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Abstract. An analysis of the mean velocity profile in the intermediate region of
wall-bounded turbulence shows that the well-known von Karman-Prandtl logarithmic
law of the wall must be jettisoned in favor of a power law. An analogous analysis of
the local structure of turbulence shows that the Kolmogorov-Obukhov scaling of the
second and third structure functions is exact in the limit of vanishing viscosity while,
in the same limit, higher-order moments fail to exist. These results rely on advanced
similarity methods and on vanishing-viscosity asymptotics, and are consistent with a
near-equilibrium theory of turbulence of which a new version is presented.

1. Introduction. In February 1996 I had the privilege of meeting Prof. G. I. Baren-
blatt, who had just arrived in Berkeley. In our first extended conversation we discovered
that we had been working on similar problems with different but complementary tools,
which, when wielded in unison, let to unexpected results. We have been working together
ever since, and it is a pleasure to be able to present some of the results of our joint work
at this distinguished occasion.

The present talk will consist of three parts: (i) an application of advanced similarity
methods and vanishing-viscosity asymptotics to the analysis of wall-bounded turbulence,
(ii) a discussion of the local structure of turbulence with particular attention to the
higher-order structure functions, and (iii) a discussion of a near-equilibrium statistical
theory of turbulence, which motivates and complements our reading of the numerical
and experimental data. The basic premise is that, as the viscosity tends to zero and the
solutions of the Navier-Stokes equations acquire poorly understood temporal and spatial
fluctuations, certain mean properties of the flow can be seen to take on well-defined
limits, which can be found by expansion in a small parameter that tends to zero, albeit
slowly, as the viscosity tends to zero.

In the case of wall-bounded turbulence, our argument and the data show that the
classical von Karman-Prandtl law should be replaced, when the viscosity is small but
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finite, by a Reynolds-number-dependent power law. In the case of local structure, an
analogous argument shows that the Kolmogorov scaling of the second and third-order
structure functions is exact in the limit of vanishing viscosity, when the turbulence is most
intermittent and least organized. When the viscosity is nonzero (Reynolds number large
but finite), Reynolds-number-dependent corrections to the Kolmogorov-Obukhov scaling
of the structure functions appear, due to a viscosity-induced reduction in intermittency.
For higher-order structure functions the vanishing viscosity limit ceases to exist because
of intermittency, and the Kolmogorov-Obukhov scaling fails.

The near-equilibrium statistical theory we shall present is the basis of vanishing-
viscosity asymptotics and relates the behavior of the higher-order structure functions
to the presence of intermittency. All parts of our analysis are heterodox in the context of
the current state of turbulence research, but not in the broader context of the statistical
mechanics of irreversible phenomena.

2. The intermediate region in wall-bounded turbulence. Consider wall-
bounded turbulence, in particular, fully-developed turbulence in the working section,
i.e., far from the inlet and outlet, of a long cylindrical pipe with circular cross section. It
is customary to represent u, the time-averaged or ensemble-averaged longitudinal velocity
in a pipe in the dimensionless form

<t> = u/u* (2.1)

where u* is the "friction" velocity that defines the velocity scale:

u* = y/rfp, (2.2)
where p is the density of the fluid and r is the shear stress at the pipe's wall,

<2'3>
Here Ap is the pressure drop over the working section of the pipe, L is the length of the
working section, and d is the pipe's diameter. The dimensionless distance from the pipe
wall is

V = ~ (2.4)
where y is the actual distance from the wall and v is the fluid's kinematic viscosity. The
length scale v/u* in (2.4) is typically very small—less than tens of microns in some of the
data discussed below. The key dimensionless parameter in the problem is the Reynolds
number

^ ud ,Re = — (2.5)
v

where u is the velocity averaged over the cross section. When the Reynolds number Re
is large, one observes that the cross section is divided into three parts (Fig. 1): (1) the
viscous sublayer near the wall, where the velocity gradient is so large that the shear
stress due to molecular viscosity is comparable to the turbulent shear stress, a cylinder
(2) surrounding the pipe's axis where the velocity gradient is small and the average
velocity is close to its maximum, and the intermediate region (3) which occupies most of
the cross section and on which we shall focus.
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Fig. 1. Schematic view of the flow in a pipe: 1. Viscous sublayer;
2. Near-axis region; 3. Intermediate region.

