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Abstract. We study the energy decay of the difference of two solutions for dissipative
evolution problems of the type:

u" + Lu + g(u') = h(t), t > 0,

including wave and plate equations and ordinary differential equations. In the general
case, when the damping term g behaves like a power of the velocity v!, the energy
decreases like a negative power of time, multiplied by a constant depending on the initial
energies. We provide estimates on these constants and prove their optimality. In the
special case of the ordinary differential equation with periodic forcing, we establish,
relying on a controllability-like technique, that the decay is in fact exponential, even
under very weak damping.

Resume. On etudie la decroissance de l'energie pour la difference de deux solutions
dans des problemes devolution dissipatifs du type:

u" + Lu + g{u') = h{t), t > 0.

Ceci s'applique en particulier aux equations des ondes et des plaques et a des equations
differentielles ordinaires. Dans le cas general, et lorsque le terme d'amortissement g se
comporte comme une puissance de la velocite u', l'energie decroit comme une puissance
negative du temps, que multiplie une constante dependant des energies initiales. On
donne des estimations sur ces constantes et on prouve leur optimalite. Dans le cas
de l'equation differentielle ordinaire avec un terme source periodique, on montre, en
utilisant une technique de type controlabilite, que la decroissance en temps est en fait
exponentielle, et ce meme en presence d'un amortissement tres faible.
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0. Introduction. This paper is devoted to the study of quasi-autonomous dissipative
equations that can be collected in the following abstract form:

u" + Lu + g(u') = h(t), t € R+ (0-1)

where L is an (unbounded) selfadjoint linear operator, positive and coercive, on a real
Hilbert space H, g: R —> R is a generally nondecreasing continuous function, such that
g(0) = 0, and h is an H-valued function. We shall deal with two kinds of equations:

• Partial differential equations of the form:

ju" + Lu + g(u') = h(t, x) in R+ x ft,
\ueC(R+;V)nC1(R+;Jff)

with ft a bounded domain in R'v, H = L2(fl), and V = D(L1/2). The main
examples are the wave equation:

(utt - Au + g(ut) = h(t,x) in R+ x ft,
| u = 0, in R+ x dfl,

corresponding to the choice V = Hq (ft) and L = — A, and the plate equation

[utt + A2u + g(ut) = h{t,x) in R+ x ft,
= V« = 0 in R+ x dfl,

with V = and L = A2.
• Ordinary differential equations (ODE) of the type

u" + u + g(u') = h(t), feR+, (0.5)

corresponding to the case H = V = R, L = Id.
We shall here study the asymptotic stability of these equations, that is, the decay of

the difference of two solutions to 0 as t —> +oo.
The energy being defined for (0.2) by

Eu(t) = l(\\u'\\2H + \\u\\2v),

(resp. for (0.5) by

Eu{t) = \{u2 + u'2)),

we shall always assume in the sequel that h is non-resonant, i.e., that the equation admits
a solution u such that Eu is bounded on R+, and we know that, in this case, all solutions
have a bounded energy. For details on the initial-value problem associated with (0.2),
we refer to [6], [8] and the references therein.

We already know that, when g essentially grows like a power greater than 1 in the
neighbourhood of 0, the difference of two solutions u and v converges to 0 in the energy
space H x V as t —> +oo, like a negative power of t:

Eu-v(t) < M(Eu(0),Ev(0))t^, (0.6)

where M depends on the initial energies in a bounded way. On the other hand, in the
special case when h = 0 (homogeneous problem), sharp estimates on M are derived in
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[3]. For instance, if g(u') is of the type \u'\p~lu' + \u'\q~lu', with 9 > p > 1, it is proved
that

Eu(t) <C (l + [Eu(0)]^h^t
-2

P- 1 .

for some constant C > 0 independent of the initial data.
The aim of the first section is to provide precise information, in the general quasi-

autonomous case, on the behaviour, for large energies, of the constant M that appears
in (0.6). In order to do so, we shall resume and extend the methods of Haraux, Zuazua
([6], [8]), and Carpio ([3]), based on the use of adapted Liapunov functional, obtained
by perturbating the energy, leading to differential inequalities. For the wave and plate
equations, in the nicer case when p = q, we extend to all h the estimate established in
[3] for h = 0, an estimate that was proved to the optimal ([4]) when g is a power.

The second section presents a generalization of a result of Haraux [7] concerning the
stabilization of damped abstract evolution equations of the type

y" + Ay + By' = 0,
where A is an unbounded selfadjoint operator, positive and coercive, and B a positive self-
adjoint bounded operator. That result claimed that the zero solution was exponentially
stable, whenever the energy of the solutions of the conservative equation <f>" + Acf) = 0
could be controlled or "observed") by means of the operator B1'2 on a sufficiently long
time interval.

Our contribution here is the extension of that property to the case of a non-constant
nonlinear damping, a feature that will be useful in the sequel.

In the third section, we are looking for stronger time estimates in the case of the ODE
(0.5), when h is non-constant periodic. The idea of such a possibility is suggested by the
fact (cf. [1]) that for first-order equations of the type

u' + u3 = f(t),

the difference of two solutions decays exponentially to zero when / is non-constant peri-
odic, while the decay is only polynomial when, for instance, / = 0.

Our main result is the exponential stability of the periodic solution:

Eu-V(t) < M{EU{0), Ev(0))e~6t. (0.7)

When g (nondecreasing) is of class C1, this happens whenever g ^ 0 in some neighbour-
hood of 0 and the condition is then optimal, for it is necessary for any type of stability.
The result is proved via the observability property of section 2, which applies here. In-
deed, when writing the difference of two solutions to (0.5), one obtains an equation
involving a non-constant linear dissipative term. Last, when g satisfies some polynomial
growth assumptions, we become able to provide a precise estimate on the behaviour of
the constant M(Eu(0), Ev(0)) involved in (0.7), with an exponential growth for large
energies.

In section 4, we prove the optimality of the constants of sections 1 and 3 for the ODE,
in the cases of both polynomial and exponential stabilities. In order to do so, we resume
the technique introduced in [3]. It consists in taking profit of the existence of a special
solution to (0.5), which is global on the whole real line, and whose energy grows like
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a power of |t| as t tends to —oo, thus enabling us to investigate the behaviour of the
constant in the whole range of energies. The existence of this global solution and its
asymptotic properties are established by adapting the methods of [9], [10].

1. Polynomial decay estimates for hyperbolic problems in bounded do-
mains. Let fl be a bounded domain in Rv and H = L2(fl). Let V be a real Hilbert
space, such that V C H with continuous and dense imbedding, and L°°(f2) fl V is dense
in V. We denote by | • | and || ■ || the norms on H and V respectively and by a(-,-)
the inner product on V. For any function u E C(R+;l/) fl C1(R+; H), we define the
associated energy as

Eu(t):=±(\u'(t)\2 + \\u(t)\\2). (1.1)

Let L € C(V, V') be the unique operator such that

Vu, v G V, (Lu,v) = a(u,v). (1-2)

Let g: R —> R be a nondecreasing continuous function such that g(0) = 0 and h G
S1(R+;H), with

/»£+1
S1(R+-,H) = {h £ Lloc(R+;H) \ h* := sup / \h(s)\ds < +oo}. (1.3)

t>o Jt
We consider the abstract evolution equation

f u" + Lu + g(u') = h in R+ x 0, ,
< , 1-4
\uGC{R+;V)nC1(R+-,H).

Our more general result can be stated as follows:

Theorem 1.1. We assume that g is continuous with <?(0) = 0 and satisfies either of the
hypotheses (i) or (ii) below.

