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Abstract. The convective instability of a fluid that fills a horizontal cylindrical cavity
is considered. The boundaries of the cavity are conducting, and the driving force is a
linear temperature gradient far from the cylinder. Critical Rayleigh numbers governing
the onset of convection are determined for neutral stability. The results show that the
critical Rayleigh number depends on the ratio of thermal conductivities of the solid to the
fluid (A), and a wavenumber. Both two- and three-dimensional disturbances are included.
The disturbances are separated into even modes and odd modes. The most unstable odd
modes have been found to be two-dimensional, while the most unstable even modes are
three-dimensional. The two-dimensional odd modes are most unstable in the vicinity of
A = 1. The three-dimensional even modes are more unstable for other values of A. The
results are compared with the previous results of Gershuni and Zhukhovitskii.

1. Introduction. Consider a cavity in a solid which has the shape of a cylinder and
is filled with a homogeneous fluid. The axis of the cylinder is oriented horizontally. The
convective instability of the fluid is treated here. The driving force of the instability is a
linear temperature gradient in the solid far from the cylinder.

The problem relates to many scientific and engineering problems. Of particular im-
portance is the migration of fluid inclusions in a geological deposit where nuclear waste
is stored. A fluid inclusion is a volume of fluid trapped in a solid. If the solid is soluble in
the fluid, such as a water inclusion in a salt dome, the fluid inclusion will migrate through
the solid when a temperature gradient is applied [10], [1], [8]. Nuclear waste is currently
stored in salt domes at several locations around the world [9], [6]. Although sealed in
glass to eliminate most of the harmful radiation, the nuclear waste still produces small
amounts of heat. When stored in large quantities, there is sufficient energy to result
in a temperature gradient in the surrounding geological material. If the fluid inclusions
in the material become convectively unstable, the migration occurs much more rapidly.
The inclusions can reach a fissure or other opening, and contribute to the transport of
pollutants from the stored waste [5].
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The fluid inclusions exist in many shapes. It is desirable to determine the region
surrounding the waste chamber where an inclusion of any shape will become convectively
unstable, thus providing an estimate of the quantity of fluid that could be affected by
the waste. The cylindrical shape considered here represents an extreme version of an
elongated inclusion, and may be the most unstable, thus giving the most conservative
estimate.

The convective instability problem studied here was considered previously by Gershuni
and Zhukhovitskii [2]. A review is provided in the book by the same authors [3]. The
results of Gershuni and Zhukhovitskii predict unstable Rayleigh numbers, and incorrectly
claim that two-dimensional odd disturbances are always more unstable than two- or three-
dimensional even disturbances. The method they used for the solution was an expansion
using a low-order polynomial. Convergence of the expansion was not demonstrated.

The problem is now considered using the method of Yih [11]. Details are provided
in McHugh [7]. The results here provide a more accurate value of the critical Rayleigh
number, and show that three-dimensional even modes are sometimes more unstable than
two-dimensional odd modes, disagreeing with Gershuni and Zhukhovitskii [2]. A com-
parison is made between the present results and similar results in a rectangular geometry
by Hurle [4] and a spherical geometry by Yih [11],

2. Primary quantities. Consider a horizontal circular cylinder of fluid embedded in
a solid, and let the cylinder have radius, a, and an infinite length. The axis of the cylinder
is coincident with the z-axis, oriented horizontally. Figure 1 shows the coordinate system.

Fig. 1. Geometry and coordinate system
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The driving force leading to instability is a temperature gradient which is assumed to
be linear far from the cylinder. The primary state assuming no motion was given by Yih

[10]:

Ts = 0SX3 + 0\a2+ Tq, (1)

T — (3xs + Tq, (2)

where

(3)

*-!(¥)■

A (5)

To is a reference temperature, k is the conductivity, r is the radial coordinate, and X3 is
the distance parallel to gravity. Note that quantities in the solid are denoted with the
subscript, s, and the overbar indicates a primary variable.

3. Solution for two-dimensional disturbances. The governing equations are the
Navier-Stokes equations, continuity, and the energy equation, which are made dimen-
sionless using a as the length scale, n/a2 as the time scale, and (3a as the temperature
scale, where k is the diffusivity of the fluid. All variables are separated into a primary
and a disturbance part, and products of the disturbance quantities are neglected. The
resulting linear disturbance equations are

f+«3 = v«f, (6)

w=Av2f" (7)

yM-~E;-Rf5" + v'u" (8)

(9)

where the circumflex indicates a disturbance quantity, and

v „ qaBa'1 , .
Pr = ", R=~y—— 10

K KU

are the Prandtl and Rayleigh numbers, respectively.
The boundary conditions at the cylindrical surface are zero velocity, continuity of

temperature, and continuity of heat flux, which demand that

~ ~ BT BT
u,= 0, T = Ts, —=\ (11)
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on r — 1, respectively. Furthermore, Ts —» 0 as r —> oo, and T, in, and p must be regular
at r = 0.

