf)3h3, where the (contravariant) tangential
and (scalar) perpendicular components of 0 are, like h0,h3, functions of position on
the surface and time. It is necessary to use the covariant derivatives of the tangential
components to express succinctly even the partial derivative of 0. Prom the above
relations,

4>,P = (</>|£ ~ 03fi/j)ha + (0?/9 + </>a^o/3)h3- (1-3)

One notes the way in which the perpendicular component influences the tangential com-
ponents of the derivative and vice versa. It is the object of this paper to use the method
of singular curves to find compatibility conditions that relate the jumps in the third-
order partial or covariant derivatives involving time of the component functions of 0 to
the jumps in their directional derivatives, those of first and second order having been
found in [6] and [8] and those of third order not involving time having been found in [9].

The method of singular curves deals with a function that is singular in the sense that
it is smooth except on an oriented smooth curve Ct moving on St and that, for each t,
it and all of its derivatives must have limits with respect to 9a and t at Ct from the side
to which Ct is moving (the positive side of Ct) and the side from which Ct is moving
(the negative side of Ct). The difference between these limits is called the jump in the
function, denoted by square brackets, for example,

a3_ U3.1+— {^,0) ~~ (0,/s) • (l-^)

The order of the singularity of the function is the lowest order of partial derivative that
has a nonzero jump at Ct, order zero meaning that the function itself has a jump. We
shall need a formula for the jump of a product in terms of the factors; this formula is as
follows:

[AB] — A+[B\ + [A]B+ + [A][B]. (1.5)
For each t, we shall have occasion to require the unit tangent of Ct, m = dx/ds,

where s is the arc length along Ct according to its given orientation. We need also, in
the tangent plane of St, the unit normal vector n = h3 x m, which is generally not the
normal vector of the Frenet equations. Frequently we shall have occasion to use the limits
of directional derivatives of a singular function as the point of evaluation approaches Ct
and the direction approaches that of m or n; when it matters whether the limit is from
the positive or negative side of Ct, which one is meant will be made clear. When either



KINEMATIC COMPATIBILITY CONDITIONS OF THIRD ORDER 637

is meant, then no indication will be made, for instance, d<f)/dm will mean the limit of
the directional derivative of <fi in the direction m at Ct from whichever side is required.
In particular, Hadamard's lemma states that

d(f)
dm & <">

The general assumptions of this paper, following [6], [8], and [9], are that the position
vector x is singular of order two at Ct, meaning that h,, hl, haf3, and hap are continuous,
but that the Christoffel symbols and flap are not in general continuous across Ct, and
that 0 is smooth except at Ct■ In addition we assume of 0 that its limit at Ct and
the limit of its directional derivative normal to Ct (defined in Eq. (4.2)) from each side
vanish, that is,

d<t>~ dcf>+
* dT = 0' (L7)

the second and fourth expressions vanishing because of the vanishing of 4> identically on
the positive side of Ct- In consequence, [0] = 0 and all derivatives of 0 on the positive side
of Ct have vanishing limits at Ct ■ This is a simplifying assumption of the present work as
compared with [8], [9], and [10]. Since the aim of this work is to find formulas for jumps,
terms that will ultimately vanish will contribute nothing to those formulas. So long as
they will not again be differentiated, they can be discarded; the indication that some such
terms have been discarded will be the use of the special equal sign, =, which first appears
in Eq. (3.19). Because many terms are products of 0 or derivatives of 0 in directions
tangential to the singular surface and geometrical quantities that may themselves have
nonzero jumps across Ct, as mentioned in the previous paragraph, it is important to note
the precise effect of the simplifying assumption. In Eq. (1.5), when A is a geometrical
coefficient and B is 0 or dcj)/dn, the jump in the product will vanish, the vanishing
jump in 0 or d(f)/dn respectively eliminating the first and third terms and the vanishing
of 0 or dcj)/dn respectively ahead of Ct eliminating the second. Then by Hadamard's
lemma applied twice, the same thing happens with terms involving tangential directional
derivatives of 0 and d(p/dn, e.g., with respect to the direction tangent to the singular
curve. No such term will therefore figure in the final results nor in calculations after the
specialization indicated by == has been made.

Despite the lack of an assumption of continuity of the Christoffel symbols and flap
across Ct, Cohen and Wang [6] showed that

w.m'(3 _= 0 and [flapjm13 = 0. (1.8)

It is necessary to recapitulate the relations among partial differentiation with respect
to time, which will be represented by the dot accent, and partial and covariant derivatives
with respect to surface coordinates. These have been carefully analyzed by Cohen and
Wang [6], whose paper should be consulted for details.

2. Kinematics. Much depends upon the velocity vector field v of the surface St in
euclidean space. The so-called world velocity of St is then uj = v + e4, where e4 is the
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unit tangent vector of the ^coordinate curve through each point of space. To represent
the directional derivative with respect to w, we shall use the dot accent. It will be useful
to clarify the use of dots. For vectors, dots are tied to the symbol; <f>\ap is {4>)\ap n°t

4>\ap. For coordinates, dots are tied to the coordinate expression as a whole but not

including differentiation subscripts; (jf means <not the h7 component of (p, and <fi7x

means (07)|a n°t 4>lx and not (</>)jyA, which has no meaning at all. For any tensor field
on St, we write

X d(f>(Oa,t) d<f>
* = = (21)