(i) There exists q > 1 such that

V C L9+1(fi) with continuous imbedding, (1-5)

there exists p with 1 < p < q and c, K > 0 such that

Vz, y e R, c\x - y\p+1 < (g(x) - g(y))(x - y), (1.6)

Vx,y£ R, \g{x) - g{y)\ < K[1 + (g(x)x + g(y)y)^]\x - y\. (1.7)

(ii) We have

V C L°°(Q) with continuous imbedding, (1.8)

and there exists p > 1 and c, K > 0 such that (1.6) holds and

Vx, y € R, \g(x) - g(y)\ < K[1 + g{x)x + g{y)y]\x - y\. (1.9)

Then, whenever h G 5X(R+; H) is non-resonant, any pair of solutions u, v of (1.4) satisfies

Vt > 0, Eu-V(t) < {F(EU(0)) + F{Ev(0)))t^, (1.10)
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with, in case (i),

F(X) = C( 1 + X1+("+^i)), (1.11)

in case (ii),

F(X) = C(1 + X1+^), (1.12)

and C > 0 independent of u and v.

Proof. Let u be a fixed bounded solution of (1.4) and v another solution. It obviously
suffices to prove that

Eu-V{t) < F(£u_„(0))ip^,

where the constant C involved in the expression of F possibly depends on u (but not on
v). Indeed, if v\ and are any solutions of (1.4), we shall then have

Ev i-ii2W — 2EVl—u{t) + 2 Eu-V2(t)

< 2[F(EVl-u{0)) + F(Eu-V2(0))]t^

< 2{F(2EVl{0) + 2EU(0)) + F(2EV2(0) + 2Eu{0))}t^

< C'[F(EU(0)) + F(EV1(0)) + F(EV2(0))]t^,

for some C' > 0 (depending only on p and q), which immediately yields the result.
On the other hand, we know that we may assume u(0), v(0) 6 D(A), u'(0), t/(0) e

g{u'{0)), g(v'(0)) € H, and h € C1(R+;//), so that

u € w£0°°(R+; H) n w£c°°(R+; V). (1.13)

The result will then extend to all weak solutions by a standard density argument relying
on the fact that F depends on the initial energies in a bounded way.

We denote w = u — v, E = Ew and we set

4>{t) = (1 4- ke)E(t) + eE^1 (w, w')

with e, k > 0 to be determined later. In the sequel, all the constants Ci > 0 will possibly
depend on u, but not on v. From (1.13), we know that E and (w,w') are in W/1j3'c3C(R+)
and for a.e. t > 0:

E'(t) = ~{g(u') - g(v'), u - v') < 0, (1.14)

(w, w')(t) = \w'\2 - ||w||2 - (g{u') - g{v'), w). (1.15)

For a.e. t > 0, we have (the variable t being omitted for convenience):

<jj = (1 + ke)E' + ^ E(w, w')E' + eE(|u/|2 - \\w\\J - (g(u') - g(v'),w)).

By the Cauchy-Schwarz inequality and the continuous imbedding V C H, we have

|(«;,«/)| < |u>||«/| < Ci||tu|||u/| < C\E\ (1-16)
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hence, since E is nonincreasing:

</>' < (l + ke - e^CxE(0) V j E' + eE^{\w'\2 - |M|2 + |(ff(u') - <?(A™)I)-

Choosing k = , this becomes

T1 T2 T3

4>' < — (g(u') — g(v'),u' — v') — 2eE 2 +2eE 2 \w'\2

+sE'L^\{g{u') - g{v'),w)| (1.17)
^ v y

T4

and, from (1.16) and the nonincreasing character of E, we see that

\E < <t> < 2E (1.18)

provided that

e<e0:= r. (1.19)
1 + £(0)V

First, using Young's inequality with exponents (p+ l)/(p — 1) and (p + l)/2 and the fact
that p + 1 > 2 and O is bounded, we get

T3 < £{E^ + C3\w'\p+1)

<£(E^+C4\\w'WppX\). (1.20)
Dealing with the term T4 in formula (1.17), we can write for any r > 0:

Ks(u') - g(v'),w)\ < f —^l\w\\w'\dx
J si u - V

^ [ 9{u')-g(v') r , |2 , 1 , /|2l J< /  7 7 [t\w\ + — \w \]dx.Jn u' - v' 4r

Case (i). Prom (1.7), Holder's inequality applied with exponents (q+ 1 )/{q— 1) and
(q + l)/2, and the continuous imbedding V C Lq+1(fl), we have, for any r > 0:

\w\2\(g{u') - g(v'),w)\ < Kt [ [1 + (g(u')u' + g(v')v')^\x
Ju

< Tf(t)\\w\\2 + ~ f {g(u') - g(v'))w' dx,
j n

with

f(t) = C5 {l + [ (g{u')u' + g(v')v') dx
J si

f+T

and the term T4 can be estimated as

T4 < e(2Tf{t)E^ + ®Li_(fl(u') - g(v'),w')). (1.21)
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On the other hand, we know (cf. [8], Theorem 1.1) that every solution v satisfies

r-t+l !■

sup / / g(v')v'dxds < supEv(t) + \plh* sup[-E„(t)]1,/2
t>o Jt Jn t>o t>o (1-22)

< C6( 1 +supEv{t))
t> o

so that
rt+1

sup
t>0 Jt

f f (g(u')u' + g(y')v') dxds < Ce(2 + sup £?„(£) + supi?„(i))
Jt J O t>0 i>0

< Ce(2 + 3sup£
t> o

< CV(1 + £^(0))

< C6(2 + 3sup£„(t) + 2 sup £„,(£))
t>0 t>0

and we get

r-t+lr+ aziiJ f(s)ds<C8(l + Ew( O)^1). (1.23)sup
i>0 Jt

By putting inequalities (1.17), (1.20), (1.21) together, we obtain

<f>' < - g(v'), u' - v') - 2eE^ + eE+ C4e\\w'\\ppXl

+ 2\£Tf{t)E^ +  (5(u') - g(u'), W')

and by rearranging the terms and using (1.6),

\ p-1 \

t>' < { — + eE(?} " - 1 I (fl(ti') - g(v'), v! - «') + e(2Tf{t) - 1 )EeT . (1.24)

Now, if we take in formula (1-24)

Cg
1 + £(0) 9+1

and

£ ^ £1 ^  „-l , ^ £0l1 + E(0) ^ +?+r

we find, thanks to (1.18) and (1.23):

4>' < e(m(t) - \)E^ < Cn£(rn(t) - 1)0^ (1-25)2 / — WU'-V'"W 2

with to satisfying

rt+1
sup
t>0 Jt

/l + L m(s) ds <

At this point, we shall use the following simple Lemma that we recall without proof (cf.
[8], Lemma 1.7):
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Lemma 1.2. Let <f) € H/1J)'C1(R+; R) and / € L|1oc(R+;R) be two nonnegative functions
such that

rt-\-1

f* := sup j /(f) dt < r],

with a > 1. Then

with

t>o Jt
4>'{t) < (f(t) - r?)[0(f)]a a.e. on R4

r\ r

<t>(t) < Mtp31 for all t >Tq :=

M =

V ~ f*

(v — f*)ia ~ 1)" _1
2

Applying Lemma 1.2 and choosing e = £i, we finally obtain, for t > Tq = 2,

1 . 2(q — 1) 2
E(i) < 20(t) < C[1 + S(0)1+ («+i)(p-i) ]/; p-1 ,

and since E < E(0) the result finally extends to all t > 0.

Case (ii). The proof is exactly similar, provided one is taking

/(f) = K jl + J (g(u')u' + g(v')v') dxj ,

C9
T = i + £^(o):

and

then yielding

C10
£\ = 1 + E(0)x+e^

E(t) < C[ 1 + E{0)l+^}r^

The proof is now complete. □
The next result improves the estimate of Theorem 1.1 when p = q. In this case, we

recover for general h the same exponent in function F as the one found when h = 0 (cf.
[3]). It is therefore interesting to recall that, in the special case of the homogeneous wave
equation with g(u') — |u'|p_1u', the growth of F is known to be optimal ([4]).