The velocity gradient dyu (dy = in the intermediate region (3) of Fig. 1 depends
on the following variables: the coordinate y, the shear stress r at the wall, the pipe
diameter d, the fluid's kinematic viscosity u, and its density p. We consider the velocity
gradient dyu rather than u itself because the values of u depend on the flow in the viscous
sublayer where the assumptions we shall make are not valid. Thus,

dyu = f(y,T,d,v,p). (2.6)

Dimensional analysis gives

dyu = ^$(77, Re), Re = ^> V=(2.7)

where $ is a dimensionless function, or, equivalently,

=-$(»7 ,Re), <!>=—■ (2.8)rj u*

Outside the viscous sublayer, r? is large, of the order of several tens and more; in the kind
of turbulent flow that we consider, the Reynolds number Re is also large, at least 104.
If one assumes that for such large values of 77 and Re the function $ no longer varies
with its arguments and can be replaced by its limiting value $(00,00) = n"1 (this is an
assumption of "complete similarity" in both arguments, see [1]), then Eq. (2.8) yields

dr,<t> = —, (2.9)
KT]

and then an integration yields the von Karman-Prandtl "universal" logarithmic law [20,
23, 28, 30]

(j}=-\nr) + B (2.10)
K
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where k ("von Karman's constant") and B are assumed to be "universal", i.e., Re in-
dependent constants. The assumption that B is Reynolds-number-independent is an
additional assumption. The resulting law is widely used to describe the mean velocity in
the intermediate region; the values of a in the literature range between .36 and .44 and
the values of B between 5 and 6.3—an uncomfortably wide spread if one believes in the
"universality" of (2.10).

However, there is no overwhelming reason to assume that the function $ has a constant
nonzero limit as its arguments tend to infinity, nor that the integration constant remains
bounded as Re tends to infinity. When either assumption fails, other conclusions must
be reached. Rather than list alternative assumptions we present a model problem that
exhibits in a simple manner what goes wrong as well as the cure.

Consider the equation

du 1 u
Ty = hp)y (2'n)

for y positive, where u is subject to the boundary condition u(6) = 1, and 6 is a small
positive parameter. One can view 6 as a dimensionless viscosity, and thus <5_1 is analogous
to a Reynolds number.

One could reason as follows: For 6 small, ^ is approximately zero, and thus u is a
constant, which can only be the constant 1. We can derive the same result for small y
and 6 by an assumption of complete similarity: Equation (2.11) is homogeneous in the
dimensions of u and y, and thus one can view both of these variables as dimensionless.
By construction, 6 must be dimensionless. The dimensionless relation between these
variables takes the form

u = $(8,y) (2.12)

and if one makes an assumption of complete similarity, i.e., assumes that for 6, y small,
$ is constant, one finds again that u is the constant 1.

This conclusion is false. Equation (2.11) has the following solution that satisfies the
boundary condition u(6) = 1:

«(»)=(!) ^ (2-13)
Note that for any positive value of 6 this solution is a power law and not a constant.
We can obtain this solution for small y and 6 by assuming that the solution is a power
of the variable y while the form of its dependence on 6 is unknown; this leads to u =
A(6)ya(6\ (This is an assumption of "incomplete similarity" in y and no similarity in
5.) A substitution into Eq. (2.11) yields A{6), a(S).

Further, consider the solution (2.13) and, for any nonzero value of y, its limit as <5 —» 0.
Clearly,

(I (2I4)
and thus, as 8 —> 0, u —> e, i.e., the limit of (2.13) for y > 0 is the constant e. As
deduced from the false assumption of complete similarity, the limit of u is a constant,
but it is not the obvious constant 1. Furthermore, for a finite value of 8, however small,
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u is not uniformly constant; it is not equal to e either for y < 6 or for y large enough.
The approximate equality u ~ e holds, when S is small but finite, only in an intermediate
range where y = O(l), and constitutes an example of "intermediate asymptotics" [1].

Now consider subjecting $ in (2.8) to an analogous assumption, of incomplete simi-
larity in r) and no similarity in Re when both arguments are large [2]:

$(?7, Re) = A(Re)r)a{Re). (2.15)

Note a clear difference between complete and incomplete similarity. In the first case
the experimental data should cluster in the (In77, (/>)-plane (<p = u/ut,rj = u,y/v) on the
single straight line of the logarithmic law; in the second case the experimental points
would occupy an area in this plane. Both similarity assumptions are very specific. The
possibility that $ has no nonzero limit yet cannot be represented asymptotically since
a power of 77 has not been excluded. Both assumptions must be subjected to careful
scrutiny. In the absence of reliable, high-i?e numerical solutions of the Navier-Stokes
equation and of an appropriate rigorous theory, this scrutiny must be based on compar-
ison with experimental data.