Neutral stability is assumed and the derivatives with respect to time are deleted (see
Yih's [11] proof of the exchange of stabilities). The solution is found by expanding h
using

OO OO

h = ^2 ^2 AnjJn(oinjr) cos nO, (12)
71=0 j = 1

where h = RT, Jn are Bessel functions of the first kind of integer order, Anj are con-
stants chosen by the initial conditions, and anj are constants that are determined by the
boundary conditions on temperature. The linear equations are then solved for 113. The
details are tedious and are provided in McHugh [7]. The final solution is

1
«3

n=0 j=l \
4a? „

- [4 - (an + bn)\Jn cos n6 + anJn+2 cos(n + 2)0

~i~ bnJn—2 cos(n - 2)0

+ ^Bnjrn+2 cos nO + ^Cnjrn cos(n — 2)0

+ Fnjrn cos nO + Gnjr"+2 cos(n + 2)0 + Hnjrn 2 cos(n — 2)0

where

(13)

[ 2 n = 0, . .= < (14)
1 n > 0,

fc.- " " = (i5)
y 1 n > 1.

Note that the argument of the Bessel functions in (13) is anjr. The five constants are
evaluated with the boundary conditions.

4. Three-dimensional disturbances. Consider the same primary state, but now
let the disturbances be three-dimensional. The procedure for finding the eigenvalues is
essentially the same as the two-dimensional case. The expansion for h is

OO OO

"-EE AnjJn{ctnjr) cos nO cos kz. (16)
n—0j=1
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The resulting solution is

( 4fc2 + [4-(a„ + M]<- T
"3 =  4(a2. + fc2)2 J-Jncosn9

n=0j=l \ \ nj '

v2

anJn+2 cos(n + 2)6 + bn Jn_2 cos(n - 2)0
anj

4(a£, + fc2)2

+ Bnj TT

nj

1
4k rl'n cos nd — rI'n+2 cos(n + 2)0

(17)
-C -

nj4 k rl'n cos n6 — rl'n_2 cos(n — 2)0

+ cos n0 + Gnjln+2 COS(n + 2)0

+HnjIn-2 cos(n — 2)0J cos kz,

where /n is the hyperbolic Bessel function. Note that the argument of the hyperbolic
Bessel functions is kr.

5. Evaluation of the critical Rayleigh number. The value of the Rayleigh num-
ber for marginal stability is calculated with either the two-dimensional or three-dimen-
sional theory using the reduced form of the heat equation:

V2h = Ru3. (18)

The two-dimensional results are obtained by inserting (12) and (13) into (18). The coef-
ficient of cosri0 is identified for n = 0,1,2,, multiplied by rJn(aw;r), and integrated
from zero to unity for I = 1,2,3,  The result is an infinite set of algebraic equations
in the coefficients, Anj. Taking a finite number of coefficients, the determinant of the
coefficient matrix determines the value of R. The procedure for the three-dimensional
case is to insert (16) and (17) into (18), then proceed as above.

The algebra involved in taking the determinant of the coefficient matrix for more than
two coefficients is unmanageable. Furthermore, it has been found that the results are not
converged with only two coefficients. Therefore, the value of the critical R is evaluated
numerically for an arbitrary number of coefficients. There are two steps to the numerical
part of the work. The first step is to determine anj for a chosen value of A (and k for
the three-dimensional theory). The values of anj are found numerically such that the
expansion for h satisfies the temperature boundary condition. Note that this is the only
place in the numerical work where A is involved.

It is interesting to compare the two-dimensional results to the three-dimensional re-
sults. As k —> 0, the three-dimensional case is equivalent to the two-dimensional case.
However, the values of anj for the two-dimensional case do not match the values for
three dimensions as k —> 0. They are different sets of numbers. Yet, the values of the
critical Rayleigh number for the three-dimensional case with k —> 0 do match the two-
dimensional results to an arbitrary number of digits. Furthermore, the analytic solutions
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determined previously for three dimensions do not reduce to those for two dimensions as
k~* 0.