Theorem 1.3. We assume that g is continuous with g(0) = 0 and satisfies (i) in Theorem
1.1 with p = q. Then, whenever h e S1(K+]H) is non-resonant, any pair of solutions u,
v of (1.4) satisfies (1.10) with

F(X) =C(l+Xl+p), (1.26)

and C > 0 independent of u and v.
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Proof. We are resuming the proof of Theorem 1.1 after inequality (1.20), the beginning
being identical. The only difference then lies in the treatment of the term T4. We first
note that assumption (1.7) implies, in particular,

Wx e R, g{x)x < Cs(l + |x|9+1) (1-27)

(indeed, by taking y = 0 in (1.7), we get, for any real x, either g(x)x < 1 or \g(x)\ <
2K(g(x)x)(q~1^(q+lS)\x\, that is, g(x)x < {2K)^-q+1^2\x\q+1). Taking now p — q, we
have, a.e. on R+ x U:

i g(u') - 9(v')\ < c6( i + i«'r:1 + ki^ki
<c7(i+Kri + Kri)Ki

and, by repeatedly applying Holder's inequality, we get:

Kff(w') - 9(v'), w)\<C7 [ {(1 + \u'\p~l)\w'\ + |w'|p}Mdx
Ju

<C8 1 f |«'|p+1da;^ f f (Itu'llwl)1^- dx
Jn ) \Jn

c7 I Kr1 dx^jp+l (^J iwip+i dx^jP+1

P+l

+ <

< c8(i + Hu'll^DiKiUiikiU! + c7|k'll£+1IMUi-
Prom (1.6) and the continuous imbedding V C Lp+1(f2), we deduce

Ks(m') ~g(v'),w)\ < C9(||w;'|^+1 + /(i)||w'||p+1)||w||

with

hence

2=1
P+l

fit) = 1 +(^j g(u')u' dx

T4 < CweE% ||«/||£+1 + Cwef(t)E% |K||P+1 (1.28)
" v v   '

T5 T6

Let us now decompose the term T5. (We here keep two distinct exponents p and q, for
the calculation will be useful in the next theorem.)

T5 = C1()e£75||t1;'||«+1 < Cw(eaE(of^ E^ (e^llw'lll^EiO)^^),
where 0 < a, f3 < 1 are to be determined later. Applying Young's inequality with
exponents (q+ l)/q and q + 1 yields

T5 < Cn(ea{q+1)E(0f^E^ +£^1-a^q+1^cl\\w'\\qql11E(0){1~p)E^1).

Choosing a — {q + 2)/(2(g + 1)) and (3—1/2, this becomes

br" ll„„'l
19+1T5 < Cn(e £q/2E(0)Mr1E2^ +e1/2£7(0)£V||t«/||«+}). (1.29)



64 PHILIPPE SOUPLET

Taking now p = q again and applying Young's inequality with exponents (p + 1 )/p and
p + 1 in the term T6, we obtain for any 6 > 0:

T6 < C12e6l[f{t)]'?EsP + ||K||£1.

Besides, we have, by (1-22)

sup f [/(f)] ̂  ^ — C13 \ 1 + sup f f f g(u')u' dxds\ > < +oo
t>o Jt I t>o \Jt Jn J

and it is thus possible to choose <5 small enough, independent of v, so that

T6 < em^E^ + Cue\\w'\\ppX\, (1-30)

with m satisfying

ri+1 1
sup / m(s) ds < —.
t>o Jt 4

By putting inequalities (1.17), (1.20), (1.28), (1.29) with p = q, and (1.30) together, we
obtain

4>' < - (g(u') - g(v'), u' - v') - MV + eE1V + C^Ww'WlH

+ Cu(e eP^EiO^E^ + e^EiO^Ww'W^l) + em{t)E+ Cue\\w'\\pp%\■

Hence, by using (1.6) and rearranging the terms:

</>' < e(-l + Cnep/2E(0)^ + m{t))E^

+ (-1 + i(C4e + Cn£1/2£;(0)^r" + Cue)){g{u) - g(v'), v! - v'). (1.31)
c

Now, if we take in formula (1.31)

^ Cl5 ^
e <£i ■■= -5ZT < So

1 + E(0)

(with e0 as defined by (1.19)), we find

4>' < e (m(t) - 1) E< -Ci6£(m(t) - .

We then conclude, as in Theorem 1.1, by applying Lemma 1.2 and choosing e = E\. □
Remark 1.1. We recall that hypothesis (1.7) in Theorems 1.1, 1.3 is for instance

satisfied if

Vx,y G R, \g(x)-g{y)\ < K[ 1 + la;)9"1 + \y\q~x]\x - y\,
Vx G R, \g(x)\ > cx\x\q - c2,

and that hypothesis (1.9) is satisfied whenever, for |x| large enough, p := Log|g| is of
class C\ and \p\x)\ < A\x\, A > 0.
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Concerning conditions (1.5) and (1.8) in the case of the wave equation (0.3), it is well
known that V C Lr{SI) with continuous imbedding when

r € [1, -boo], if N = 1,
r € [1, +oo), if N = 2,
r £ [1,2N/(N — 2)], if iV >3.

In the case of ordinary differential equations, the improved method used in Theorem
1.3 works also for q > p, provided we assume the slightly reinforced growth condition
(1.32) on g for large values. The estimate is already known when h = 0 and is optimal
in this case (cf. [3]). The result can be stated as follows:

THEOREM 1.4 (Ordinary differential equations). We assume that g is continuous with
5(0) =0 and satisfies

\/x,y& R, c(\x-y\p+1+ \x-y\q+1) < (g(x) - g(y))(x-y), (1.32)

Vx,yeR, \g(x)-g(y)\<K[l + (g(x)x + g(y)y)&]\x-y\ (1.7)

for some q > p > 1 and c, K > 0. Then, whenever h € 51(R+), h is non-resonant and
any solutions u, v of (0.5) satisfy (1.10) with

F{X) = C{ 1 + X^Ht), (1.33)

and C > 0 independent of u and v.

Proof. The non-resonance in the case of the ODE is known. It can be proved by the
same technique as in [6], Theorem IV.2.1.1, so that we are just concerned with the decay
estimate. The situation is quite simpler, since no infinite-dimensional functional space
nor non-equivalent norms are involved. In fact, the proof follows exactly the same steps
as in Theorem 1.3, up to replacing the inner products in H by products of real numbers,
all the norms by absolute values, and the energy by

Eu(t) := \(u2(t) + u2{t)).

Once these changes have been adopted, we handle the term T4 in the following way.
Prom (1.27), we get for any t > 0:

1 g{u') - g(v')\ < c6(i + Kr1 + Kr^Ki,
and, since u is bounded on R+,

|g(u') - g(v')| < C7( 1 + K|«_1)K|,

so that

T4 < 2C7eE2 \w'\i + 2C7eE%\w'\. (1.34)
s v ' v V '

T5 T6

Applying to the term T5 the same decomposition procedure as in the proof of Theorem
1.3, we obtain, similarly to (1.29), the inequality

T5 < C8(e £q/2E(0)e^E2^ + e1/2E{Q)S^k\w'\q+1). (1.35)
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Using Young's inequality with exponents (p + 1 )/p and p + 1 in the term T6, we obtain

T6 < |E+ C9s\w'\p+1. (1.36)

By putting inequalities (1.17), (1-20), (1-34), (1.35), (1.36) together, rearranging the
terms and using (1.32), it follows that

<t> < £(— 5 + Cg£q^~E{0) 4~ )E 2 + (—c + (C4 + Cg)e)|w'|p+1

+ (-c + C8£1/2E(0)1^)\w,\'1+l. (1.37)

Now, if we take in formula (1.37)

^ ^1° ^£ < £1 :=  szr < £0
1 + £(0)^T

(with £q as defined by (1.19)), we find

's -i
Integrating this differential inequality yields

t < < -Cu^^-

E(t) < 2<t>(t) <

Choosing e = £j, we finally obtain

C12

+£t

pq — 1 2E{t) < c[i + £(o)«(p-i)]r^. □
Remark 1.2. It is easy to check that the constants C in inequalities (1.11), (1-12),

(1.26), and (1.33) depend 011 h* in a bounded manner. In fact, by resuming the proof of
these results with a slightly more accurate use of (1.22), one could easily obtain explicit
estimates on this dependence.

2. A stabilization theorem for a non-constant linear damping. In view of
proving the exponential stability of the ODE (0.5) when h is periodic, we here generalize
a result of A. Haraux [7] on the stabilization of linearly damped abstract evolution
equations of the form

y" + Ay + By' = 0.
This "observability" result asserts that the zero solution is exponentially stable provided
that the energy of the solutions to the undamped equation 4>" + A<p = 0 can be controlled
by (or "observed through") the operator B1/2 on a sufficiently long time interval.

