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Abstract. First we prove an exponential decay result for solutions of the equations
of linear, homogeneous, isotropic thermoelasticity in bounded regions in two or three
space dimensions if the rotation of the displacement vanishes. As a consequence, we
describe the decay in radially symmetrical situations, and in a cylinder in R3. Then we
establish the global existence of solutions to the corresponding nonlinear equations for
small smooth initial data and a certain class of nonlinearities.

1. Introduction. In this article we will first prove the exponential decay of solutions
to the equations of linear thermoelasticity for a homogeneous and isotropic medium in a
bounded region in Kn, n = 2,3, if the rotation of the displacement vanishes identically. As
a consequence, we obtain the exponential decay in radially symmetrical situations (and
in a cylinder in M3). Then we establish the global existence of smooth small solutions to
the corresponding nonlinear equations for a certain class of nonlinearities.

The asymptotic behavior as t —> oo of solutions to the equations of linear thermoe-
lasticity in a bounded domain has been studied by many authors. In one dimension, it
is well known that solutions decay (to zero) exponentially for all the classical bound-
ary conditions (see, for example, [2, 8, 10, 11, 13, 16, 17, 25]), while in more than one
dimension the situation becomes more delicate. Dafermos [7] (also cf. [15, 20]) investi-
gated the linear equations of n-dimensional thermoelasticity and showed that, e.g., if the
displacement u and the temperature difference 9 satisfy Dirichlet boundary conditions,
then 9 tends to zero and u tends to a function u as time goes to infinity. Whether the
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function u is zero depends on the geometry of the domain, e.g., u = 0 for a rectangle
but u ^ 0 for the unit ball in R2. However, no decay rate was given in [7] and [20].
Henry, Perissinitto, and Lopes [10, 9] proved that in more than one dimension there is
no uniform decay rate of solutions for spatially periodic boundary conditions or for the
domain containing a finite cylinder the ends of which are in the boundary. Racke [24]
studied some special boundary conditions and proved the exponential decay of 9 and the
curl-free part of u. Recently Jiang [12] showed that solutions with radial symmetry decay
exponentially in annular domains with appropriately large diameter. We also mention
the works of Carvalho Pereira and Prela Menzala [4, 5], Racke [24] who showed that if
an additional damping term ut is added to the equations, then solutions converge to zero
exponentially

The purpose of the present work is to show the exponential decay for the case when the
rotation of the displacement vanishes identically, in particular, for radially symmetrical
solutions to the linear equations of homogeneous and isotropic thermoelasticity, and to
prove the global existence of solutions of the corresponding nonlinear equations for small
smooth initial data and a certain class of nonlinearities. The main results are Theorems
2.1, 3.4, and 4.2 in Sees. 2, 3, and 4.

The paper is organized as follows: In Sec. 2 we prove the exponential decay of solutions
with vanishing rotation for the linear case, in Sec. 3 radial symmetry is considered, and
in Sec. 4 we establish the global existence of solutions to the nonlinear system for small
smooth initial data.

We now introduce the notation used throughout this paper. T denotes transposition.
Let G be a domain in Kn. By Wm'v(G) (m € No, 1 < p < oo) we denote the usual
Sobolev space defined over G with norm || • ||w-P (see, e.g., [1]); Wm'2(G) = Hm(G)
with norm || • \\h™, W°'p(G) = LP(G) with norm || • ||LP, Hq = Hq(G): completion of the
test functions Cq°(G) in Hl. For simplicity we also use the abbreviations Lp = LP(G)
and Hm = Hm(G). The norm and inner product in L2(G) are denoted by || • || and (•, •)
respectively. CL{I,B) (resp. L2(I,B)) denotes the space of B-valued functions that are
L-times continuously differentiable (resp. square integrable) in /, I C R an interval, B a
Banach space, L a nonnegative integer. We denote by O(n) the set of orthogonal n x n
real matrices and by SO{n) the set of matrices in 0(n) that have determinant 1. (-, -)b»
is the inner product in Kn. For a vector-valued function h — (hi,..., hm)T and a normed
space X with the norm ||| • |||, h £ X means that each component of h is in X; we put

IIWI|:=|IMI + --- + IM.
C or C\ will denote various positive constants which, in particular, do not depend on

t and the initial data.

2. Exponential stability in linear thermoelasticity with vanishing rotation.
We consider the equations of linear thermoelasticity for a homogeneous, isotropic medium
with bounded reference configuration G C Kn, n = 2 or 3, having a smooth boundary
dG:

utt — AtA u — (/i + A) V div u + /3V6> = 0, (2.1)
c6t — kA9 + P div ut = 0, (2-2)
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where u(x,t) = (ui,..., un), x £ G, t > 0, is the displacement, 9 = 9(x,t) is the
temperature difference, /j, and A are the Lame moduli satisfying fj, > 0 and 2/i + n\ > 0,
and c, k > 0 and 8 / 0 are given constants depending on the material properties.