In particular, for x(9a,t) representing position on St, the velocity v(9a,t) of St is

v,jx = 8xy,t) = .
dio dt

This velocity can be represented relative to the basis of the tangent space, v = uAhA +
i>3h3. It is not assumed continuous across Ct, but it is assumed to be smooth elsewhere.
If L represents the surface velocity gradient, v.Q <g> ha, then from (1.2) we have

L = LAahA®hQ+L3Qh3®hQ

= (uAQ - ftAv3)hA (g)ha + (w3q + nXavx)h3 <g>hQ. ^

We shall have occasion to expand both Lg and in terms of the coordinates of m and
n:

La0 = Lmmmam(3 + Lmnmang + Lnmnamg + Lnnnan0 (2.4)

and

From

we have

L P = Lmm0 + Lnnd- (2-5)

<92x <92x= ^ = (2'6)

hQ = Lxahx + L3qh3 = - 0A^3)hA + (v3a + £lXavx)h3. (2.7)

Then by the perpendicularity of hQ,h3,

h3 = ~L\hQ = -L3QhQ = ~(v3'a + naxvx)ha. (2.8)

If the singular curve Ct has an intrinsic speed of propagation U normal to itself across
the surface St, then the world velocity of Ct can be called z = u> + f/n. This relationship
among the vectors allows (see [6]) the directional derivative with respect to u> to be
written

(2.9)dz dn
While the connected displacement derivatives with respect to 2 have their uses, it has
been clearly established by the uses made in [2] and [3] of the derivatives with respect
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to oblique trajectories used in [1], that compatibility conditions should be found with
respect to such oblique trajectories although it is more trouble. Accordingly, let there
be added to z a tangential velocity, called 7m in [6], to give the tangential velocity
r — z + 71x1. Then

d d d ,
Tr=Tz+1d^' (2'10)

The normal-trajectory derivatives can of course be recovered from the more general
expressions simply by letting 7 vanish. Finally, since both z and r are tangent to the
singular surface swept out in space-time by Ct, there is a version of Hadamard's lemma
for directional derivatives with respect to each,

d<j> d{4>\ dtp
dz dz'dz

When 4> in (2.9) is hQ, (1.2) produces

d(j)
dr

d[4>] dip
dr dr (2.11)

= hQ + U + Uila0n^h3. (2.12)

With (2.7), this is

^ = [l\ + U | ^ J rA hA + (L\ + UnXanx)h3. (2.13)
dz

Then by the perpendicularity of hQ, h3,

dh3
dz

= ~{L3a + Unapn3)ha = —(L3a + Un%n0)ha. (2.14)

Both of these formulas are needed later. The continuity of hQ, h3 at Ct together with
(2.11), implies

{.«)
L\ + U\ AAn0 = 0, [L3a + Una/3n0} = 0. (2.15)

The former of these conditions and (1.8) have the consequence that, when the operator
on coordinates,

°r "r , n.<
d, ^+*{L- + U\ a0l"") <216>

is defined, and when the analogous operator

is defined, they satisfy versions of Hadamard's lemma,

D<t>a

dz

D[4>a] _ Dip°
dz dz

Dcj)a

dr

D[(j)a] _ Dj>a

dr dr (2.18)
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Four derivatives derived by Cohen and Wang [6] and misquoted in [8] are needed later:

dl7l\ dU n f Oi 1 ft , T r \ 0
= - L pmam^m\ + U j j- man' + {LXp + Lpxjm^,

}

dz
dn\ dU rn f, rr f a ,
~dz = ~drn mx + Bncn n\ + 1 A/i ' nc"n

^ = ^nx - La0mamf3mx -u{ \ \ man0,
dz dm [ afj J
dnx dU x rry a \
—:— = ———m +L 3nanpn —
dz dm

(2.19)

U { a/3 } " ^A/3 + L0X">n')-

Using the expansion of Lap, one can write, from [8],

Dm" = ^ + 0»", ^ = + |m». (2.20)
dz \dm J dz \dm

3. Commutation relations. We recall from [6] the definition

4>\af) = - <£,7 { J/3 } = ~dhjk~a ~~ { ap } ' (3,1)

and from [9] the further definition

4)\a0S = $,0aS ~~ $.1 ^ ^ ^ ^ ,6^0^06

(p.eflpflaS ^0{6a) </>\ae | gp | .
(3.2)

Two commutation relations for directional derivatives for fixed time, which will be
needed later, can be deduced from expressions for 0|a0g obtained by iterating

, , dd> deb
grad cj) = ® m + — ® n, (3.3)

dm dn

in component form,
dcf) d<f> d4>

—— = — ma + -j-na. (3.4)
dna dm dn

A number of terms that arise can be simplified using the expression

for the second fundamental form, where flnm = £lmn by its symmetry. The expression



KINEMATIC COMPATIBILITY CONDITIONS OF THIRD ORDER 641

obtained (from [9] based on [6]) is not identical to but is equal to

_ (d3(f> dr) d(t> d2(j) 2 d<j> ori2 dcj)
'a/36 \dm3 dm dn ^ dmdn dm mm dm

— l^lmn^mm mampm^

f d?4> dr) d<t> 0 d24> 2d(f> f cPjfr _ 90 0 <W_
\dm2dn dm dm ^ dm2 ^ dn ^ \dn2 ^dm) mm mn dm