We here extend this property to the case of non-constant linear damping. This prop-
erty will be useful in section 3, for, when writing the difference of two solutions of (0.5),
the nonlinear dissipation term will transform into a non-constant linear term.

In all of this section, H denotes a real Hilbert space, A : H —> H a linear (possibly
unbounded) operator such that A = A* > 0, A coercive, V = D(A1^2), E = V x H.
We also define a map B 6 L°°(R+; C(H)), such that Vi £ R+, B{t) = B*(t) > 0 is a
bounded linear operator and M — supt>0 ||S(i)||£(f/) < +00.
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We consider the following two equations:

y" + Ay + B(t)y' = 0, t> 0, (2.1)

(f," + A(f> = 0, t > 0. (2.2)

We denote by |u| the norm in H and by ||v|| the norm in D(A1'2). Let us set

Ei,(t) = |(IMI2 + \y'\2)(t)-
We have the following theorem:

Theorem 2.1. Assume there exists some Tq > 0, t, C > 0, such that for any solution 4>
of (2.2) we have

W>T0, U(t)\\2 + \<t>\t)\2 <C J^+T \B1'\s)4>\s)\2ds. (2.3)

Then there exists some C\, 6 > 0 such that for any y solution of (2.1) we get

Vi > 0, Ey(t) < CiEy(0)e6T°e~st. (2.4)

Moreover, C\ and 6 only depend on r, C, and M.

Proof. Take t0 > 0, (y°,yl) G E, and y the solution of (2.1) such that

y(to) = y° and y' (f0) = yl.

The function E := Ey is nonincreasing and we have
rto+T

/ \B1/2(s)y'(s)\2ds = E(t0)-E(t0 + T)<E(t0). (2.5)
Jto't 0

Let v be the solution of

v" + Av = 0, te R, v(t0) = y°, v'(t0) = y1.

Setting w = y — v, we obtain successively for to < t < to + r:

EW(T)=- [ (B(s)y'(s),w'(s))ds < 21/2 [ \B(s)y'(s)\El/2(s) ds =: G(t),
Jto Jto

G'(t) < 21/2\B(t)y\t)\G1/2(t) < (2M)1/2\B1/2{t)y'{t)\G1/2{t),

and integrating this differential inequality,

/ m\1/2 rl / ut\1'2 r rto+T i1//2
G1/2(t) < (—j I \B^(s)y'(s)\ds<[-) jf IB"2{s)y'{s)\2ds .

Hence, by (2.5):

Mr
"it e [to, to + t], Ew(t) < —— (E(to) — E{to + r)). (2.6)

Prom (2.5) and (2.6), it follows that
rto+T fto+T

/ |S1/2(S)^'(S)|2 ds< 2 {|S1/2(s)w'(s)|2 + \B1/2(s)y'(s)\2} ds
Jto Jto

< 2((Mr)2 + l)(E(to) — E(to +t)).
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Setting K = C( 1 + (Mr)2), we deduce from (2.3) that

E(to + t) < E(t0) = Ev(t0) < K(E(t0) - E(t0 + r)).

Hence

V*>T0, E(t + T)<j^E(t)

and, with p = K/{K + 1),

Vt > T0, E(t) <e(t0 + t ^ < E(T0)p[tl^] < E^p^'1.

This last inequality being also valid on [0,To], we finally get

V4 > 0, E(t) < C1E(0)eST°e~6t,

with C\ = 1 + 1 /p and 6 = (1/r) Log(l + 1/p): the result is proved. □

3. Exponential stability for the ordinary differential equation with periodic
forcing. In this section, we turn our efforts to the ODE:

u" + u + g(u') = h(t), t € R+. (0.5)

We are first proving the simple stability of the solutions of (0.5) under minimal hypotheses
(Theorem 3.1). Then supposing h periodic, by applying this result together with the
stabilization Theorem 2.1, we prove the exponential stability of the periodic solution
whenever it exists (Theorem 3.3). In order to do so, we only require a very weak condition
on g, that reduces to g ^ 0 in the neighbourhood of 0 when g is C1. In the case when
g fulfills the global growth conditions of section 1, we can take advantage of the general
polynomial decay estimates previously established, and we finally become able to estimate
the constants involved in the exponential stability (Theorem 3.4).

Theorem 3.1. Let us suppose h: R —> R bounded, uniformly continuous, g: R —> R
continuous nondecreasing with fj(0) = 0, and satisfying

g ^ 0 on a neighbourhood of 0. (3.1)

If h is non-resonant, then any solution v of (0.5) satisfies

lim |u(t) — u(i)| + |u'(t) — v'(t) \ = 0.
i—►+oo

Proof. We have

E'w = -(s(«') - 9W)){u' - v') < 0.

Hence limt_+00 Ew(t) = I > 0. As a consequence of the (locally compact) Ascoli's
Theorem, we deduce that there exists an increasing map 4>: N —> N, and some functions
u, v, h, such that

un := u{- + 4>{n)) —» u in Cj(R),
n—*00

V„ ■■= v(- + 4>(n)) —» V in Cfc(R),
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and

hn h(- + 4>(n)) —> h in C°(R).
n—>00

We then have

u" + u + g(u') = h,

v" + v + g(v') — h,

so that, setting w = u — v, we get

w" + w + g(u') — g(v') = 0.

But for all ieR, limn^+00 Ew(t + (f)(n)) = l\ hence E'^ = 0 and g(u') = g(v'). Therefore
w" + w = 0 and w = pcos(t + a). Supposing that w ^ 0 and up to translating, we can
write

g{u') = g(u' + pcost) and p ^ 0. (3.2)

We now rely on the following:

Lemma 3.2. Suppose g as in the hypotheses of Theorem 3.1, and u' satisfies (3.2). Then
g{u') is constant on R.

Proof of Lemma 3.2. Let A — (g(u'))(R). By (3.2) and the nondecreasing character
of g, we deduce that for any t in R\(7r/2 + nZ), g is constant on the closed interval of
bounds u'(t) and u'(t) + pcost. Therefore, it is possible to write A as

UAHu(s(fi'))W2 + 27rZ),
i fcGZ
\pe n

with

Avk = {x £ A | 3JX closed interval C [7r/2 + kit, 7r/2 + (k + l)7r],

such that g{v!) = x on Jx and \ JX\ > 1 /(p + 1)}.

If we then consider xi,...,xn some distinct points of Avk, the corresponding intervals
Jip..., JXn are disjoint, so that n/(p +1) < n and Apk is finite. Therefore A is countable
and connected (continuous range of R), and hence a single point, which proves the claim.

Proof of Theorem 3.1 (continued). By Lemma 3.2, we have

g{u') = g(u' + pcosi) = C

and since, by (3.1), g is non-constant on any open interval containing 0, we can suppose
for instance:

u' > 0, (3.3)
u' + pcost > 0. (3.4)

On the one hand, by (3.3) and the boundedness of u:

311 G R, lim u{t) = h,
t—»+oo
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and on the other hand, integrating (3.4) yields
/•7T-(-2/c7r /•7T + 2fc7T

VfceZ, / u'(t)dt + p / costdt>0,
«/7r/2+2/c7r Jir/2+2kn

that is, p < u(tt + 2kTr) — u(ir/2 + 2kn) and, by letting t —> +00, p < 0. Similarly, by
integrating (3.4) over [77 + 2kn, 37r/2 + 2kn], we find p > 0, hence p = 0: contradiction.
We finally conclude that w = 0 and limt^+ocl w{t) = limj^+00 w'(t) = 0. □

We thank A. Haraux for having suggested to us an important simplification in the
proof of Theorem 3.1.

Remark 3.1. Theorem 3.1 is in fact optimal. Indeed, if condition (3.1) is not satisfied,
there is some e > 0 such that g = 0 on [—e, +e] and Eq. (0.5) bears all the (unstable)
solutions u(t) = A cost for |A| < e.