We shall investigate the large-time behavior of solutions to the initial-boundary value
problem (2.1), (2.2) with initial conditions

u(x, 0) = u°(x), ut(x, 0) = u1^), 9(x, 0) = 6°(x), ieG, (2.3)

and Dirichlet boundary conditions

u{-,t)\dG=0, 0(-,t)\gG=0, t > 0. (2.4)

Defining the rotation of a vector field u = (u\, u2) in R2 to be the scalar

rotu := d\U2 — d2u\

we can formulate the main theorem for two and three space dimensions as follows:

Theorem 2.1. Let (u,9) be the solution to (2.1)-(2.4) and assume

rotu = 0 in G x [0,00). (2.5)

Then there are constants T > 1 and 7 > 0 independent of the initial data and of t such
that

rt

E{t)+ f e7S|| V0t(s)||2 ds < Ti?(0), (2.6)
Jo

where

E(t) := e7f Y, W^u(t)fH2.k + \\9t(t)f + \\9(t)\\2^ • (2-7)
U=o J

Remark 2.2. The existence of solutions to (2.1)-(2.4) for data such that the right-
hand side of (2.6) is finite, is standard; see, for example, [15], [20]. If we define the
rotation of a scalar field / in M2 to be

rot / := (d2f, —<9i/)T,

the classical formula for the vector Laplace operator

A = V div — rot rot

is valid in two and in three space dimensions.
Proof of Theorem 2.1. Since u has rotation zero we have

Vdivu = Au and ||Vu|| = || divu||. (2.8)

Let t 2^, + A and

Fi(t) :=i(lk||2+r||Vn||2+*)W,
F2(t) := l(\\utt\\2 + T||Vut||2 + c\\9t\\2)(t),
F3(t) := i(||Vut||2 + r||Vdivu||2 + c||V0||2)(t),

F(t) := £>,(*).
3 —1
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Multiplying (2.1) by ut and (2.2) by 9 in L2(G), integrating by parts, we obtain (dropping
t in most places)

jtFx{t) = —||V0||2. (2.9)

Analogously, after differentiating (2.1), (2.2) with respect to t:

jtF2{t) = -||V0t||2. (2.10)

Multiplying (2.1) by -Aut and (2.2) by —Ad in L2{G) respectively, integrating by parts
with respect to x, we get

^-F3(t) =-k\\A9\\2 + (3 [ divut, (2.11)
at JdG an

where n = (ni,... ,nn) denotes the outer normal on dG.

(3 r 90 ^ f , j* 12 c f/ div ut<£T | div ut | H 
JdG dn JdG £ JdC

de 2
dn

h(t)+I2(t), (2.12)
£ JdG

where 0 < £ < 1 will be chosen later.
In order to estimate the boundary terms I\ and I2, we shall use the following lemma.

Lemma 2.3. a) Let v = (^1,^2,^3) be a solution to the equations of elasticity:

vtt — — (fj, + A)V div v = h\ in G x [0,00),
w|aG = 0 in [0,00).

Then
2

M / -^=1 +(m + A) [ | div v\2 = 2^- [ vtokdkv
JdG dn JdG at Jg

+ I diva\vt\2 + 2fi f djVldj(Jkdkv'1 — /i l divCT|Vu|2Jg Jg Jg
+ 2(/U + A) / divvVakdkV - {/u, + A) / divcr| divu|2 - 2 / hicrkdkV,

Jg Jg Jg
(2.13)

where a € (C1 (G))3 such that at — nt on dG, i — 1,2,3, and the Einstein summation
convention is used.

b) Let 9 be a solution to the heat equation

c9t - kA0 = h2 in G x [0,00),

0\dG = 0 in [0,00).