-(fiL + (mampns + manpms + nampm6)

f ( d3<f> dn d(f> d2(f>\ d24> 2 d(f>
\ \ dmdn2 dm dm ^ dm2) ^ dmdn ^ dm

^^nn^mn ^ (manpns -H nampn^ ~1~ nanpm$^
dcfi\

^ (/ <i3<£ d/i dcj) d2(f) \ 2 d2 <p
\\dn3 dndm ^dndrnJ ^dmdidmdn

r.r-v ^ d(f) n
djjl ^mrS ̂ nn djyi uTl I

(3.6)
where r/ is the geodesic curvature of Ct and n is the geodesic curvature of the orthogonal
trajectories on of the family of curves Ct, both defined in terms of covariant directional
derivatives by

T)ma
=mfxmx = r]na, — = nfAnA = /ima. (3.7)

Because the quantity 0|Q(3^ is symmetric in the suffixes a,/?, and 6, the coefficients of
manfsn6 and namgns that actually appear in the computation must be equal to that of
nanj3ms, which appears above. That is,

d / d2<p d<fi\ / d2(fi d(p\ /d24> d<p\
dn \ dmdn ^ ^ dm J ^ \ dm2 ^ dn J ^ I dn2 ^ dm )

mn ' a Lmm^ Lnn J 'nnJ '"mn

d34> d[x dcj) d24> 2 d2(p ^ ^ 2 d(j>
dmdn2 dm dm ^ dm2 ^ dmdn ^ dm

-2fi2 ^-2fi n ^''mn , "*C/nn*Lmn 7 5an

(3.8)

which can be written more usefully as

d / d2</> ̂  d</>\
dn \ dmdn ^ dm J dmdn2 ^ dmdn ^ dn2

+ Uf + S + K-iL)dJL-mft\ dm J dm dn

(3.9)

letting
K = ttmmttnn ~ (3-10)
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be the Gaussian curvature of the surface. Likewise the coefficient of mampns that
actually appears must be equal to that of manpmg and nampms, which appears above;

— ( + 2/i ( d2(- +77—)
dn \dm2 dn) \dmdn dm J

^2(n n ^ + n2^ I 0 Lmm* Lmn - 1 "»»». , Idm mn dn ;

d30 dr] d<p drcj) od<p fd2(p dtp
+ 77 7" + ~ 3 V "TT - A*

dm2dn dm dm dm2 dn \dn2 dm

_ 217 f2 --(SI2 + fi f2 ) —Lmm* Lmn 7 V mn ' Lnn* Lmm} , ?am an

(3.11)

which can be written

d / d24> d(f>\ d3(p 2
(in \dm2 dn) dm2dn dm2 ^dmdn ^ dn2

dr/ ^ dtp t 2 , r^ d<p (3.12)
+ A'V

A pair of commutation relations involving differentiation with respect to time will be
needed later. They can be derived from the equality of partial derivatives,

d3(p 93(f>
dt OOP d6a dOPdtdOa

and an expression derived in [6],

(3.13)

=L^na0 + L-va\0-L3an}, (3.14)

expanded in terms of m@ and n$\

^ Ct(3 ̂  ^ Dm ^ '' ^ a ^1(3

( DL1 \
( Dji ^ ^ ^ aiS^rnnT^ ^nn^) ) ^1(3 •

We shall need the coefficient of mp also expanded in terms of ma and na :

^-^777.771 'V , 0'^JTlTYl '"Y i 7" •"Y T 'Y T i T" "Y
—; m + j n + r]Lrnrnrii - r/Lmnra7 - ryLnmm7 + r/Lnnn7dm dm

+ L3nftmmn7 - L3mftnmn7 ) m0

(3.15)

^ I a!£mn_m7 + 7 + 7]Lmmm7 + 7?LTO„n7 + 7?L„mn7 - rjLnnm7
dm am

+ L3mftnrnmy - I?nSlmmrn< ) nQ.

(3.16)
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The left side of (3.13) is

4>.a0 — 4>\a0 + 0,7 | | + 0,7 | ^ | (3-17)

and can be expanded using (3.15) and an expansion for 4>\ap available by partial differ-
entiation with respect to t of 4>\ap, used in previous work on geometrical compatibility
conditions in [9]. We have (cf. (2.9))

d tt d \ j f d2(t> d<j>

( d4> \ (<t<p d<t> \ \
{M>+1*n) (m*n" + n-m»>+{ AS ~^) "■"«| '
, P+

This differentiation requires the commutation relations (3.9) and (3.12) and results in
the simplified expression:

~t~— . TT d2(f}
<P\ap = Ull~(]^2maTn0

( d3<fi dU d2(j>\
+ \-UM? 'din Mi) <m""» + <3'19>

( d3</> <i3</> d2(j>\
+ {dzdn2 dn3 + nn dn2 ) aUp'

The right side of (3.13) can be obtained by partial differentiation of

• f d2<p d24> ,T tt \d<t> dU
<p a — s — — ~j j \Lmrn ~j[ dzdm dmdn dm dm

d4>\
dn J

(3.20)f d2(p rr^20 f dU \ d<p d(p
+ na S ~r~, U „ + "7 1" Lnrn + Lmn + UI-1 ) "7 1" iroiT"[ azan anz \ dm J dm dn

from [8], where it is Eq. (4.22). So, in somewhat simplified form,

d i d •
— <p am{3 — <pdm dn

. d2(p d ( rrd2(t>\ d2(j)

d f d2cf> JT d2cf) dcf) dU d(p\
dn \ dzdm dmdn mm ^ dm dm dn J m"n/3

d f d2(j) TTd2(f> (dU T T TT \ d(f> r d<fi I
an y azan anz \ am J dm dn J+ d7

+ 0j7 7
a/3

(3.21)
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where the partial derivatives of ma and na have been expressed in terms of their covariant
derivatives, which give rise to terms containing Christoffel symbols, collected above into
the final term.