In the case when a periodic solution exists, Theorem 3.1, together with the stabilization
Theorem 2.1, allow us to prove the exponential stability of the periodic solution under a
single condition on the increase rate of g near 0.

Theorem 3.3. Let us suppose h: R —■> R, T-periodic, continuous, non-constant, g: R —>
R locally Lipschitz continuous, nondecreasing with 5(0) = 0, and satisfying

Ve >0, 3rj > 0, 3a, (3 € [—£,£] (a < (3), a<x<y<(3=> ^ (35^
x-y

If Eq. (0.5) admits a periodic solution u, then it is unique and there exists a constant
6 > 0 such that for any solution v of (0.5):

3M(«(0),«'(0)) > 0, Vt > 0, Eu-V(t) < M(v(0),v'(0))e-st. (3.6)

Proof. The uniqueness is clear. Let v be another solution of (0.5) and w = u — v. The
function w satisfies

with

a(t)

w" + w + a{t)w' = 0 (3-7)

u' — v'
1 otherwise.

According to Theorem 2.1, we just need to prove the existence of To > 0, r, C > 0, such
that for any 0 solution of (f>" + (f> = 0, we have

ft+T
Vt>T0, (f)2(t) + cp'2(t) < C J a(s)(f)'2(s) ds. (3.8)

Since u (like h) is non-constant and periodic, there exist some a, b > 0 such that «'(R) =
[—a,6] and thanks to hypothesis (3.5), we can find c G R, /3, r? > 0, such that J :=
[c — /?, c + 0\ C [a, 6] and

c-f}<x <y <c +13 ̂  9<i) ~ > g.
x-y

We can then choose t\ € [0, T] with u'(t\) = c and 7 £ (0,T] such that

Vf G [ti,ti+7], \u'(t) - c\ </3/2
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(note that c, /3, 77, t\, and 7 only depend on g and h). Besides, by Theorem 3.1, we know
that there exists some To > 0, such that

Vt > T0, \u'(t)-v'(t)\</3/2 (3.9)

(To now depends on v(0) and f'(0)). Therefore, we obtain

Vn e N fl [T0/T, +00), \/t G [nT + t\, nT + t\ + 7], a(t) > 77. (3.10)

On the other hand, it is clear that

inf [
s+7

sin2(<r + a) da = v > 0 (3-11)

Vt

s>0

(with v only depending on g and h through 7). Combining (3.10) and (3.11) yields

/>t+2T
> To, / a(a) sin2(a + a) da > rji/,

which immediately gives (3.8) and, by application of Theorem 2.1,

\/t > 0, Ew(t) < CiEw(0)e6T°e~6t, (3.12)

with C\ and 8 depending only on g and h through the values of 77, v, and T. □
Remark 3.2. When g is of class C1, it is easily seen that condition (3.5) is in fact

equivalent to (3.1) (i.e., g 0 in the neighbourhood of 0), which is a necessary condition
for any type of stability (cf. Remark 3.1). Exponential stability thus appears as a quite
general phenomenon for Eq. (0.5).

Remark 3.3. Concerning these results, it is worth noticing that the exponential sta-
bility property for equations of type (0.1) is generally obtained for only strongly monotone
dissipative terms g, i.e., whose increase rate remains at least equal to some k > 0 (cf. [6]).
For this reason, the result of section 3 seems rather new and it would be interesting to
extend it to the wave equation. Unfortunately, the observability method does not seem
likely to work here, by lack of an L°° estimate on the velocity u!. In another direction, let
us recall that the optimality of the (polynomial) time decay for (0.3) with h = 0 remains
an open question.

The next result gives an estimate on the way the constant M in (3.6) depends on i>(0)
and v'(0), when g satisfies the global polynomial growth conditions of section 1.

Theorem 3.4. Let us assume h as in Theorem 3.3 and suppose that there exist some p,
q, with 1 < p < q and some constants c, K > 0 such that

Vx,y€ R, c(\x - y\p+1 + \x - y\q+1) < (g(x) - g(y))(x - y), (1.32)

Vx, y GR, \g(x)-g{y)\<K[l + (g(x)x + g(y)y)tt]\x-y\. (1.7)

Then, whenever (0.5) admits a periodic solution u, it is unique and any solution v of
(0.5) satisfies

Vt > 0, £„_„(*) < F(Eu_v(0))e~6t, (3.13)



72 PHILIPPE SOUPLET

with

F{X) = CXexpleX1^} (3.14)

and C, e, 6 > 0 only depending on g and h.

Proof. Let u be the periodic solution of (0.5) and v another solution, w = u — v. Prom
the proof of Theorem 3.3, we know that

Vi > 0, Ew(t) < CiEw(0)e6Toe'st, (3.12)

if T0 satisfies

Vi > T0, |u'(t) - v'(t)| < (3/2 (3.9)

with C\, 6, and (3 > 0 only depending on g and h. Using Theorem 1.4, we see that

V* > 0, \w\t)| < (2Ew{t))* < {2C)i{l + Ew(0)^v)t^

and therefore, (3.9) holds if we choose

T0 = (1 + ^(0)^).

The result follows immediately. □
Remark 3.4. Under the hypotheses of Theorem 3.4, the existence of the periodic

solution can in fact be proved, as a consequence of Browder-Petryshyn's Theorem (see
[2]), in the same way as in [6], Theorem IV.2.2.1.

4. Solutions of the ODE on the real line and optimality of the constants.
In this section, we prove the existence of nontrivial global solutions on the real line for
the ODE

u" + f(u) = g(u') + h(t), tsR (4.1)

for a rather wide class of functions /, g, and h (subsection a)). In the case when f(u) = u,
we prove that if h is bounded and g{y) essentially behaves like \y\p~1y (p > 1) at infinity,
these solutions behave also like a power, when t —> +oo (subsection &)). In order to
prove the existence and behaviour results, we shall follow the methods we introduced in
[9] and [10], thus generalizing the results previously obtained to the quasi-autonomous
framework. The existence of such solutions will enable us to give estimates from below
on the energy of the difference of two solutions of

u" + u + g(u') = h(t), t> 0 (0.5)

and hence show the optimality of the constants involved in Theorems 3.1 and 3.4. Sub-
section c) is devoted to the general case when h is bounded, featuring time-decay like
a power of t and polynomial growth of the constant for large energies. In subsection
d), we will turn to the case of exponential time-decay (e.g., when h is periodic), with
exponential growth of the constant.
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a) Existence of global solutions. Prom now on, we suppose that /, g\ R —> R are
some Lipschitz continuous functions and h: R —> R is continuous. The main result is
the following:

Theorem 4.1 (Existence). We assume there exists some constant K > 0 such that

\f(x)\ < (/sT2/4)|x|, for |x| large enough, (4.2)

g{x)x > Kx2, for \x\ large enough, (4.3)

3A € [0, K/2), |/i(£)| < ext, for t large enough. (4.4)

Then for every to € R and for every uo G R, there exists at least a solution of (4.1),
global on R, such that u(to) = uo.

The proof relies on several intermediate steps; we first show by an energetic method
that the maximal solutions are global near —oo (Proposition 4.2). Secondly, we prove
that all the blow-up solutions are non-oscillatory (Proposition 4.3). We then establish
that the maximal solutions have their differential tending to ±oo whenever the initial
data lie in certain areas of the phase plane (Proposition 4.4). The existence of a global
solution for each value of u(to) will then follow from the application of the theorem of
continuity of the solutions in a critical range of values of u'(to) where both types of
growing-up solutions cohabitate.

In the sequel, T* denotes the upper bound of the existence interval of a maximal
solution.

Proposition 4.2. Let us assume that

3K > 0, \f(x)\ < K\x\, for \x\ large enough. (4-5)

3p >0, 3k > 0, g{x)x > fc|a;|p+1, for \x\ large enough. (4.6)

Then the existence interval I of a maximal solution u of Eq. (4.1) is of the form (—oo, T*),
T* G R U {-f-oo}.