We now specify the conditions under which (2.15) may hold and narrow down the
choices of A{Re) and a(Re) (see [4, 5, 6, 7, 9, 10]). Fully-developed turbulence is not
a single, well-defined state with properties independent of Re; there may be such a
single state in the limit of infinite Reynolds number, but experiment, even in the largest
facilities, shows that fully-developed turbulence still exhibits a perceptible dependence
on Re. Fully-developed turbulence has mean properties (for example, parameters such
as A and a in (2.15)) that vary with Reynolds numbers like K0 + K^e, where K0,Ki
are constants and e is a small parameter that tends to zero as Re tends to infinity,
small enough so that its higher powers are negligible, yet not so small that its effects
are imperceptible in situations of practical interest; the latter condition rules out choices
such as e = (.Re)-1. We expect A(Re) and a(Re) in (2.15) to have the form

A(Re) — Aq -j- A\E, OL^Re) — otQ ex.(2.16)

where Aq, A\, qq, ot \ are universal constants; we have implicitly used a principle derived
from the statistical theory of Sec. 4, according to which the average gradient of the
velocity profile has a well-defined limit as the viscosity v tends to zero [5, 6, 10]. This is
the vanishing-viscosity principle. We expand A(Re), a(Re) in powers of e and keep the
first two terms; the result is

$ = (A0 + A1e)r)ao+aie. (2.17)

Substitution of (2.17) into (2.15) yields

din n<t> = (A0 + Axe)if0+ai£ = (A0 + A1e)e^ao+a^lnr>. (2.18)

For this expression to have a finite limit as v tends to zero one needs Qo = 0, and
e must tend to zero as Re tends to infinity like (ln lRe) or faster. The assumption of
incomplete similarity, experiment, and the vanishing-viscosity principle show that the
threshold value e = is the proper choice. Use of this choice in Eq. (2.18) and an
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integration yield

<(>= — = (C0ln Re + C^v^ (2.19)
w*

where the additional condition <j)(0) = 0, motivated by the experimental data, has been
used.

According to this derivation, the coefficients Co, C\, c*i are universal constants, the
same in all experiments of sufficiently high quality performed in pipe flows at large
Reynolds numbers [2, 3]. In [12] the proposed law for smooth walls (2.19) was compared
with the data of Nikuradze [26] from Prandtl's institute in Gottingen. The comparison
yielded the coefficients c*o = 0, c*i = 3/2, Co = ;4g, C\ = 5/2, with an error of less than
1%. The result is

<t>=(^=hxRe+^r?>W»Re\ (2.20)

We now wish to use the law (2.20) to understand what happens at larger Reynolds
numbers and for a broader range of values of 77 than were present in the experiments re-
ported by Nikuradze. If this extrapolation agrees with experiment, we can conclude that
the law has predictive powers and provides a faithful representation of the intermediate
region. We have already stated that the limit that must exist for descriptions of the mean
gradient in turbulent flow is the vanishing-viscosity limit, and thus one should be able
to extrapolate the law (2.20) to ever smaller viscosities v. This is different from simply
increasing the Reynolds number, since v affects r? and u as well as Re. The decrease
in the viscosity corresponds also to what is done in the experiments: If one stands at a
fixed distance from the wall, in a specific pipe with a given pressure gradient, one is not
free to vary Re = ud/v and 77 = uty/v independently because the viscosity v appears
in both, and if v is decreased by the experimenter, the two quantities will increase in a
self-consistent way and u will vary as well. As one decreases the viscosity, one considers
flows at ever larger 77 at ever larger Re; the ratio 2\n Re tends to 3/2 because v appears
in the same way in both the numerator and the denominator. Consider the combination
3 In 77/(2 In .Re) in the form

1M _ (2,21)
21ni?e In — + In :

According to [3], at small v, i.e., large Re, u/u* ~ lni?e, so that the term \i\{u/u„) in
the denominator of the right-hand side of (2.21) is asymptotically small, of the order
of In In Re. and can be neglected at large Re: because the viscosity v is small, the first
term In(u*d/v) in both the numerator and denominator of (2.21) is dominant, as long
as the ratio y/d remains bounded from below, for example, by a predetermined fraction.
Thus, away from a neighborhood of the wall, the ratio 3 In 77/(2 In Re) is close to 3/2 (y
is obviously bounded by d/2). Therefore

1 — ln77/lni?e
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is a small parameter as long as y > A, where A is an appropriate fraction of d. The
quantity exp(3 In 77/(2 In Re)) is approximately equal to

exp
3 _ 3 / In 77 \
2 2 I In Re

e3/2

e3/2

2 V In Re J
3 In 77 1
2 In Re ~ 2

(2.22)

According to (2.20) we have also

Tia^ = a,„4>= + <2-23)

and the approximation (2.22) can also be used in (2.23). Thus in the range of y where
y > A, but y < d/2, we find, up to terms that vanish as the viscosity tends to zero,

e3/2 , „ 5
In 77 -=\nRe e3/2, (2.24)

2x73 4 ;

and

dm^=^e3/2. (2.25)

Equation (2.25) is the asymptotic slope condition: As v —> 0 the slope of the power law
tends to a finite limit, the limiting slope, which is the right-hand side of (2.25). The
von Karman-Prandtl law also subsumes an asymptotic slope condition, with a limiting
slope 1 /k- the limiting slope in Eq. (2.25), ^e3/2 = 1/.2776, is approximately ~ 1.65
larger than a generally accepted value for re-1. One can view Eq. (2.24) as an asymptotic
version of the classical logarithmic law, but with an additive term that diverges as the
Reynolds number tends to infinity, and of course a different slope.