Then

k f =2c [ 9tcrVd + 2K [ V9Vakdk9-K [ divcr|V6>|2 - [ h2aV9. (2.14)
JdG dn Jg Jg Jg Jg

Remark 2.4. The easy proof of Lemma 2.3 is presented for the sake of completeness
at the end of this section; cf. [14], [18].
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Now we are able to estimate /i(£),/2(£) from (2.12) as follows, using (2.1)—(2.2),
Cauchy-Schwarz's and Poincare's inequalities:

22 t d
h < e dut

dn
[ uttakdkUt + Cs(\\utt\\2 + \\Vutf + \\Vdt\\2)-^- [

J a n + a Jac
(2.15)

h < e|| div ut\\2 + ^{\\etf + ||V6>||2) < e|| divut||2 + §(||V0t||2 + ||V0||2). (2.16)

The relations (2.11), (2.12), (2.15), (2.16) imply
2

|f3(0 < -K\\Ae\\2 - ^ [ Uttakdkutat + A JqG Qn fj, + Xat JG

+ Ce(||utt||2 + ||Vut||2) + §(||V0t||2 + ||V6>||2).
(2.17)

Choosing rj > + 1 and using Poincare's inequality, we conclude from (2.9), (2.10),
(2.17) that

IfaF, + VFi + F3) < -Ci(||^||2 + ||V0||2 + ||0t||2 + ||V#t||2 + ||A0||2)

+

SflT

[i + A
2 T£ d

JJdG

dut
dn

2

[ uttakdkut + C£(||utt||2 + ||Vut||2).
JGH -f- A dt J q

From the differential equation (2.2) we know

II div ut\\2 < C(\\0t\\2 + ||A0||2);
hence, using Poincare's inequality and (2.8), we obtain

UvFi +VF2 + F3) < -Ci||(0, VMt,V0t,A0, ut, Vut)||2 - [at fi + a Jqq

+ -~rTT* f Utt<7kdkut + Ce\\{utt, Vut)||2.H + a at Jq

Using the differential equation (2.1) and integrating by parts we have

dut |2
dn (2.18)

JaUtU = t JgUV div ii - (3 J^uVd + ||ut||2 < -^||Vu||2 + C||(0, ut)||2, (2.19)

-j- [ divudivut = || divud|2 — [ Vdivuuttdt Jg Jg

| div lit ||2 — T||Vdivu||2 + (3 / VdivuV#
Jg

(2.20)

^ ^ IIV div u||2 + C||(Vut, V#)||2.

Since by (2.1) and (2.8), ||utt||2 < 2r2||Vdivu||2 + 2/32||V0||2, whence

-^||Vdivu||2 < — J||Vdivw||2 - ^:||titt||2 + ^||V0||2, (2.21)
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we conclude from (2.18)-(2.21), (2.8), and Poincare's inequality

d f ^ „ 2ET / utt<Jkdkut + Ve utu + sfe / div u div ut >
Jg Jg Jg J

=■■ H(t)
< -CiWie, w,et, vot,Ae,ut,Vut)\\2 - cxv/i||(«, v«, a«,utt)||2

EfXT L du,
H + A

Choosing e such that C\fi = C\/1 we get

dn

2

+ C(£\\uu\\2 + V~e\\{0, «t, V0, Vut)ll2)-

Vi>0: |^)+CM|V0i(i)||2 + ^G I2
dn

da: + F(f) < 0. (2.22)

Observing (choosing r) large enough)

3 k\,k2 > 0 Wt > 0 : k\F(t) < H(t) < k^Fit),

hence we conclude from (2.22) with 7 := C/fo

e^F(t)+ [ e7S|| V#t(s)||2 ds + [ e^s [
Jo JO JdG

dut 2
dn

dx ds < CF(0) < CE(0) Vt > 0.

(2.23)

If we apply the elliptic regularity property

\\h\\2m < f ||A/i||2, h e Hl0, Ah € L2, (2.24)

with r > 1 being a constant, and (2.2), we get ||0(f)||#2 < C||A0(i)||2 < C(||^t||2 +
||divut||2), which together with (2.23) yields the assertion (2.6). □

Remark 2.5. As the proof shows, a Lipschitz boundary dG (used for the //^-regular-
ity in (2.24)) would have been sufficient.

Proof of Lemma 2.3. a) Multiplying the differential equations for v by crkdkv and
integrating, we obtain

J vttcrkdkv - (j, J Avi(jkdkVi - (fi + A) J V div vakdkv = J hiakdkv, (2.25)
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where f := fCJ. By virtue of u|gn = 0, Vu|an = (Vv ■ n)n|an- So integrating by parts,
we get

J vttakdkv = J vtakdkv + ^ J divcr|^|2, (2.26)

-/z [ Aviakdkvi - ~ + /j, [ djVidj<TkdkVi
J 1 JdG dn J

-^Jdwa\Vv\2, (2.27)

+ j V div v akdkv = - — y ^ J | divu|2 + (/x + A) J divvVcrkdkv

J divu| divv|2. (2.28)/x + A
2

Prom (2.25)-(2.28) we conclude (2.13).
b) Multiplying the differential equation for 9 by akdk0 and integrating, we obtain

c jetakdk6-K J A6akdk6 - J h2crkdk8. (2.29)

Integrating by parts, similarly to (2.27) we obtain

k f aecjkdke = ~ [ ^ +n f vevakdke-^ [diva\ve\2. (2.30)
J L JdG dn J 27

From (2.29), (2.30) we conclude (2.14). □

3. Radial symmetry—the linear case. We consider the equations of linear ther-
moelasticity for a homogeneous and isotropic medium with unit reference density in a
smoothly bounded, radially symmetrical domain G in Rn, n — 2,3; i.e.,

i£G^V(l? 0(2)(if n = 2) resp. SO(3)(if n = 3) : Clx G G.