Proof. Let us consider the backward equation

v" + f{v) = g(-v') + h(—t)

satisfied by v(t) := u(—t), whose existence interval we denote by J. We call F the
primitive of / that vanishes in 0 and we set E(t) = v'2 + 2F(v(t)). We have

E'(t) = 2v'(v" + f(v)) = 2 g(—v')v' + 2 h(—t)v'.

From hypothesis (4.6),

3k' >0, Vx e R, g(x)x > k\x\p+1 — k',

and by Young's inequality with exponents p + 1 and (p + 1 )/p, we get

Vt,x G R, h(—t)v' < k\v'\p+l + B\h(—01^",

for some constant B > 0. Hence
p-j-1

E'{t) < 2B\h(-t)\p + 2k'. (4.7)
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Taking to & J and integrating inequality (4.7), we obtain for every t > to with t 6 J:

E{T) < 4>(t)
with (p (continuous on R) a primitive of the right-hand of (4.7). Prom hypothesis (4.5),

3K' > 0, Vx € R, \F(x)\<{K/2)\x\2+ K',
which yields

v'2 < E(t) + 2|F(t)| < Kv2 + 2K' + (4.8)

Then

(v2)' = 2vv' <v2 + v'2 < (1 + K)v2 + 2K' + 4>{t),

so that

[■v2 exp(—(1 + K)t]' < ((f>{t) + 2K') exp(—(1 + K)t).

By integration, it follows that v (and therefore v' too by (4.8)) is bounded on [to, +oo)fi J
by a function that is continuous on R. Thus we conclude that [io, + oo) C J and
i = (-oo,r*).

Proposition 4.3. We now suppose

3K > 0, |/(x)| < K\x\, for |cc| large enough, (4.5)

3a >0, Wx e R+, g(x) > —a and Wx £ R~, g(x) < a. (4.9)

Then for any maximal solution u of Eq. (4.1), if T* < +oo, we have

lim u'(t) = +oo (resp. — oo).
t->T'

Proof. Let us suppose T* < +oo. Then u' is unbounded on any neighbourhood of T*
and we can for instance assume that

sup u'(t) — +00
T*-e0<t<T*

for some eq > 0 (up to replacing u by —u, f by x >—> —f(—x) and g by x > —g{—x)). In
addition, we may set

M := min h(t) > —oo
T* —eo<t<T*

since h is continuous.
Let us now assume that we do not have limt_»T* u'(t) = +oo. From (4.5),

3K' > 0, Vx 6 R, f{x) < K\x\ + K'
and for any A large enough,

V6 >0, 3te [T* - 6, T*), u'(t) < A.

Taking £ > 0, with £ < £o, then

3h = min{< € [T* - e,T*) \ u'(t) > 2A}

and

3t2 = min{i e (t\,T*) | u'{t) < A}.
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Moreover, there is some 13 such that

u'(t3) = max{t/(£) | t G [T* — £,£2]} > 2A.

We then have t\ < t3 < t? and

Vt G [*3) *2]j 0 < A < u'(t) < u'(t3).

By the mean-value theorem,

t2), »"(t4)="";)-f('3).
*2 - *3

On the one hand, since u'^2) = A we find

f{u{t4)) = g(u'{t4)) + h(i4) - u"(i4) > —a + M + M ̂  ;
£2 -13

hence

/(«(t4))>-« + M+^. (4.10)

IT2e

But on the other hand, by definition of £3:

u(f4) = u(T* — e) + f u'(s) ds < u(T* - e) + £u'(t3),
Jt*-£

so that

/(«(t4)) <^' + K|u(T* - e) + eu'(t3)| (4.11)

< K' + K\u(T* - e)| + Keu'{t3).

Combining inequalities (4.10) and (4.11) yields

ti'(fs) < K' + K\u(T* - e)| + a-M.

Choosing s = min(e0,1/(2%/#)), this becomes

y/KA < VKu'(t3)/2 <K' + K\u(T* -e)\+a-M.
Since K and K' are fixed, we can let A tend to infinity and we obtain a contradiction. □

Proposition 4.4. We assume that there exists a constant K > 0 such that

\f(x)\ < {K2/£)\x\, for |a;| large enough, (4.2)

g(x)x > Kx2, for \x\ large enough, (4.3)

3A G [0,^/2), |/i(t)| < eAt, for t large enough. (4.4)

Then there exist some constants s, 7, 6 > 0 (<5 < e) depending only on /, g, and h, and
for any a > 0 and T0 G R there exists C(a,T0) > 0 such that for any maximal solution
u of Eq. (4.1) (global or not for t —> +00), the following properties hold.

a) If zft0 G /, to > T0, u(t0) > -a, u'(t0) > 7, and u'(t0) > eu(t0) + e5t° + C(a,T0),
then

^lim^ u'(t) = + 00 with \/t > t0, u'(t) > 7.
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b) If 3t0 € I, to < T0, u(to) < a, u'(t0) < —7, and it'(to) < eu(t0) - est° - C(a,T0),
then

lim it'(t) = —00 with Vt > to, it'(t) < —7.

Proof. We take 7 > 0 such that

M > 7 =>• (1/(^)1 < (^2/4)|x| and g(x)x > Kx2). (4-12)
Let a > 0 and To € R. We set e = K/2 and 6 = (e + A)/2 E (A,e). From (4.4),
h(t) + (e — 6)eSt > (e — 8)e6t — ext for t large enough and therefore tends to +00, as f
tends to +00. As a consequence,

3B(T0) > 0,Vt > T0, h(t) + (e - S)est + B(T0) > 0. (4.13)

Let us set

(5 — max(a, 7), M— max \f(x)\, and C(a, T0) = 1 + ^(^0)) ^
x€[-/3,+/3] 2 A

and consider the function

= v! — eu — e6t — C(a, To).

We first show the propagation of the positivity of <j> along the solutions; more precisely,
let us show that

Vt > T), (iz(t) > —a,u'(t) > 7, and <p(t) > 0) => (4>'(t)) > 0 and u"(t) > 0). (4.14)

Let us assume it > —a, u' >7, and <p > 0 for some t > T). We then have

4>'(t) — u" — eu' — 6eSt

= <7(1/) — f(u) + h{t) — eu' — 6eSt

> eu' — /(it) + h(t) — Se6t

> e2u + eeSt + eC(a, T0) — f(u) + h(t) — 6eSt,

and finally by (4.13),

(j)'(t) > (e2u — /(it)) + (h(t) + (£ — 5)e^i + fi(T0)) + £ + Pe2 + M

> {e2u — /(u)) + £ + /?£2 + M.

At this point only two cases are possible:
• If it(t) > 7, then /(u(t)) < £2it(t), so that (p'(t) > e > 0.
• If -a < it(t) < 7, then <p'(t) > e2{u{t) + p) + (M - /(it(t)) + £ > £ > 0.

Moreover,

(u'(t) > 7 and (j>'(t) > 0) =>• u"(t) > eu'(t) > £7 > 0,

so that (4.14) is proved.
Thus, if we have

3t0 el, t0 > T0, u(to) > -a, it'(t0) > 7, and u'(t0) > eu(t0) + eSt° + C(a,T0),

it follows that

Vt > to, u"(t) > eu'(t) > 0. (4-15)
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If T* < +00, by Proposition 4.3, we then have obviously limt_>T» u'(t) = +00.
If T* = +00, an immediate integration of (4.15) yields the same result.
The symmetrical case b) is obtained by changing u in —u, f in x 1—> — /(—x), and g

ina:H> —g(—x). The proof is now complete. □
Remark 4.1. If one replaces the hypothesis (4.4) in Proposition 4.4 by "h is bounded

on R", it is easily seen that the result still holds, when replacing u'(to) < £u(to) — e6t° —
C(a,To) in a) by u'(to) < eu(to) — C(a,To), and the similar change in b).

Thanks to these preliminary results, we are now able to provide the proof of Theorem
4.1.

Proof of Theorem 4-1- Let to G R and uq G R and assume that

There is no global solution such that u(to) = uq. (4-16)

Denote by A+ (resp. A~) the set of values u'0 such that the maximal solution reaching
(uo,u'0) at to be non-global with lim^x* u'(t) = +00 (resp. limt^x. u'{t) = —00).