The family of curves <f> = <p{'q) parametrized by Re has an envelope whose equation
tends to

(t>=-\nr]+^-e, (2.26)
K> Z

with k = 2e/\/3 = -425..., close to the values of k found in the literature. The corre-
sponding value of i is exactly yfe times smaller than the value on the right-hand side
of (2.25). It is clear that the logarithmic law usually found in the literature corresponds
to this envelope; indeed, if one plots points that correspond to many values of Re on a
single graph (as is natural if one happens to believe the von Karman-Prandtl law (2.10)),
then one becomes aware of the envelope. The visual impact of the envelope is magnified
by the fact that the small y part of the graph, where the envelope touches the individual
curves, is stretched out by the effect of v on the values of In rj. Also, measurements
at very small values of y where the difference between the power law and the envelope
could also be noticeable are missing because of experimental difficulties very near the
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Fig. 2. Schematic of the power law curves, their envelope, and their
asymptotic slope: 1. The individual curves of the power law; 2. The
envelope of the family of power law curves (often mistaken for a
logarithmic law of the wall); 3. The asymptotic slope of the power
law curves.

wall. Thus, if our proposed power law is valid, the conventional logarithmic law is an
illusion that substitutes the envelope of the family of curves for the curves themselves.
The discrepancy of \fe. between the slope of the curves and the slope of the envelope is
the signature of the power law, and helps to decide whether the power law is valid. The
situation is summarized in Fig. 2, which shows schematically the individual curves of the
power law, their envelope, and the asymptotic slope.

Historically, the understanding of the flow in the intermediate region of wall-bounded
turbulence has been influenced by the "overlap" argument of Izakson, Millikan, and von
Mises (IMM) (see, e.g., [25]). This argument in its original form contains an implicit
assumption of complete similarity, and once freed from it yields yet again the asymptotic
slope condition (2.25). For details, see [5, 7, 10].

Detailed comparisons of the power law and the von Karman-Prandtl laws with exper-
imental data are available in refs. [9, 10]. For completeness, we exhibit in Fig. 3 a set of
experimental curves from the Princeton superpipe experiment [34], Note its qualitative
similarity to Fig. 2. In particular, despite a flaw discussed in detail in [10], these experi-
ments do indeed exhibit a separate curve for each Reynolds number, and a well-defined
angle between the curves and their envelope.

The applicability of our analysis of the intermediate region of pipe flow to the velocity
profile in a zero-pressure-gradient boundary layer is discussed in [11].
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1000 104
y+

(our rj)

Fig. 3. The Princeton data [34] obtained in a high-pressure pipe
confirm the splitting of the experimental data according to their
Reynolds numbers and the rise of the curves above their envelope in
the (In 17, 0)-plane. The solid line is the envelope; the curves turn at
the center of the pipe. The splitting and form of the curves agree with
the power law, and are incompatible with the von Karman-Prandtl
universal logarithmic law. (Reproduced with permission from [34]).

3. Local structure in turbulence. The analogy between the inertial range in the
local structure of developed turbulence and the intermediate range in turbulent shear flow
near a wall has been noted long ago (see, e.g., [14, 32], and it motivates the extension of
the scaling analysis above to the case of local structure, where the experimental data are
much poorer. In the problem of local structure, the quantities of interest are the moments
of the relative velocity field, in particular, the second-order tensor with components

Dij = ((Ar)j(Ar)j), (3-1)

where Ar = u(x + r) — u(x) is a velocity difference between x and x + r. In locally
isotropic incompressible flow, all the components of this tensor are determined if one
knows Dll = ([«l(x + r) — «l(x)]2) where ul is the velocity component along the
vector r.

To derive an expression for Dll assume, following Kolmogorov, that for r = |r| small,
it depends on (e), the mean rate of energy dissipation per unit volume, r, the distance
between the points at which the velocity is measured, a length scale A, for example the
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Taylor macroscale At, and the kinematic viscosity v.

Dll{t) = /«£>, r,Ar, i/), (3.2)

where the function / should be the same for all developed turbulent flows. If r is large,
other variables may appear, as a consequence of external forces or of boundary conditions.
The most interesting and the most important argument in this list is the rate of energy
dissipation e.