That is, G can be obtained by rotation of an (n — l)-dimensional domain around the nth
axis; typical examples are balls and annular domains, the latter having been considered
in [12].

We recall the definition of radially symmetrical vector fields and functions, respec-
tively:

Definition 3.1. A vector field u : G —* Rn [a function 8 : G —► R] is called radially
symmetrical, if

Vfi G 0(2)(if n = 2) or SO(3)(if n = 3)Vx G G : u(fia;) = Sht(x) [0(S2x) = 0(x)}.

Radially symmetrical functions are characterized by the following (folklore) lemma.

Lemma 3.2. i) 6 is a radially symmetrical function & there exists a function ip : Rj —> R
with 6(x) = ip(r), r — |x|, x G G.

ii) u is a radially symmetrical vector field O- there exists a function <p : Rq —► R with
u(x) = x(j){r).

iii) In ii) one has 0 G G =£■ ti(0) = 0.
iv) A radially symmetrical vector field has vanishing rotation.
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Proof, iii) and the if-part "<*=" in i) and ii) are obvious, also iv), if ii) is proved. The
only-if-part of i) is also clear choosing

ip{r) := 0(rei),

where e\ denotes the first unit vector in M™.
Finally, let u be a radially symmetrical vector field.
Case I. n = 2. Let x = (®i, x^)1- £ G, x ^ 0, be arbitrary but fixed and let

0 := ( Xl/r. X^)eO( 2).
\-x2/r xi/rj

From the assumption it follows that

CXzt) ■ ™
Taking fl := (~0X °) £ 0(2), we obtain that U2(re\,t) = 0, which together with (3.1)
gives u(x,t) = a:<f>(r,t) with <f>(r,t) := u\(re\,t)/r.

Case II. n = 3. For x £ G, let SOx(n) := {fl E SO(n) \ 0.x = x) denote the set of all
rotations about the x-direction. From the assumption we have

u(x,t) = u(flx,t) = Qu(x,t) for any tt £ SOx(3). (3.2)

By (3.2) we conclude that there is a ((x) £ R such that u(x,t) = £(x)x. Obviously,
C(x) = (u(x),x)k3/|x|2 for x ^ 0. It follows from the assumption that for any fl £ 50(3)

sir, \ _ (u(tlx),rix)R3 _ (Clu(x),flx)Rn _ {u(x),x)R3 __ ^
' |ftc|2 ~ |x|2 |x|2

which implies (cf. i)) ((x) = <j>(|x|) := £(|x|ei). Therefore, u(x,t) = xcf>(\x\,t) for x £ G,
x^0. □

Radially symmetrical data produce radially symmetrical solutions to the equations of
thermoelasticity, since we have

Lemma 3.3. If the data u°, u1,0° in (2.3) are radially symmetrical, then the solution u, 9
to (2.1)-(2.4) is radially symmetrical and the rotation of u vanishes for all times.

Proof. Let tt £ 0(2) for n = 2 resp. 6 50(3) for n = 3 be arbitrary but fixed, and
denote v(x,t) flTu(flx,t),Q(x,t) := 0(flx,t). After a straightforward calculation we
get

vtt(x, t) = f2Tutt(fix, t), Av(x, t) = (Au)(Qx, t),

di vvt(x,t) = (divuf)(nx,i), V divu = fiT(V divu)(f2x,t),

0t(x, t) = 6t(Qx, t), VQ(x,t) = (VQ)(flx,t), A0(x, t) = (Ad)(fix, t). (3.3)

Hence we see that v and 0 satisfy Eqs. (2.1)—(2.2). From the uniqueness of solutions to
(2.1)-(2.4) we get u = v,6 = 0, which proves the radial symmetry of v(-,t),Q(-,t), and
the vanishing of the rotation of u(-, t) by Lemma 3.2. □