When the above two expressions for the equal partial derivatives, (3.21) and (3.17)
elaborated by (3.19), are equated, and the term common to both is dropped, the result
as a whole is of no particular interest, but the equality of the coefficients of namp gives
one commutation relation needed later and the equality of the coefficients of np is the
other commutation relation sought. (It could be separated into two relations, but they
will be needed together.)

The first equality simplifies to

d34> • d3(f)
dm dz dn dz dm dn'

where (3.16) has been used. The second equality (that of the coefficients of rip) simplifies
to

d f d2(p d2<p t tT d(f> dU d<j> \
dn \ dzdm dmdn mm ^ dm dm dn J m°

d f d2(p TTd24> f dU TT \ d(p T d(j)\
+ ~j { ~j~j U 2 + I — 1- Lnm + Lmn + U/j,) — h Lnn —— > naan i dzdn dnz \ dm J am dn J

^ JY rr dU\ d2c$> d3ct> 1
{ V dm ) dn2 dmdn2 J Wq

J d3c() d3(f) d2<p\
\ dzdn2 U dn* + nn dn2 } Ua'

(3.23)
where (3.15) has been used.

A commutation relation in coordinates that is needed below can be derived by com-
parison of two equal but different expressions, the n\ terms in <p.\ from (4.3) and (4.2)
in [8],

d (d(j) TTd<p\ _ d2<p TTd2<t>,(dU \ d(f> d<p
i (t ^7 ) — j j J 2 ( J Lnm -^mn ~l~ U /i ) H- Lnn , • (3.24)dn \dz dn J dzdn dnz \ dm J dm dn

Equating the coefficients of hQ and the h3 respectively gives

5Si - f(L\ + - (u,+ ^. + Lmn + Lnm) (W+Lm) SjE.

= DD^_ 0(L3a + unan 7)
dz Dn '

and

p?-43(Lto+m«n\)nn6_fu+W+Lmn+L\ _ f^+L\ df_
dndz \ dm J dm \dn J dn

= - <f>3Cla0n0{L3a + Una^),
CL/Otlf L

or more usefully

= ^ and (3.25)
Dndz dzDn dndz dzdn
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4. Directional derivatives. Since the goal is coordinate expressions, it is necessary
to introduce coordinates for quantities other than 0 = (f>aha + </>3h3,0,/j, L, m, n, and v.
The first directional derivatives of 4> are

= (ite " h-+ (fb+ 1h:
^ Z' D(f>a J.3r,a„a\ u , / #3
dn

hQ + + <t>aSlapn0^ h3.
(4.1)

The jump in the normal directional derivative of <fi is defined to be

X =

If we let

dip
dn

D4>a

Dn - [03ftfn0]\ ha+ + [<t>°nagn3]^ h3. (4.2)

r = w], = m r= Drl -13 r<i0"
Dn r = dn (4.3)

we can note that, while ipa,ip3, are not the coordinates of x, hence the use of different
letters, they are equal to those coordinates on account of the simplifying assumption
on (f> without that on d<p/dn. On account of this much simplification, the first-order
compatibility conditions (from [6]) become just

[(j>fp] = i>an/3, [0Q] = -Uipa, [<j?p] = $*n0, [<p3] = -Uip3. (4.4)

The second-order directional derivatives are:

h*

+ £>m ^a0rn0m3+r>^a^a0U0 +^dm2 ~ <;zi>3^^Q,5TO/3m'5^ ^3'

H = (Ur - ^mhA

+ (2^Lna/3nP + 4>a nP + - ^ripflasn^n6^ h3,

- ( D2(^ _ Ala QA 6 0 _ ^_QXn0 _ /?dmdn" UrnDn ? n dmU0n dn^bm

.DSl%
Dm-0s-rz:™0 + #3ty3m/3) hA

+ (^j^-Clapm,0 + I]^^'al3nP + ^ nt3 ~~

+ - (f>3Q^fla0m'3nri^j h3.

(4.5)
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Again let

X =

and also, in coordinates,

d~4> dcp
dn2 ^ dm

= [ct>\ai}nari3] =
d2qb
dn2

=
D2(j)x D<j)x

Dn2 Dm
£>2^A

Dn2 ^ =
.3 ^31d?(j>'

dn2 a!m

31d2(p
dn2

(4.6)

(4.7)

Again, these are not in general the coordinates of x;

; = ( - 2

+ 6 ilnpnDn
0 — HT

A-, hA

Dn

Dn

+ i>3 - [4>3fl^flapn^1 n13} ) h3.

(4.8)

Under the present simplifying assumptions on <f> and d<p/dn, the second-order compati-
bility conditions are as follows: first the geometric,

[^lapl = ^Xnan0 and [4>fap] = ^3nan0- (4.9)

then the kinematic,

[<£pj = —Uxjjan\ and [</>3A] = -U^3nx,
z = (4-10)I4>a} = U2ipa and [03] = U2ip3.

The formulas (4.10) were obtained by equating expressions known to be equal in the
limit at Ct and then taking jumps in those equations. Many terms do not vanish until
jumps are taken in them, as can be seen in [8]. It will simplify further work substantially if
terms whose jumps will vanish are neglected because when jumps are taken—as they will
be—their jumps will vanish even when multiplied by some geometrical quantity whose
jump does not vanish. It is therefore as though the above equations had come from the
following statements, which are not themselves true but which lead to true statements
when jumps are taken. They are needed in what follows:

r D'2(t>a^ J -3 . TTd2(f)3= ~U-D^"X °°d
,D''4P ... ,<iV <4'n)

= and 03 = t^.