Introduce the Kolmogorov scale Ax, which marks the lower bound of the "inertial"
range of scales in which energy dissipation is negligible:

3/2

AK = ^r, (3-3)
Clearly, the velocity scale appropriate to the inertial range is

u = {{e)AT)l'\ (3.4)

and this yields a Reynolds number

= ((g)Ar)V3Ar = (£)i/3AV3 = / Ar\4/3
Re = ^= I -r— I • (3.5)

v v \AK)
The inertial range of scales is intermediate between the scales on which the fluid is

stirred and the scales where viscosity dissipates energy, and is the analog of the inter-
mediate region in wall-bounded flow. In this range the scaling law that corresponds to
(2.15) is

DLL = {{e)r)U(K~,Rey (3.6)

where as before, the function $ is a dimensionless function of its arguments, which have
been chosen so that, under the circumstances of interest here, they are both large.

If one now subjects (3.6) to an assumption of complete similarity in both its arguments,
one obtains the classical Kolmogorov 2/3 law [21],

DLL = A0((e)r)i, (3.7)

from which the Kolmogorov-Obukhov "5/3" spectrum [27] can be obtained via Fourier
transform. If one makes the assumption of incomplete similarity in r/Ax and no simi-
larity in Re, as in the case of wall-bounded flow, the result is

D"U-CW(PT, (3.8)
((£)r)2/3 -v

where C, a are functions of Re only. As before, expand C and a in powers of and
keep the two leading terms; this yields

D_((£W,3(co+^)fe) —
(c*o has been set equal to zero so that Dll has a finite limit as v —> 0).

In real measurements for finite but accessibly large Re, (\\/ In Re is small in comparison
with 2/3, and the deviation in the power of r in (3.9) could be unnoticeable. On the
other hand, the variations in the "Kolmogorov constant" have been repeatedly noticed
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(see [25, 29, 31]). Complete similarity is possible only if Aq 7^ 0, when one has a well-
defined turbulent state with a 2/3 law in the limit of vanishing viscosity, and finite Re
effects can be obtained by expansion about that limiting state. In the limit of vanishing
viscosity there are no corrections to the "K41" scaling if Eq. (3.9) holds; this conclusion
was reached in [15] by the statistical mechanics argument summarized in Sec. 4 below.

Kolmogorov [21] proposed similarity relations also for the higher-order structure func-
tions:

Dll...l(t) = ([ul(x + r) - uL(x)]p),

where LL...L denotes L repeated p times; the scaling gives Dll...l = Cp((e)r) ■
Experiments in a small wind-tunnel, by Benzi et al. [13], show some self-similarity in
these higher-order functions, obviously incomplete, so that Dll...l is proportional to
r"»p, with exponents £p always smaller then p/3 for p > 3, so that ("4 = 1.28 instead of
1.33, £5 = 1.53 instead of 1.67, ̂ 6 = 1-77 instead of 2.00, £7 = 2.01 instead of 2.33, and
£g = 2.23 instead of 2.67. It is tempting to try for an explanation of the same kind as
for p = 2:

Dll...l = fcj + ^j ((er)p/s(r/AK)a»/lnRe), (3.10)

in other words, to assume that at Re = 00 the classic "K41" theory is valid, but the
experiments are performed at Reynolds numbers too small to reveal the approach to
complete similarity. If this explanation were correct, the coefficients ap would be negative
starting with p = 4, where there would be a reversal in the effect of the Kolmogorov scale
(or whatever scale is used to scale the first argument in $).

As is well known, for p = 3 the Kolmogorov scaling is valid with no corrections. For
p > 3 one must proceed with caution. We would like to present a simple argument that
casts doubt on the good behavior of the structure functions for p > 3 in the vanishing-
viscosity limit. As Re —> 00 the intense vorticity and the large velocities in the fluid
become concentrated in an ever-smaller volume [15]. This is what we call "intermittency".
If Vo is the fraction of the volume of a unit mass of fluid where the kinetic energy « u2
is large, then u « ; one can see that fourth moments such as (m4) diverge as Vq —> 0.
This casts a strong doubt on the good behavior of the fourth-order structure functions
as the viscosity tends to zero; in the absence of such good behavior our expansions in
powers of ,n l[le cannot be justified and the explanation of the experimental data must
proceed along different lines. Note that p = 3 is the power where the sign of the power
of in an expansion in powers of would change.

The analysis just given of the second-order structure function contradicts the con-
clusions of Benzi et al. [13], according to whom the asymptotic exponent in (3.9) is
independent of Re and different from 2/3. We wish to point out however that, as we
understand the discussion in [13], the exponent was found to be different from 2/3 only
once it was assumed that it was not dependent on Re- to the contrary, even a cursory
view of Fig. 3 in ref. [13] shows a marked dependence on Re. We are looking forward to
an opportunity to re-examine these data in the light of our hypotheses.
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There is a key difference between a derivation of the Kolmogorov-Obukhov exponent
from an assumption of complete similarity and its derivation as the vanishing-viscosity
limit of an expression derived from an assumption of incomplete similarity. Complete
similarity typically holds in statistical problems that are well-described by mean-field
theories, while incomplete similarity typically applies to problems where fluctuations are
significant. This remark is consistent with our conclusion, presented in [7, 10], that the
Kolmogorov scaling already allows for intermittency, and that its application to higher-
order structure functions is limited by this very intermittency.