As a consequence, we can apply Theorem 2.1, and we obtain the exponential decay
for radially symmetrical situations:
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Theorem 3.4. Assume that the domain G, having a smooth boundary, is radially sym-
metrical, and that the initial data ti°, u1,9° are radially symmetrical. Let (u, 9) be the
solution to (2.1)-(2.4). Then there are constants F > 1 and 7 > 0 independent of the
initial data and of t such that

E{t)+ [' ey3\\V6t(s)\\2 ds < I\E(0), (3.4)
Jo

where

E(t) = e* + ||^t(0ll2 + ll«M • (3.5)
U=o J

Remark 3.5. As mentioned before, a Lipschitz boundary dG is sufficiently smooth.
As the end of this section, we consider the system (2.1)-(2.2) in a cylinder G {x —

(x',X3)t G R3 I \x'\ < \,x' = (xi,X2)t\ 0 < X3 < 1} for some I > 0 with the initial
conditions (2.3) and the following boundary conditions: Dirichlet on the lateral surface
of the cylinder and periodicity on the top and on the bottom,

u(:r',£3) = 0, 9(x',x3) = 0, if |x'| = 1,

u(x', X3 + l,t) = u(x', X3,t), 9(x', X3 + l,t) = 9(x', x3, t)

for all x = (x',X3)T g G, t> 0.
(3.6)

Assume that u°, w1,0" satisfy

u°(x) = (w°(x'), 0)T, ul{x) = (w1^'), 0)T, 9°(x)=£°(x')

for any x = (X',X3)T £ G, for some tt;0,^1,^0, and that

w ,1V1, are radially symmetrical in {x' G R2 | \x'\ < 1}.

Following the same arguments as used in the proof of Theorem 3.4 and Theorem 2.1,
respectively, we can also obtain the exponential decay of the solution to the problem
(2.1)-(2.3), (3.6). Here we do not want to go into the details.

4. A global existence theorem for nonlinear thermoelasticity. Without loss
of generality, we restrict ourselves to three space dimensions. Then the equations of
nonlinear thermoelasticity for a homogeneous medium with unit reference density in
G C R3 read (for a derivation see [3, 21, 25])

Pp'ii- d^u ■   f)()
~W = Ciai0(^U,6) dxjxp + CiQ(VMfe' i = 1'2'3' (41)

1 o2

a(Vu,9)0t = — dWq(Vu,9,V9) + Cia(Vu,9)-^-t. (4.2)

Here (and throughout this section) the Einstein summation convention is used; u =
(ui,U2,"3)T, 9 = (9i,92,93)T, a > a0 > 0, b is a C°°-function such that b{9) = 9 + Tq
for \9\ < To/2 and 0 < £>1 < b(9) < b2 < 00, 61,62 constants, -00 < 9 < 00, To > 0 the
reference temperature. (4.1)-(4.2) are derived for small values of \9\, i.e., for \9\ < To/2,
which is a posteriori justified by the smallness of the solutions obtained later.
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We consider (2.3)-(2.4) as the initial and boundary conditions for (4.1)-(4.2).
We assume that the medium is initially isotropic

^iaj/3 (0, 0) — ̂ ^ia^j/3 Cia(0,0) —

<9% (0,0,0) _ , f ,n n\ - (4'3)
d(d0/dxj) ~ ij) aM-c,

and that

r tvv ft\-r (Vv f» dgi{Vu,0,V0) _ a%(vu,g,vfl)
ciaj0(Vu,9)-cjPia(Vu,e), d(QQjdXj) - d{de/dXi) '

a9i(0,0,0)=0i 88(0 0 0) =0j 1 < i,j,a,0 < 3.
(4.4)

86 ' d(dua/dxp)

Using (4.3), we can write (4.1)-(4.2) in the form:

utt — /zAtt — (fi + A)Vdivu + /3V0 = /(Vu, 9, V2w, V0), (4.5)
c0t - kA0 + p div ut = g(Vu, 6, V$, V2u, V2#, Vut), (4.6)

where k := k/T0 > 0, / = /3)T, and

d2Uj ~ .
fi ~ (Ciajp(Vu,6)-Ciaj0(0,0))-^-^-. + (Cia(Vu,9)-Cia(0,0))^, » = 1,2,3,

(4.7)

9

^P^""dxadx(j '

dqi{Vu,e,V6) 1 %(0,0,0)\ d2 6
a(Vu,6)b(0) d(d6/dxj) a(0,0)6(0) d(dQ/dxj)J dxidxj

fcia(Vu.fl) Cia(0,0)\ d2^ c 0gi(Vit,fl,Ve) dfl
Cl a(V«,^) a(0,0) y dxadt a(Vu,6)b(6) dO dxi

c dqi(X7u,6,V8) d2ua
+ a(V«, 9)b(9) d(dua/dxp) dxidxp

(4.8)

Concerning the global existence for (4.5)-(4.6), only the Cauchy problem has been
investigated. Racke [21], Ponce and Racke [19] essentially proved that small smooth so-
lutions exist globally in time if one excludes quadratic nonlinearities in the displacement.
On the other hand, one has to expect a blow-up in the general "genuinely nonlinear"
case (cf. [22]).