Similar statements from which the first-order kinematic compatibility conditions (4.4)
can be derived in their fully simplified form are just the vanishing of the four quantities
involved,

<j>$ = </>% =r = j>3 = 0. (4.12)
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The third-order directional derivatives not involving time are obtained by differenti-
ating the expressions (4.5):

(D3^ *D<t>S nSrimr>n%mf3 - 2- 07f2
dm3 \ Dm3 Dm Dm ' Dm

d2d>3 „ d<b3 DVla8m0 , . ,D2Q<im0\
- *'-dr) h»

3^ + 3^- D^3m (fpsi QfmPmfQapm1*
Dmz Dm Dm

D2£lagm0 d3cf>3 d(j)3 g nDOffm'' g\+(/>  — + ~j—jr ~ 3 — ftmvfla0m0 - 303— fl^m0 ) h
Dmz dm6 am ' Dm '

•3)

(4.13)

d3<P ( D34>a D^n^^m6 D2^n0 ^ d24>3
dm2dn I Dm2Dn Dm Dm2 dmdn 0

_dJ?DU^_ D£ f _ D^,
an Dm Dn M Dm H

+ (f>3fl^n71 Clg-ym1 Qpm0^J hQ

, {o r, ™/3 , D(t>a D^apm0 i D2(j>anapn&
+ {2D^mnaf3m + Dn Dm + ^

c a d3</>3 d^ffin^Qagm0- r^vn^2msna0m0 + —  v,  
dmzdn am

d(f>3fl°nv „ deb3
 dm—~~ "fa ^rnvnapmp j h3,

(4.14)

J^L=
dmdn2 yDrnDn2 Dm 7 Dm dmdn 7

nd$3D£l«n< d^D^n* ,3£>2ft>7 d2cj>3na B
7 . 0 _ q \ u fO Tflj

an Dm dm Dn DmDn dnz ^

+03fl^Vt^nP^m0 - 2^-fl^^m0 - (j)6 D^n''»gm^ hQ

+ {^j-^2 - (j)X£l\r10,"nvn1Q,apm0 - 2<^-fl"n'yfla/3m0

-DVL^n1 0 d3(j)3 dej)3 q 3 d^f2a/3n7n'9
- 4> ^ - </>3 7 ,P Lm dmdnz dm r dm

„ D!«>° r, I , , ofoa.#' ,
'DmDn ~Dn ~Dm ~Z)m Z>n "dS^T jhs'

(4.15)
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p, /_ my „
dn3 ^ Dn3 Dn Dn 7* 0 V Dn 0

+ (4£<w+3^^j~+- <^^>wa„,nO
d303 d(p3Q"Qa3n~>n0 O#3oa 0 3DQ°rf g\

+ ~dn? ~„ dn 7 5 " 0 -ST""3" J h»'
(4.16)

Using the notation x for [0|a^<5nan/3ni], which is available as the coefficient of nanpn$
in the expression (3.6) for <p\a^, we also need

^Pa = D3(j)a d[l D(t>a D24>a D<f)a 2D(t>a , O ii/na 7/3
~D^+2^ R u^m n .

D34>a~

Dn3
(4.17)

and

V>3 =
d3^3 dfidcf)3 ^ eP</>3 ^ d<^3 ̂  2^3 • ^3<^3
dn3 dn dm dmdn dm dn dn3 (4.18)

With the notation needed all in place, the third-order geometric conditions of [9] under
the simplifying assumptions of this work can now be written out:

^aDS = - #Vom^« + rnanpm6 + nampm6)

+ ■rr~(man/3n<5 + namf3ns + nanpms) (4.19)
Dm

+ xpxnanpns,

and

tfape = ~ iT>P3(mampn6 + man0m6 + namgm6)

+ manpns + namdns + nanpm$) (4.20)

+ xp3nanpn6.

Directional derivatives involving time will be needed. From (4.5), (4.17), and (4.18) in
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[8] come:

<?<!> _ ( L3a - U4P^10m0^n6
dzdm V dzDm

dz ^ dz dm M

A3o«„/»_f^!L3a
dm dm-Lnm^np - -^L3q - U-^Sl°rf ) ha

+ f  <t>3^lpm^L3a — U(fr3Qpml3na-1n'r
\ (Jj£Uf i L

+ —— ltaprnp + 0 ——mp + —</> fia^np
dz dz dm

Dd>a Dd)a
+Lnrn4>aQ.a0n0 + j^L3a + U) h3,

(4.21)

ll = {££ ~~ "♦'Vny - - *3^-'
+ ^<j>3n%mp + Lnm4>3Q,a0m0 - ^Lia - U^Sl°nA h,

+ (^-3 03fXn-nPl? a — U4>3Q.'0n0Vlain1 +
\ dzdn ^ M dz

dll Dcba Drha \
- Lnrn<FSl10mP + -~-L3a + U^naln<\h3>

d2(j) f D24>a
dz2

(4.22)