The essential part of the argument then lies in the following:

Lemma 4.5. Under the assumption (4.16), the sets A+ and A~ are open.

Proof of Lemma 4-5. We take u'0 G A+, denote by u the maximal solution such that
u(to) = uo and u'(to) = u'0, and set a = |uo| + l/(2e).

Let us first show that there exists a time t\ G (to,T*) such that

u'(ti)>7 + l and u'(t\) > £u(t\) + estl + C(a, to) + 1.

First, lim^r« u'[t) = +00 implies that

3Te (to,T*), Vt G [T,T*), «'(<)> 7+ 1. (4.17)

Now, if we had

Vf G [T, T*), u\t) < eu(t) + est + C(a, t0) + 1, (4.18)

then we would have

Vt G [T, T*),

so that

u{t)+C(a,to) + l e~et + —c} <0,
£ - 0

Vt G [T, T*), u(t)< C(a, to) + 1 e'ST
\u(T) |+~v'»" + e^~T\

which combined with (4.17), (4.18) would imply that u be global.
Let us now apply the theorem of continuity of the solutions (see, e.g., [5]): there exists

some 77 > 0 such that if v is a maximal solution that verifies

\v{t0) - u0\ < rj and \v'(t0) - u'0\ < r],

then v exists on [t0, ti] and we have

\v(ti) - u(ti)| < — and \v'(ti) - u'(ti)| < 1/2.
l£
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But by Proposition 4.4, u' > 7 > 0 on [to,T*); hence u(t\) > u(to). Thus, whenever
v(to) = Mo and |f'(to) — u'o\ < ??; we obtain

v(ti) > u(t 1) - ~ > u(*0) - ^ > - Mu(to)| + = -a,

u'(ti) > u'(ti) + |v'(£i) - > 7 + 1 - 1/2 > 7

and
u'(*i) - - estl - C(a, t0)

> u'(fi) - eu(ti) - e6tl - C(a,t0) - |u'(ti) - tt'(ti)| - e\v(ti) - u(ti)\

>1-1/2- 1/2 = 0.
Then as a consequence of Proposition 4.4, v'(to) € A~ and A 1 is open. The same
argument proves that A~ is open and the Lemma follows. □

Proof of Theorem 4-1 (continued). From (4.16) and Proposition 4.3, we know that

A+ U A~ = R,
and, by Proposition 4.4,

A+ / 0 and A" ^ 0
(we just need to take respectively u'0 = max(7, euo + e6t° + C(a, to)) and u'Q = min(—7,
euo — eSt° — C(a,to))). This contradicts the fact that R is connected. Thus, assumption
(4.16) has to be discarded, and the proof of Theorem 4.1 is now complete. □

As an immediate consequence, we have the following:

Corollary 4.6. If /, g, and h satisfy

3C > 0, |/(a0| < C\x\, for |a:| large enough, (4-19)

lim ^ = +00, (4.20)
|x|—^OO X

3C' > 0, \h(t)\ < ec *, for t large enough, (4-21)

then, for every to £ R and for every Uq € R, there exists at least a solution of (4.1),
global on R, such that u(to) = Uo-

Proof of Corollary 6. It suffices to apply Theorem 4.1 with K > max(2v/C, 2C").
□

b) Asymptotic behaviour. As announced above, we consider in this subsection the
particular case of the equation

u" + u = g{u') + h{t), te R. (4.22)

The function g: R —> R is locally Lipschitz continuous, h\ R —+ R is continuous. Besides
we shall always assume that

There exists a solution u of (4.22) such that u and u' are bounded on R. (4-23)

We know that this last assumption is verified, in particular, if g and h satisfy the hy-
potheses of Theorem 1.4. Indeed, in this case, by considering the solutions un of (0.5)
on [-n, +00) such that w„(0) = u^(0) = 0, we can use the estimates obtained on the
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difference of two solutions to show that (un)n is a Cauchy sequence (cf. [6], Remark
V.3.2.3).

The main result is the following:

Theorem 4.7 (Asymptotic behaviour). Suppose

3p > 1, 3Bi,B2 > 0, Bi\x\p < |#(x)| < B2\x\p, for |x| large, (4.24)

37 >0, 3C > 0, Vx,y € R, (g(x) - g{y)){x -y)> C\x - y\1+1, (4.25)
h is bounded. (4-26)

Then there exist some constants Ki, K2 > 0 such that for any global solution v ^ u of
(4.22), we have the estimate

Kjt^1 < v'(t) (resp. — v'(t)) < K2tpzr[, for t large enough.

In order to prove this, we first need to establish some preliminary results.

Proposition 4.8. Suppose

37 >0, 3C > 0, Vx, y e R, (g{x) -g(y))(x - y) > C\x - y\1+l. (4.25)

Then any global solution v ^ u of (4.22) satisfies

lim Ev(t) = +00. (4.27)
£—► + 00

Proof of Proposition 4.8. Setting w = u — v ^ 0, we have

Ew(t) = (9W) ~ 9W))w' > C|w'|7+1 > 0 (4.28)

so that 31 e R+* U {+00}, lim^+oo Ew{t) = I. Suppose I is finite. Prom (4.28), we see
that

/̂0

+00

w'|T+1(t) dt is finite. (4.29)

But on the other hand, w, w', u, u', and therefore v, v' are bounded on R+ and so is w".
This implies that the function |u/|7+l is uniformly continuous on R+, which, combined
with (4.29), yields

and then

lim w'{t) = 0
£—> + 00

lim w(t) = I' = ±VYl.
t—* + OO

From the boundedness of u', we then obtain that the right-hand side of the equation

w" + w = g{u') — g(u' + w')

tends to zero at infinity, so that limt^+(X) w"{t) — —I1 ̂  0: contradiction. We thus
conclude that I = +00, and the result follows. □
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Proposition 4.9. Suppose

37 > 0, 3C > 0, Vx, y e R, (g(x) - g(y))(x - y) > C\x - y\1+1, (4.25)
ft is bounded, (4-26)

g(x)x > 2x2, for |x| large enough. (4.30)

Then for any global solution v ^ u of (4.22), we have

lim v(t) = lim v'(t) = +00 (resp. — 00).
t—► -j-OO t—► -}-00

Proof of Proposition 4-9. Suppose that we do not have limt_+00 |u(£)| = +00, i.e.,
there exists an increasing sequence (in)neN tending to +00 such that

3a > 0, Vn G N, |v(in)| ^ a-

By Proposition 4.8, we must have lim^oo |v'(tn)| = +00 and, up to extracting a subse-
quence, we can suppose for instance that

lim v'(tn) = +00.
n—►00

In particular, with the notation of Proposition 4.4,

3p e N, v(tp) > —a and v'(tp) > max(7,eu(tp) + C(a,to)).

Then as a consequence of Proposition 4.4 and Remark 4.1, it follows that

lim v'(t) = +00,
OO

which is a contradiction. Therefore

lim v(t) = +00. (4-31)
t—> + 00

Take A > 0. Since g is continuous and g is nonpositive on R-, there exists some
M > 0, such that

y < A => g{y) < M.
Prom (4.31), there is a time T > 0 such that

V£>T, v(t) > M + ||ft||oo + 1.

As a consequence, for any t>T, we get

v'(t) < A =>- v"(t) = —v(t) + g(v'(t)) + h(t) < —1

=4> Vs > t, v"(s) < -1

=> lim v(t) = —00 : contradiction.
t—* + OO

Therefore

Vi > T, v'(t) > A

and the second part of the claim follows. □
These preliminary results allow us to conclude:
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Proof of Proposition 4-7. Prom Proposition 4.9, we can for instance suppose

lim v(t) = lim v'(t) = +00
t—* + OO t—> + 00

and, for t > T large enough,

v, v' > 0 and 211/iHoo < B\v'p < g(v') < B2v'p. (4-32)

For every t >T, we have the following implications:

« — — -> 9R V ~ k<^> > V _ ^ 9 _ 1 - 1

v'p ~ 2 g(v') ~ B2v'p B2v'p

=>v"<0
, 1 pvv"

=> a = —— —7 > 0.
v'p-1 vp+1

Hence, for to > T,

a(t0) > 2B2 Vt > t0, a(t) > 2B2

=> Vt > t0, v"{t) < 0.