In this section, by combining Theorem 2.1, the local existence and uniform a priori
estimates, we establish the global existence of smooth small solutions to the system
(4.5), (4.6), (2.3), (2.4) in the case of rotu = 0. As an application, the global existence
of radially symmetrical solutions is shown at the end of the section.

Let v? (j = 2,3,4), 9'J (j = 1,2,3) be defined through (4.5)-(4.6) by

v? := d{u\t=o, j = 2,3,4; 0> := d}0\t=(h j = 1,2,3. (4.9)

In fact, , 93 are obtained successively from n°, u1, and 9° by differentiating (4.5)-(4.6)
with respect to t at t = 0.
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Assuming dG to be smooth (cf. Sees. 2 and 3), we now state a local existence theorem,
which can be established by a standard contraction mapping argument; we omit the
details of the proof here (see [6, 23] and the references therein).

Lemma 4.1. Assume that uJ € if4--7 (j = 0,..., 4), Qi e H4~:> (j — 0,1,2), 93 £ L2,
and the initial data are compatible with the boundary conditions (2.4). Then there is a
positive constant Kq < min{l,To/2} such that if

|V«°(ar)|, |0°(a:)|, |V0°(as)| < K0 for all x € G, (4.10)

then there exists a unique solution (u, 9) of (4.5), (4.6), (2.3), (2.4) defined on a maximal
interval of existence [0,T),T < oo such that for any t £ [0, T)

4 2

u € p) Cj([0,i\,H4-i), 9 e Pi C*([0,i\,H*-i),
j=o j=0

ettteC°([0,i\,L2)nL2{[0,i\,H1),

(4.11)

V(x, t) € G x [0,T) : |Vu(x,<)|, \9(x,t)\, |V0(x,t)| < Kq. (4.12)

Furthermore, if

4 2

SUP ( 2 +^2,^^-0+ ll^tll2 J (t)+ [ \\Vdttt{s)\\2ds
te[o,T) \j=0 j=0 J Jo

< 00

(4.13)

and

_sup {\Vu(x,t)\,\9(x,t)\,\V9(x,t)\} < K0, (4.14)
xeG,te[o,T)

then T = oo.

To get the global existence we require in addition that for (u, 6) with rot u — 0

~ d2u' ~
CiajP(Vu,e)dx d3 = A1J(Vu,9)Auj, i = 1,2,3. (4.15)

Then the main result in this section reads

Theorem 4.2. Let (u, 9) be the solution of (4.5), (4.6), (2.3), (2.4) established in Lemma
4.1. Assume that rotw = 0 for (x,t) e G x (0,T). Then there is a constant e > 0 such
that if

£ iHi"*-+£ r'n + ii03n2 ^e2> (4-16)
j=0 j—0

then T = oo. Moreover, ||0(i)||//4 decay to zero exponentially as t —> oo.
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Proof. By virtue of (4.16) and continuity, there is a to G (0,T] such that

M(t) ■.= e7t | J2 +E + ii<mi2 | (0
[j=o 0=0 J (4.1.7)

+ [ e7S||V^tit(s)||2 ds < As2 for all t E [0,f0),
Jo

where the constant A is defined by
2

A := 258[(/?2 + c2 + l)f]3r(l + n~2) J2 T~2j > L (4-18)
3=0

Here T is defined through the elliptic regularity property (cf. (2.24))

\\h\\2H1+2<f\\Ah\\2HJ, he Hi AheL2, j = 0,1,2. (4.19)

Denote

0 < T* := sup{^i > 0 I M{t) < As2 in [0, ix)} < T. (4.20)

Then we have either T* = T or T* < T. The former case implies that the solution is
bounded and small for all t 6 [0, T) by Sobolev's imbedding theorem provided e is small
enough; therefore (by virtue of Lemma 4.1) T — oo. It remains only to consider the
latter case. We will show by contradiction that the latter case does not happen if e is
sufficiently small.