\~d^~ ~ (t)1L7 ~ UcfQ-j&n L - UfSlfn^L3

- U2<pflrSn6Sl%nx - 2^f-L3a - 2U<^Q.%nx
7 A dz dz x

DL3a Dun« A TT (dU r \ \
dz + dz U U {drn+Lnm)nxm

-/2 ̂ 3

| h0

3
7+ j^- - 4>3L31L3i _ U4>3niSn6L3-> - U(j)3^lnxL

- U24>3n^n6tilnx + 2^~L3a + 2U^^na0n13
dz dz

, j.a ^ •DL3« , DU^a\ A tt fdU , t „Allu
1 ~dz  dz—n ~~ V dm ) aXTn ' ' 3'

Using the general formula, from (2.13) and (2.14),

+ Ua(L3a + imXanx) + d^\ h3;

(4.23)

(4.24)

further, partly temporal, directional derivatives can be calculated from (4.5) (because
these expressions will not be differentiated again, terms whose jumps will vanish will be
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dropped):

and

d3<p tl3<p= 0 = (4-25)
dz dm2 dz dm- dn

''A ^ ( D*<t>a d2<t>3(L3
dzdn2 \dzDri2 dn2 1 J

( d363 D2(ha , ,
+ (d^ + ^(i'Q + C/^n

From (4.22) differentiated again and with the usual simplification,

(4.26)

^ ^ = 0. (4.27)
dz2dn

5. Partial derivatives. We take the second covariant derivative (3.1) of the vector
field from [9],

0M'= <P,,/r

= (^ - - ct>3nxal0)hx

+ (^fa^A# + (0A^Aq)|/3 + </fQ|3 ~ 03^a^A/3)h3.

From this we obtain directly, using (2.7) and (2.8) above,

<P|/37 = (0f^7 - (pafia(3^y ~ <t>"£lal3£l° ~

- ^l3q^7 - (06n^)hL3a + - rLa&a(}n\

- - o;'3o? -

- <^n°|7 - r^Lia + - <P,pLa6n^ - {<f>*nip)hLa6) hQ

+ 6 — (j)a + 0j^f2Q7 +

+ 0p,,^Q/3 + 't'yy^af} + 0"^Q,317 + °"--.-.j;7

— 03/3-^35^7 — s + — 03OJjS7Q7 ~ rp3flpfla-y — </>3f2^f2a7)h3.
(5.2)

In order to be able to compare this expression with one based on directional derivatives,
three transformations need to be applied to it. All of the dotted </> terms except the two

that formulas are sought for, and <p3g^, must be replaced. This replacement is done
for first derivatives by using the expressions (4.12) and, where an expression is a second
derivative, using the expressions from which the second-order kinematic compatibility
conditions come when jumps are taken, (4.11). The factor tf>"^ can be dealt with exactly

like (j)?p because the difference between the two expressions, according to Eq. (8.30)
of [6], is cf>e times a geometrical coefficient and so can be ignored here since its jump
will vanish. The second transformation is to expand covariant derivatives in terms of
directional derivatives using the formulas

— + ~ *iS = _ms + (5,3)
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and the same iterated and similar formulas applied to fl",L3a, and LQ7. The third
transformation is to insert components of the tangent and normal vectors m and n

in each term except for <j)and This can be done by replacing each
subscript /3 (or 7 respectively) by a dummy suffix, say £. and multiplying the
term by 6p in the form mem^3 + nEnp (Eq. (6.25) of [6]). The result of these
expansions is a substantial expression, which is not worth looking at and which
was formed by the Mathematica package "Ricci" [7] running on a NeXT computer.
(Without this combination of facilities, these calculations would not have been
completed.)

We take the second partial derivative of 0 with respect to time from [8],

4> = {4>a + 207Lq7 + + 0AL7ALa7 - ^L37L3q

- 203i3a - (f>3L3a - </>3L37L%)ha (5.4)

+ (03 + 2<^>7L37 + 07L37 - 4>3L^L\ + 0AL7AL37)h3,

and differentiate it partially with respect to 6X to obtain

0,A = (0fA + 207AL« + 2+ <A7 L% + ^L^x + tfxL]L*
+ <f>sL^L° + <PSLJL°|A - tfxL3L3a - </>7L3,aL3q
- ^L3L3Z - 2j>3xL3a - 203LfA« - 4>3xL3a

- 03ifT - 03aL3U° - <^3LfA7^ - 4>3L3*1 L*\X)\ia
- {2^L3 + </>7L3 + <t>6LjL3 + <^3 - <^3L37L3)f2Aha
+ {4>a + 207L° + (jP+ fj)6LjL" - 07L3L3a - 2<A3L3q

- </>3L3» - cj>3L3iL«)naXh3

+ (2^aL3 + 2^L3|A + ^aL3 + ^L3|a

+ 0fAL7L3+^L7|AL3+^L7L3|A
_L _ ^A3 r 3T r 3 _ r 37 r 3

(5.5)

3a - 03aL37L3 - </>3Lf7L3 - 03L37L3|A)h3.