4. A near-equilibrium theory of turbulence. At large Reynolds numbers Re the
solutions of the Navier-Stokes equations are chaotic, and the slightest perturbation alters
them greatly. The proper object of a theory of turbulence is the study of ensembles of
solutions, i.e., of collections of solutions with probability distributions that describe the
frequency of their occurrence. We now outline a near-equilibrium theory of ensembles
of flows on those small scales where the scaling theory of the previous section applies.
This theory justifies the use of vanishing-viscosity asymptotics for appropriate moments
of the velocity field and of its derivatives and supports the conclusions of the previous
section regarding the behavior of the higher-order moments and structure functions. It
is equivalent to earlier near-equilibrium theories [15], but the specific approach and the
presentation are new; fuller detail can be found in [8].

We describe turbulence in terms of a suitable statistical equilibrium. In statistical
mechanics, statistical equilibrium is what one finds in an isolated system if one waits
long enough. One way of characterizing this equilibrium is by assuming that all states of
the system compatible with the system's given energy can occur with equal probabilities;
this is the "microcanonical ensemble". In turbulence the appropriate energy is the kinetic
energy of the flow. An equivalent characterization is in terms of the "canonical ensemble",
in which the probability of a state is proportional to exp(—(3H), where H is the energy
of the state and /3 is a parameter. In the canonical ensemble the energy is not fixed, and
one can view the ensemble as describing a portion of an isolated system at equilibrium
as it interacts with the rest of the system. The two ensembles are equivalent in the sense
that, with a proper choice of the parameter (3 and in a system with enough degrees of
freedom, averages calculated in either ensemble are close to each other.

The parameter (3 is generally called the "inverse temperature" of the system. In many
physical systems T = 1/(3 is indeed proportional to what one intuitively perceives to be
the temperature, as it can be gauged by touching a system with one's finger. However,
the parameter (3 can be viewed more abstractly, as the parameter that makes the two
ensembles equivalent; in incompressible turbulence, in which there is no interaction be-
tween the macroscopic flow and the microscopic motion of the molecules of the fluid,
the (3 that one obtains cannot be gauged by the sense of touch. In a given system, (3 is
a function of the energy E and of whatever other variables are needed to describe the
system. Note that in other realms of physics, for example, in the kinetic theory of gases,
one is well used to relating temperature to a suitable kinetic energy.

Turbulence as a whole is generally not an equilibrium phenomenon: For example, if
one stirs a box full of fluid and then isolates the resulting flow, the outcome after a long
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time is not turbulence in a statistical equilibrium but a state of rest; an isolated turbulent
flow is one without outside forces or an imposed shear to keep it flowing. However, on the
small scales in which we are interested, the relevant question is whether the motion has
enough time to settle to an approximation of a statistical equilibrium in which one can
assume that all the states with a given kinetic energy are equally likely to appear. The
small scales have enough time when their characteristic time (length/velocity) is short
enough compared to the characteristic time of the large-scale motion. An inspection of
the Kolmogorov scaling given in the previous section shows that the characteristic time
of an eddy of size r is proportional to r2//3, and small enough eddies (i.e., vortices) do
have enough time to settle down to an equilibrium distribution. The task at hand is to
construct the statistical equilibrium appropriate for turbulence, in particular, specify its
states. The question of how then to perturb it so as to take into account the irreversible
aspects of turbulence has been treated elsewhere [16, 17] and will not concern us here.
Note that in most of the turbulence literature one speaks of the small scales reaching
"equilibrium" when the energy distribution among them approximates the Kolmogorov-
Obukhov form; here, for the moment, we mean by "equilibrium" a statistical equilibrium,
in which all states have equal probability; we shall shortly claim that these two meanings
are in fact identical. This is of course possible only if at the statistical equilibrium there
are more states with much of the energy in the larger scales than states with much of
the energy in the smaller scales.

To agree with observation, a hydrodynamical statistical equilibrium must have a finite
energy density in physical space. To construct an equilibrium with this property, we start
as in the construction employed in ref. [24] for vorticity fields; for simplicity we describe
it in two space dimensions. Consider a unit box 0<x<1,0<j/<1, with periodic
boundary conditions. Let u = (u, v) be the velocity field and ip a stream function; divide
the box into TV2 squares of side h, Nh = 1; in each square define a value of a discrete
stream function ipij, where i,j describe the location of the square; then define a discrete
velocity field by one-sided difference quotients of ip, so that the velocity is divergence-
free. (In three dimensions there is one more index and the stream function is replaced
by a vector potential.) The parameter h is an artificial cut-off, and we now present a
procedure for letting this cut-off tend to zero while producing sensible fluid mechanics in
the limit.