From (4.20) and Sobolev's imbedding theorem (H2(G) *-> L°°(G)) we have

\\(u,e)(t)\\W2^,\\{uuet)(t)\\w^A\^tt,du)\\L^<C£e-^2 Mt e [0,T*). (4.21)

Denote

Ar{f,u,0):=e^ + + (t) + j\->s\\V0t(s)W2ds. (4.22)

Recall that rot u = 0 in G x (0, T). Repeating the same procedure as in the derivation of
(2.23) and (2.6) in Sec. 2, we obtain for Eqs. (4.5)-(4.6) (and also apply Cauchy-Schwarz's
inequality) that

2
dxdsAf(t-,u,0) + f e7S [

Jo JdG
dut
dn

< TAf(O\u,0) + Ce^\\g(t)\\2 + C f em|/||(|M| + |K|| + ||A«|| + ||/||)
Jo

+ NI(||0|| + ||V0|| + ||A0|| + ||5||)}dS + C.
4 (4.23)

eys{ft,utt)ds
o

+ [ e7S(/, Aut) ds + [ eys(gt,0t)ds + f els(ft,akdkUt) ds \
Jo Jo Jo )

= IW(0; u, 6) + V{t- u, 9, /, g), t € [0, T*).
Here T is the same as in Theorem 2.1.
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If we take d[ (I = 1,2) on both sides of (4.5)-(4.6), we see that d\u and d[6 (I = 1,2)
solve (4.5), (4.6), (2.3), (2.4) with the right-hand sides / and g replaced by d\f and d[g
respectively. Thus by (4.23) we have for t € [0, T*), I = 1,2,

N{t]dltu,d[6) + [ els f
J0 JdG

< iW(o; dltu, d\0) + V{t- d\u, die, dlj, dlt9).

d\+l
dn

dxds
(4.24)

In the sequel we estimate V(t;d\u, dlt0, d[f. d\g) for I = 0,1,2. It follows from Leibniz's
formula, (4.20)-(4.21), (4.4), and the mean value theorem that

e7t||^WH2 + f e^{\\dltf\\(\\dltu\\ + ||d'+1U|| + 0Au\\ + \\difW)
Jo (4.25)

+ II^IKII^II + ||^W|| + ||5<A0|| + |$s|l)}(«) ds < Ce3

for t € [0,r*), l = 0,1,2. Since u = 0 on dG, |Vd2 = |(Vu, n)n\2 = l-prl2 on dG. So
o n

if we apply Leibniz's formula, use (4.20)-(4.21), (4.4), the mean value theorem, (4.15),
and integrate by parts, we obtain that for I = 0,1,2

f e^(dltf,dlt+1Au)ds
Jo

<Ce3 + | f eis(ftuAuttt)ds
\Jo

< Ce3 + I f els {fttti Autt) ds
\Jo

<Ce3 + \f e7S([i4y (Vu, 0) - Ai5{0,0)]d?AUj, 8$Am) ds
\J o

<°£3+\ \J* ^'^([^(Vu,*) - ^(0,0)]at2AUi,a2AWi)rfs

< Ce3 + \e*\([^■(Vu.fl) - Aij(0,0)]^Au>,a?Aui)|(t)

[ els{[Aij(^u, 0) - Aij(0,0)}dt Aiij, d?Aui) ds
Jo

(4.26)

+ 1
.3< Ce , t € [0, T*),
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and
rt

[ eys{dlt+1f,akdkdlt+1u)ds
J 0

< Ce3 + [ e'ys([Ciajp(yu, 6) - Ciajp(0,0))d3dadpUj,crkdkd3Ui) ds
Jo

<Ce3+Ce[ e7S f \d3\7u\dxds (4.27)
Jo JdG

f e18 f [Ctajl3(Vu,e) - Claj0(O,O)}akdk[dpd^u:ldo,d^Ui\ dxds
Jo JG

1
+ 2

< Ce6 + Ce /WJo JdC
-^dfu
On

dx ds, t £ [0, T*).

I ds = 0,1,2

/ dG

In the same manner, we can show that the terms

f eT(8t+1f,dl+2u)ds , fe^g^O)
Jo Jo

are bounded from above by Ce3 for t £ [0,T*). Hence, recalling the definition of
V(t;df.u,dl.0,d^f,^.g)i and making use of (4.25)-(4.27), we find that

2

V(t; d\u, d[e, dlJ, d[g) < Ce3 + Ce [ e^s [
Jo JdG dn

dxds, t G [0,T*), I = 0,1,2.