Since this expression will not again be differentiated, it is permissible to simplify it by
the elimination of terms containing 4>a and 4>3, of which there are a goodly number. For
comparison with the corresponding expression based on directional derivatives, as above
the dotted <f> terms except those sought, 4>"x and 03A need to be replaced and the covariant
derivatives expanded in directional derivatives. The result of this expansion is again a
substantial expression, which exists only in the format of "Ricci".
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The third of the partial derivatives needed is obtained by differentiating the expression
(5.4) with respect to time to obtain

0 = ('</>'" + 2<jp La7 + 24>1La1 + cjPLa1 + + 0AL7ALa7

+ 0AL7ALa7 + </>AL7ALQ7 - j)1L31L3a - <t>1L31L3a - c/>7L37L3a - 24>3L3a

- 2<fi3L3a - <j>3L3a - (p3L3a - tf'L3lLa1 - </>3L37La7 - </>3L37L"7)hQ

+ (03 + 2(f)1 L31 + </>7L37 - 03L37L37 + 0aL7aL37)(-L3qha)

+ (<£* + 207L67 + + 0aL7aL67 - <PL31L36 - 24>3L3S

- 4>3L3S - <t?L3lL\)La6hQ

+ (<?i5 + 2^)7L% + </>7i/7 + 0AL7Al/7 - 07L37L36 - 2<fr3L36

- 4>3L36 - <t>3L3^L\)L36h3

+ (fi3 - <^3L37L37 - 03i37L37 - 03L37L37 + 207L37 + 307L37

+ <£7L37 + 0aL7aL37 + </>AL7AL37 + 0AL7AL37)h3.

(5.8)
Again, terms containing 4>a and 03 and (by (4.12)) </>" and </>3 can legitimately be removed
to give the simplified form

"4> = (&a+ 3frLaJ-34>3L3a)ha + (0i+ 34>'1L31)h;i. (5.7)

This expression then requires the same expansion as the previous partial derivative to
produce an expression for comparison with the directional-derivative version of the same
quantity. This has been done in "Ricci".

6. Compatibility conditions. The expression (3.19) for (f>\ag in terms of direc-
tional derivatives, with each vectorial expression expanded into coordinates by the for-
mulas stated in Sec. two or derived in Sec. four and the now usual simplification, can
be compared piece by piece with the same quantity computed in the fifth section to give

expressions for (f>and </'3(37, which appear in that form in the section-five formulas.
The resulting expressions, true only when jumps are taken, are:

and

% =
/ D34>a dU D2(j)a\-{<7 DM + +' <">

, f D3^ TTD3r , or D2^ Ta D24>6\
+ \dzDn2 Dn* + nn Dn2 6 Dn2 ) ^ 7

tr~ ■ rrd2^

/ d34>3 dU d2</>3\ ,
JlMn'+lbn^){m^+nsm-') <6-2)

( d3(p3 rrd3c/)3 nT d2<p3\
+ ~ + nnhrf ) n/3TV
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When jumps are taken, a further simplification comes from using (4.72) and (4.18):

^>7

,3• tt 73 dUf /= r]Uip mpm-y -—{mpn^ + npm^)

d-f~up+ 2
dz

The tangential formula needs (4.7i) and (4.17). So

d24>3
' dn2

(6.3)
TlfiTl'y.

'\01

~ DUipa
— r]Uipamgm7 — (m^n7 + n/3rn7)

+ \-t-w1+2
D2cf)al

nnlhi2"
D
£>n2

(6.4)
TlpTl'y.

For the remaining formulas, it is necessary to have 0.a in terms of directional deriva-
tives. This is obtained by partial differentiation with respect to t of (p \, which has already
been used above. Prom (3.20), performing the partial differentiation using d/dz — U d/dn,
the result is

■■ = f d3(j> dU d2<p d3<p d  T r , dcj)
\dz3dm dz dmdn dzdmdn dz mm ^ dm

rr , d2(f> d2U d<p dU d2ip )
+ mm 1 cizc£rn dzclm dn dm dzdfi | mA

_ d ( d2<p „ d24> d<f> dU d<p~]
dn 1 dzdm dmdn ^ dm dm dn J WA

'du \ #
7 "T" J^nm ~t~ *-<mn ~t~ U fl Idm J dm

+

( d3(p dU d24> jj d3(j) d / c
\dz2dn dz dn2 dzdn2 dz

fdlJ \ d2(f> dLnn d(p d24> }
i > ' l-"nm ~r J-'mn ^ AM j i j i ^nn 1 ~T~ f\ am J dzdm dz an dzdn J

d f d2<p TTd24> (dU TT \ d(f> d(f>)
dn {d^cbi ~ drf + \d^i + nm + mn + 1 d^i + Lnnd^\Ux

f d24> d24> d<f> dU dcj) 1
\ dzdm dmdn 1 mm V> dm dm dn J

X LmmWlX + ^Lmn H~ Lnrn + ^TO + nA}

f d2(p TTd2(t> (dU \ dcj) r d<f>}
i TTTj TTT ^ ^ nm Lmn + Unj — h Lnn —— >[ dzdn anz \ dm J dm dn J

{"(
rr dU ,

din ' mx + Lnnnx

(6.5)
In the above expression, lines three and six can be replaced at a stroke using the pair of
commutation relations (3.23). The expression can then be simplified by the removal of
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terms involving differentiation of <fi only in the directions m, z, or a combination of them
or of d(f)/dn and its similar derivatives:

v ( dU d24> d3cj> \
\ dz dn2 dzdn2 ) nx

(rr dU\ r 1
\ dm ) mx LnnTlx f

rr JY TT ^ dU d2(t> , rrd2^
lA dmdn2 dm dn2 ' dn2 J

(6.6)

/ d30 d30 d20\
+ U**»2 dn3 nn dn2) nx

The two versions of 0a, (5-5) and (6.6), can now be compared component by compo-
nent to produce the formulas for 4>?x and (f)3x. The only rule needed to produce compat-
ibility between (5.5) and (6.6) is the expansion of the second fundamental form by (3.5)
in (5.5). Again this comparison was done in "Ricci", the result in simplified form being

2 U^^X + U2 ̂
dm Dn2 DmDn2

m A

+
r.2D'i(t>a nrrfl3f fdU , orrr \ D24>a ( orrra D24>0

U rtza W—^ - — + 31JLnn —^ + 2ULapDn3 dzDn2 \ dz " " J Dn2 Dn2

Using (4.7i) and (4.17), the above formula simplifies to

DU24>c

n\.