This last assumption would contradict limt^+oo v'{t) = +00. Thus

a[t) < 2B2, for t large enough. (4.33)

On the other hand, take e > 0 such that 0 < e < B\/2. For every t > T, we have,
using (4.32):

v-h(t) v \h(t)\ 1 1a < e => — < 1- 1 v n < - 4- - = 1
9(v') ~ Biv'p + B,v'p " 2 + 2

=>/>0
, 1=> a <

v'p-1'

But since limt_+00 v'(t) = +00, we can find some Te > 0, such that

Vt > Te (a(t) < e =*> a'(t) < e/2).

Suppose now that a(to) < ell for some to > Te. We have

Vt € [to, to + 1], <*(t) < £•

(Otherwise, setting t\ = min{t € [t0, to +1]|o;(t) = £}, we would have a < e and a' < e/2
on [to,ti]. But then, there would be some c 6 [to,ti] such that

= «",)-» C°)>g-e/2>£/2:
tl — to tl — to

contradiction.) As a consequence, on the interval [to, to + 1], it follows that

fit/By,sK)
so that

^ ■ ■
v'p — s(v')
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Choosing e = B\/2 yields the differential inequality

V< G [t0, t0 + 1], v"(t) > ~v'p{t).

After integration, there remains

1 1 < (p-l)Bi.
v'P-^to + 1) v'P-^to)

hence
(p- l)Bi>

v'P-l(t0) " 2

This last inequality contradicts lim^+oc v'(t) = +oo, so that we must have

Bxot(t) > e/2 = — for t large enough. (4-34)

Putting inequalities (4.33) and (4.34) together, one can see that the function

£zil
V P

' (p — l)v'
pv1/p

remains bracketed between two positive constants as t —> +oo, which gives the result
(since these constants depend only on B\, B2, and p). □

c) Optimality of the constants: the general case. We are here extending the method
of [3] to the quasi-autonomous ODE framework. Taking advantage of the existence of
global solutions to (0.5) on the real line that grow up like a power near —oo, we study the
optimality of the constants ^(^-^(O)) involved in Theorem 1.4. The following result
proves that (1.33) is optimal.

Proposition 4.10. We suppose h: R —> R continuous, bounded, g: R —» R locally
Lipschitz continuous, satisfying:

3q > 1, 3Bi,B2 > 0, -Bil^l9 < |p(a:)| < B2\x\q, for |x| large, (4.24)
37 >0, 3 C > 0, Vx, ye R, (g{x) - g{y))(x -y)> C\x - y\1+1 (4.25)

and we assume that Eq. (0.5) admits a solution u such that u and u' are bounded on R.
Suppose that an estimate of the form

Vt > 0, Eu_v(t) < F{Eu-v(§))tP~^ (4.35)

holds for any solution v of (0.5), with p > 1, F: R+ —> R+ nondecreasing, and that
the estimate is valid for any h of the same L°° norm. Then the function F necessarily
satisfies

pq — 1
F{X) > KXro-D , asX-> +oo. (4.36)

for some K > 0.

Proof of Proposition 4-10. We know from Theorems 4.1 and 4.7 that Eq. (0.5) bears
at least a global solution v on the real line that satisfies:

3.41, A2 > 0, < Ev(—s) < ylis^r, for s —> +oo. (4-37)
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For all r > 0, we set uT = u(- — r), vT = v(- — r), which are solutions of

z" + z + g(z') = hT{t) := h(t — r), t € R.

Since ||/ir||oo = Halloo; it follows, for any s, r > 0, that

Eu-v(s ~t) = EUt^Vt(s) < F(EUr_VT(0))s^r[ = F(Eu-v(-t))s~^. (4.38)

From (4.37), and the boundedness of (u,u'), we deduce that

A3y^ < Eu-v{-y) < A4y^, for y -> +oo. (4.39)

Let us choose r = 2s. Using (4.38), (4.39) and the fact that F is nondecreasing, we
deduce, for s large:

< Eu-V{s) < F(A4s^)s^.
2q

Setting X = A^si-1, the result follows easily.
Remark 4.2. The optimality of the time rate of decay as a power of t for (0.5) is

well known in the case h = 0. This of course is no longer true in the general case, as
indicated by Theorem 3.3. However, the result of Proposition 4.10 makes sense, since it
only asserts the optimality of (1.33) among all possible estimates of the form (4.35).

Remark 4.3. The conditions assumed on the function F in Proposition 4.10 are jus-
tified by the fact that the available estimates satisfy such conditions (see Remark 1.2).

d) Optimality of the constants: the case of exponential decay. We first recall the well-
known fact that the time rate of decay for the difference of two (bounded) solutions
of (0.5) cannot be faster than exponential. In fact, in the periodic case, under the
hypotheses of Theorem 3.3, we now know that it is exactly exponential.

Proposition 4.11. Let us suppose h: R —> R bounded, uniformly continuous, g\ R —>
R locally Lipschitz continuous nondecreasing with g(0) = 0, and satisfying:

g ^ 0 on a neighbourhood of 0. (3.1)

If Eq. (0.5) admits a solution u0, such that uq and u'0 are bounded on R+, then for any
distinct solutions u and v of (0.5), we have

Vt > 0, £u_„(t) > C(u(0), u'(0), v(0), v'(0))e~et

with e independent of u, v and C(w(0),u'(0),u(0), v'(0)) > 0.

Proof of Proposition By Theorem 3.1, any solution is asymptotic to Uq in the
phase space when t tends to +oo. Therefore, there exists some T\ > 0 depending on u
and v such that

Vt>Ti, |u'(i)|<Jlf and \v'(t)\ < M,

with M := 1 + |K||l~(r+). Then setting L := \\g\\wi-°°([-M,+M)), we get

Vt > TU E'u_v(t) = (g(u'(t)) - - v'(t))

> -L(u'(t) - > -2LEu_v(t)

and the result immediately follows by integration. □
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Using the same method as in subsection c), we now establish a lower bound on the con-
stant in the case of exponential time decay. As a consequence for the periodic framework,
it appears that (3.14) in Theorem 3.4 is almost optimal, in the sense that the constant
must necessarily behave exponentially for large initial energies. In precise terms, our
result can be stated as:

Proposition 4.12. We suppose h: R —> R continuous, T-periodic, g: R —> R locally
Lipschitz continuous, satisfying:

3q > 1, 3i?i, B2 > 0, Bi\x\q <\g(x)\ < B2\x\q, for |x| large, (4.24)

37 >0, 3C > 0, Vz, y € R, (g(x) - g(y))(x - y)] > C\x - y|7+1, (4.25)

and we assume that Eq. (0.5) admits a T-periodic solution u. If an estimate of the form

Vt > 0, Eu-V{t) < F(Eu-v(0))e~St

holds for any solution v of (0.5), with F: R+ —* R+ nondecreasing and 6 > 0, then the
function F necessarily satisfies

F{X)>KXexp[aXV], as X -> +oo (4.40)

for some K, a > 0.

Proof of Proposition 4-12. We again consider a global solution v of (0.5) on the real
line that satisfies (4.37). Setting vn = v(- - nT) (which is a solution of (0.5) since h is
periodic), it follows for any n G N and s > 0, that

Eu-V(s - nT) = Eu-Vn(s) < F(Eu-Vn(0))e-6s = F{Eu.v{-nT))e~6s. (4.41)

From (4.37), and the boundedness of (u,u'), it follows that

A^y^ < Eu-v{-y) < AAy^i, for y -> +oo. (4.42)

We choose n = [2s/T], so that s — T < nT — s < s. Using (4.41), (4.42), and the fact
that F is nondecreasing, we deduce, for s large:

Az(nT — s)«^r < Eu-V(s — nT) < F{A^{nT — s)«^T)e~Ss

and then

A3(s -T)& < F(AAs^)e~Ss.
2 q

Setting X = AiS"-1, the result follows.
Remark 4.4. By comparing (3.14) and (4.40), one can see that the upper bound on

F tends to the lower one as p goes to 1.
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