(4.28)

Combining (4.23), (4.24), and (4.28), utilizing (4.16), and letting 0 < e < min{l,C-1},
we arrive at

2

d[u, d\0) < 3Ie2 + Ce3 Vi G [0, T*). (4.29)
1=0

Recalling (2.8), the proof of (4.25) and the definition of A, we apply (4.19), (4.5), and
(4.29) to deduce

\\ut(t)fH3 <f\\Aut(t)fH1

< — t2—~ + ll/tlltfOW (4.30)

< 2 + Ce3 < 3 Ae2 + Ce3 vt e ^ T*yrz 86

Similarly, using Eq. (4.6) and (4.30) one gets

ll^)ll2H4 + ||0tWII2K3 < f (||A0||^2 + IIAfftll^,)

< 3r(c2+f2 + 1)(||1it||^3 + 3re2 + Ce3)

27[(/32 + c2 + i)r]2r/

9

(4.31)
< LV^ ? y J (1 + r" V + Ce

< ^Ae2 4- Ce3- 86
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for t E [0,T*), whence (also by (2.4))

||«(t)||^ < r||Au(t)||^2 < 3(/32rt1)r(ll^)ll2H3 + 3re2 + Ce3) < ^Ae2 + Ce3 (4.32)

for t € [0, X1*). Adding (4.30)-(4.32) to (4.29), recalling the definition of M(t), we
conclude

M(t) < Ae2/2 + Ce3 Vi e [0,T*). (4.33)

Now choosing e in (4.33) so small that Ce < A/3, one obtains M(t) < 5Ae2/6 for any
t 6 [0,T*). Letting t f T*, we get M(T*) < 5Ae2/6 < Ae2. This is a contradiction to
the maximality of T* (cf. (4.20)). So the solution is globally defined and (4.17) holds for
all t > 0. From (4.17) the exponential decay of the solution follows. This completes the
proof. □

Next we present an application of Theorem 4.2. We consider G C R3 to be radially
symmetrical. We assume furthermore that the nonlinearities / and g (defined by (4.7)-
(4.8)) satisfy

/(Vi7, ©, V2v, vex®, t) = 0T/(Vw, 0, V2u, V9)(Slx, t), (4.34)

g{\7v, e, ve, V2v, V2©, Vvt)(x, t) = 5(Vu, 0, V0,V2u, V26>, Vut)(Qj, t)
_ (4.35)

for x e G, t > 0, f2 € 50(3),

where {u, 9} is a solution of (4.5), (4.6), (2.3), (2.4), and v(x,t) := flru(flx, t),Q(x,t) :=
0(£lx, t).

Remark 4.3. We give an example satisfying our assumptions. Let

Ciaj(3 (VW, 0)

Cia(Vu,0)
q(Vu,0,V0)

A(div U, ~f~ (fiij^a/3 ~t~ ̂otj ) A,

= -j3(divu,0)6ia, (4.36)
= k(6)V0, a(Vu, 0) := a(divu, 0),

where A,/3, k, and a are smooth functions of divu and 9,fi is a positive constant. Let
A, fi, p, k, a satisfy

3A(0,0) + 2/i > 0, /3(0,0)^0, k(0) > 0, 5(0,0) >0,
-0w(w,0) = \e(w,0), -0e{w,0) = aw{w,0), w,0 el.

Then it is easy to see that the nonlinearities defined by (4.36) satisfy (4.3)-(4.4), (4.15),
(4.34)-(4.35).

These conditions also guarantee the existence of a Helmholtz potential "J = ^(Vu, 8)
(cf. [23]) satisfying

    ~ _ 82^ _ _ d2V
tajp d(dui/dxa)d(duj/dxp)' ia 3(8111/0X0)00' a O02 '

For the problem (4.5), (4.6), (2.3), (2.4) in the radially symmetrical domain G we have

Theorem 4.4. Assume that uj e H4~j (j - 0,..., 4), 0j e H4~j (j — 0,1,2), 03 e L2,
and u°, u1,6° are radially symmetrical. Also, assume that the initial data are compatible
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with the boundary conditions. Then there is a constant e > 0 such that if (4.16) holds,
then there exists a unique solution {u,0} of (4.5), (4.6), (2.3), (2.4) on [0, oo) such that

4 2

u e p| Cj([0, oo), H4--*), e e p| Cj([0,oo),H4-i),
j—o j=o

Out e C°([0, oo), L2) n i2([0, oo), H1).

Moreover, ||tt(i) ||jy-4, ||0(i)||//4 decay to zero exponentially as t —> oo.

Proof. By virtue of Lemma 4.1 and Theorem 4.2, it suffices to show that u satisfies
rotu = 0 in G x (0,T). Let v(x,t) := Q,Tu(Q.x,t),Q(x,t) := 0(flx,t). Then using (3.3)
and the conditions (4.34)-(4.35), following the same procedure as used in the proof of
Lemma 3.3, we see that v = u and 0 = 6, in particular, that u is radially symmetrical
and hence rot u = 0 holds. The proof is complete. □
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