(6.7)

Dm

t2 fa , nttD^°
+ {U^ + -d^-2U-dz

The other formula is

^+3UL.J **dz Dn2
+ 2 U ra

0 Dn2

fix
2 U—d*^-+U2-^—]

dm dn2 dmdn2

^ " dn3 " dzdn2 V dz ' "") dn2

which simplifies, using (4.7q) and (4.18), to

m a

u,dV_2UjiW_(du+

J n\.
(6.8)

(6.9)
n a,

dU2^'3 (Tr2 „rr#3=—r^rriA + £/V - 2/7-f-dm \ az
nA. (6.10)

The third pair of formulas requires 0 expanded in directional derivatives. This is
easily obtained by differentiation of 0 with respect to time using d/dz and d/dn:

••• d(j) d(f) d(j) » a /R11\<t> =   U— =   U4>.\n . (6.11)dz dn dz
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The second term is available as the coefficient of n\ in the expansion (6.6). The first
term needs to be taken from Eq. (4.14) of [8],

dzz dzdn dnz
rrfrr dU , r \d(t> (dU rrr \ d(t>— U I Ufjj -f- — 1- Lmn + Lnm I — I ——ULnn I —.\ am ) am \dz J an

The expression wanted is

d(j> _ d34> ndU d2<p orr d30 , nTTdU d24> , 2 d3</>

(6.12)

- 2-—r-b - 2C/—r_ + 2U-——^ + f/2
dz dz3 dz dzdn dz'2dn dz dn2 dzdn2

d f / dtf _
1 1 ^ ^ Lmn +az [ \ dm

fd2U dU dLnn \ dcf) (dU \ d?4>
t" » ^nn t *7 . I, I , i ^

\ d$\
'J dm J

(6.13)

\ dz2 dz nn dz J dn \ dz dzdn

rdU d2<p , rr2 d30217——-4r + Udz dn2 dzdn2

The two versions (5.7) and (6.11) of 0 are now comparable in "Ricci" with the derivatives
of vectors all expanded in coordinates. The formulas produced are

r<n=
and

, „rt o3r , \ CV „rtr„ OV7^ + 3U 5^ + U + IS? -3l" L"° D„1

V 3 _t,3W+3pJ^+3E,C^+ Wdn3 ' dzdn2 ' \ dz ' nn J dn2

These simplify, using (4.7), (4.17), and (4.18), to

*] = -U3ipa + W2^- + 3u\(
dz Y \

'dU TTT \ D2
——V U Lndz nn Dn2

-3 U2 ra DW
0 Dn2

and

= -U3/ijj3 + 3U2^— + 3U
dz dz nn J dn2

(6.14)

(6.15)

(6.16)

(6.17)

7. Oblique trajectories. The usefulness of compatibility conditions with oblique
trajectories, which can be chosen to be bicharacteristics of the partial differential equation
being studied, has been well established. Nor is it difficult to find them. The operator
d/dr was defined in Sec. 2 in terms of d/dz and d/dm. To produce compatibility condi-
tions using d/dr it is necessary only to replace d/dz and its iterates in the results of the
previous section by their equivalents in terms of d/dr and d/dm,

or _ Dr Dr
dz dr 7 Dm' ( ' )
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and correspondingly for <p3. When this formula is iterated, as it must be, commutation
relations like those of Sec. 4 of [8] would be needed except that the terms in which they
are needed are already assumed to vanish. Accordingly, the commutation relations (4.1)
of [8] are not needed. When (7.1) is applied to expressions (6.1), (6.2), (6.7), (6.9),
(6.14), and (6.15), they still simplify as they did in Sec. 6, and the results are the six
kinematic compatibility conditions of third order for a surface vector field under the two
simplifying assumptions set out in Sec. 1:

= DUipa
%-y] = r]Uipam0m1   (<m0n7 + n0my)

, Z ™ \ (7.2)' Dipa Dip" ~ r \2L L°,D2(t>6
nn Dn2 6 Dn2 TlpTlry

and

= r]U'tp3m0m1 - dU^ (m|3n7 + npm7)

I dtp dip Tr jo
+ \-T- - +2\ dr dm

2 J.31
Lnn

dZ(j)
dn2

(7.3)
TlfiTl'y,

rVa I • DU2lPa
' = ~^rmx

+ { U2^a - 2U^- + 2U-r^- +
I ar Dm

and

D2d>0 (dU \ D2<ba
- —+3ULnnDn2 V dz J Dn2

. "o , dU2ip3 I tt2 ^3 „„#3 „rr dip3w = ~^rmx +[u^ - 2u^r + w-t^

and
T-ila , orr2 Dip01 2 Dip0

dU
j l~ 3ULnnaz

[0"] = -£/>° +3UZ—— -3[/27-
dr

T /HIT
+ 3 U dz nn Dn2 p Dn2

and

[0s] = -U'f3 + 3U2^- - 3l/27^ + 317 ^ + ulJ^3
dz ) dn2

(7.6)

(7.7)dr dm

When L = 0, these six formulas reduce to those of [1].
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