Replace the energy E = /square |u|2 dxdy by its discrete counterpart Eh = lu?j \h2-
For a fixed value of h, pick a value of Eh, and, as a first step, assume that the values
of u are equidistributed among all states with Eh = constant, i.e., use a microcanonical
ensemble. One can check that on the average, each one of the boxes has the same energy
|Ujj|2/l2.

One may think that if one lets h —> 0 while keeping Eh constant, the limit is an ensem-
ble with a finite energy per unit volume; this is not so. The sequence of ensembles one
obtains as h —► 0 has no reasonable limit: As h —+ 0 the number of degrees of freedom
tends to infinity, and there is no sensible way to divide a finite energy equally among
an infinite number of degrees of freedom; indeed, if the energy per degree of freedom is
zero the limiting ensemble has zero energy and no motion, and if the energy per degree
of freedom is positive the limiting ensemble has an infinite energy (for a more thorough
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mathematical discussion, see [6, 8]). One can also see that the limit of these microcanon-
ical ensembles is meaningless by considering the corresponding canonical ensembles: One
can check that as h —> 0 the parameter (3 in the sequence of canonical ensembles tends
to infinity; one can show that the only ensembles with infinite (3 have either no energy or
an infinite energy. To find a way out of this dilemma one must modify these ensembles
as h —> 0 so as to ensure that the limit exists. We do so by looking at what happens to
the parameter /? and keeping it bounded; furthermore, we do so on the computer. This
is the key point: To obtain a sensible continuum limit, we keep /? bounded by keeping
the energy from becoming equally distributed among the degrees of freedom, and this
produces an average energy distribution among scales that agrees with the Kolmogorov-
Obukhov law and produces the Kolmogorov scaling of the low-order structure functions.
One can also show (see [8]) that this very same procedure is needed to produce ensembles
whose members, the individual velocity fields, do not violate what is known about the
solutions of the Navier-Stokes or Euler equations.

To proceed, we have to be able to calculate f3 given h and Eh- Averages with respect
to microcanonical ensembles can be calculated numerically by an algorithm known as
"microcanonical sampling" [18]: Introduce an additional variable, a "demon", which
interacts with all the degrees of freedom in some random order. In each interaction, the
demon either absorbs an energy packet of some predetermined magnitude s, s <C Eh,
or gives away an energy packet of the same size. If the demon takes in an energy s, it
reduces the energy in the velocity field by modifying ipij so that the integral / |u|2 dxdy
over the unit square is reduced by s; the effect of this reduction modifies the values of
u in the neighborhood of the point (i, j). If the demon gives out energy, it modifies ip
so as to increase the energy integral. The demon is constrained so that it cannot give
out energy unless it had acquired energy in its previous history; no "loans" are allowed.
The sequence of states wrought by the demon's actions ranges over even-handedly the
configurations of the system. If one wishes to conserve an additional quantity, as we shall
below, one can do so by allowing the demon to exchange doses of the conserved quantity
as it wanders along, subject to the condition that it never give out what it does not have.

The parameter (3 in the equivalent canonical ensemble can be determined in the course
of calculating averages: As the demon interacts with the ensemble it typically has some
energy stored away; the system consisting of the physical system plus the demon is
isolated, and by the equivalence of the canonical and microcanonical ensembles, the
probability of an energy Ed being stored by the demon is canonical, i.e., proportional
to exp(—/3Ed); this observation allows one to estimate (3 after the demon has had a
sufficient number of interactions. In addition to its dynamical role in moving the system
from state to state for the purpose of calculating averages, the demon reveals the value
of (3; if h and Eh are given, there is a well-defined numerical procedure for finding the
corresponding f3.

Rather than keep (3 merely bounded, we keep it constant. To do this, one needs a
variable that can be altered and whose variation controls (3. Experience and mathematics
show that one can use as control variable the integral I — J |£| dx dy, where £ is the vor-
ticity calculated by finite differences and the integral is approximated by the appropriate
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sum. Thus the plan is to determine an I for each h so as to keep 0 at a fixed value /3goa 1
common to all the h. For simplicity and without loss of generality we set Eh = 1.

For a given h, pick a starting guess for I, say Io, and then produce a sequence of
better values In, n = 1,2,... by the formula

'n+l In — K(f3 — /3goai), (4.1)

where 0 without a subscript is the latest estimate of 0 available from the demon and K
is a numerical parameter chosen so as to ensure that the In converge to a limit. Before
calculating a new value In+i of I the demon must be allowed at least one energy exchange
with the ensemble, during which the variable I is maintained at its last value Once 0
reaches the desired value /3goai the quantity I remains constant. The resulting ensemble
gives nonzero, equal probabilities to all states compatible with both the given value Eh
and the calculated value of 7; when both constraints are satisfied, the energy per degree
of freedom is no longer the same for all the degrees of freedom.

The changes in I needed to keep 0 fixed as h is changing are displayed in Fig. 4 for
several values of 0 = 0goai- The statistical error throughout is of the order of 2%. The
values of I needed to keep 0 fixed increase with N = 1/h. As shown in [8, 16], for
small enough h the curves are independent of the value of 0, and this fact is reflected in
the confluence of the several curves in Fig. 4. Note that I is calculated on the grid by
taking differences of the values of the velocity u at points separated by h, which by the
Kolmogorov-Obukhov scaling should be proportional to 17 3; then one divides by h, and
takes an average; one expects I to grow with N like TV2/3. In Fig. 5 we plot the logarithm
of I vs. the logarithm of N-, the relation is well approximated by a straight line whose
slope is .65 with an error of ±.05. Within the limitations of the Monte-Carlo sampling,
the Kolmogorov-Obukhov scaling is seen to be applicable in this equilibrium model. Since
the Kolmogorov-Obukhov scaling applies to the low-order structure functions in a flow
with a finite but small viscosity, Fig. 5 shows that low-order moments structure functions
have a limit as the viscosity tends to zero. One can perform a similar analysis of the
small-scale structure of flow near a wall and conclude that the first-order moments of the
derivatives of the velocity field near walls have well-behaved limits, a fact used above in
the discussion of the scaling of the wall-region in the pipe. Figure 4 defines the limiting
process in which h —> 0 with a limit that provides a meaningful equilibrium ensemble for
the small scales of the flow.

The fact that the construction above is numerical enhances its value rather than
detracts from it, as we expect to use similar constructions in the numerical modeling
of turbulence. An elegant argument, suggested by the work of Kailasnath et al. [19]
and presented in detail in [8], shows that the third-order structure function is calculated
in the equilibrium theory exactly; of greater interest here is what happens to moments
of the velocity field of order four and more. We have argued in the preceding section
that the vanishing viscosity limit is not well-behaved for these higher moments, and thus
the good behavior of the structure functions is unlikely and the expansion in powers of
1/ln Re is invalid. In the equilibrium theory the fourth-order moments fail to converge
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Fig. 4. The variation of I = f |£| dx with N needed to keep fixed,
for several values of (3

Fig. 5. The variation of In/ vs. InN for 0 = 5 exhibits a linear
regime and a slope given by the Kolmogorov-Obukhov scaling.
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Fig. 6. The growth of the fourth moment of the velocity field as N increases

to a finite limit as N = 1/h oo. In Fig. 6 we display the fourth-order moment
/ |u|4 dxdy as a function of N at the parameter value (3 = 5. Higher-order moments
diverge even faster. The divergence of the higher moments corresponds to the formation
of concentrated vortical structures, like the ones explicitly constructed in [16]. We have
thus produced Kolmogorov scaling for the low-order moments in a system that is highly
intermittent in the sense that the vorticity is concentrated on a small fraction of the
available volume. The results of the equilibrium theory are therefore consistent with the
scaling analysis of the previous section, according to which the Kolmogorov scaling of
the second-order structure function is exact in the limit of vanishing viscosity not despite
intermittency but because of intermittency, while its failure for the higher-order moments
can be ascribed to the absence of a well-behaved vanishing-viscosity limit, as a result of
which the expansion in the inverse powers of In Re is not legitimate.

Note the small number of assumptions made in the equilibrium theory; all that was
assumed was that the fluid was near statistical equilibrium on the small scales, the fluid
was incompressible, the energy density in physical space was finite, and a probability
measure on the ensemble of flows was well-defined. The Navier-Stokes equations did not
enter the argument in the present paper (but see ref. [8]).

Finally, it is worth noting that an analysis of simplified near-equilibrium vortex models
[22, 33] has provided an example where an expansion in powers of a parameter analogous
to 1/ In Re can be fully justified without recourse to experimental data.



784 ALEXANDRE J. CHORIN

5. Conclusions. We have reached the following conclusions:
(1) The von Karman-Prandtl law of the wall must be jettisoned, and replaced by a

power law with a Reynolds-number dependent coefficient and exponent, as suggested by
an assumption of incomplete similarity.

(2) The Kolmogorov-Obukhov scaling of low-order structure functions in the local
structure of turbulence admits only viscosity-dependent corrections, which vanish as the
Reynolds number tends to infinity. There are no "intermittency corrections" to this
scaling in the limit of vanishing viscosity. The Kolmogorov scaling of the higher-order
structure functions fails because of intermittency

(3) These conclusions are consistent with and support the near-equilibrium theory of
turbulence.
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