The second step in the calculation is the determination of the critical value of R. This
is accomplished by forming a matrix equation out of (18) in the following form:

[A + RB}(Anj)=0, (19)

where A and B are matrices. The matrix A is inverted and the equation is left-multiplied
by A~l to get

A~<B + ±I (Anj) - 0. (20)

The values of are determined using the QR method, and then inverted to obtain the
critical Rayleigh numbers.

The solution can be split into even and odd modes, with regard to a vertical plane of
symmetry along the center of the cylinder. Thus an even mode has u(x2) = u(—x2), and
an odd mode has u(x2) = —u(—x2). The calculation for R is performed for the even and
odd modes separately, for an arbitrary set of n's and j's. The maximum value of each
index is chosen independently. Convergence is realized when the value of R ceases to
change with an increase in either index. Table 1 shows that convergence is obtained quite
rapidly with this method. The values in Table 1 are for three-dimensional odd modes
with A = 1 and k = 1. Convergence to six decimal places is obtained for these modes
with only two values of n (n = 1 and 3) and ten values of j. Note that the convergence
with increasing n is substantially faster than with increasing j. Convergence with other
modes was similar.

Table 1. Convergence of the critical Rayleigh number for k = 1 and
A = 1

J max
1 2 3 4 5 10 20

289.454 276.797 276.253 276.175 276.156 276.147 276.147
289.345 276.612 276.071 275.993 275.975 275.965 275.965
289.345 276.612 276.071 275.993 275.975 275.965 275.965
289.345 276.612 276.071 275.993 275.975 275.965 275.965

6. Results. Figure 2 shows the critical Rayleigh number versus A for the two-dimen-
sional theory. Only the most unstable even and odd modes are shown. There is actually
an infinite set of modes, all with greater values of R than those shown in Fig. 2. The
higher-order modes that have been studied have the same trend as the two modes shown.
Note in Fig. 2 that the odd modes are always more unstable than the even modes. Also,
note the effect of A, which is that R increases monotonically with A, finally reaching an
asymptotic value. These trends (with two-dimensional disturbances) match the previous
results of Yih [11] for the spherical geometry and Hurle, et. al. [4] for the rectangular
geometry.



CONVECTION IN HORIZONTAL CYLINDERS 431

R

R

Fig. 2. Critical Rayleigh number (R = — ) versus A (= ks/k)
for two-dimensional disturbances

n 4
Fig. 3. Critical Rayleigh number (R = — g ^ ) versus k for three-
dimensional disturbances with A = ks/k = 1

The results for the three-dimensional theory depend on the axial wavenumber, k, as
well as A. Figure 3 shows critical Rayleigh numbers for the three-dimensional theory
versus k. Again, only the most unstable odd mode and the most unstable even mode are
shown.
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The odd modes are seen to have a minimum value at zero k, which corresponds to a
two-dimensional disturbance. The minimum value for A = 1 is 206.18. The even modes
in Fig. 3 attain a minimum value of the critical Rayleigh number for a nonzero value of
k. For the case of A = 1, the minimum is attained at k = 1.605, and the corresponding
minimum Rayleigh number is 210.63. This minimum value does depend on A, as will be
seen.

The odd mode has the lowest value of R for A = 1 (Fig. 3); therefore, the odd mode is
more unstable. However, for other values of A, the even mode may be more unstable. The
most unstable mode for the odd case has been found to always be the two-dimensional
case. The most unstable mode for the even case must be determined by finding the
minimum in the relation between R and k. The most unstable odd and even modes
versus A are shown in Fig. 4. The values of k that correspond to the most unstable even
modes are shown in Fig. 5.

R

Fig. 4. Critical Rayleigh number [R = — ) versus A (= ks/k)
for the most unstable even and odd modes

Figure 6 shows isotherms from the eigenvectors of the disturbance solution for the
most unstable even (Fig. 6a) and odd (Fig. 6b) modes. These temperature patterns are
different than the streamline patterns. The odd modes show motion in a single cell with
streamlines that are closed loops surrounding the origin. The even modes have a vertical
streamline through the center of the cylinder, and two mirror image cells on either side.
The difference between the temperature patterns and velocity patterns indicates that
conduction and convection are comparable in magnitude in the disturbance solution.

Note in Fig. 4 that sometimes the even modes are more unstable, and sometimes the
odd modes are more unstable, depending on the ratio of conductivities, A. Odd modes
are most unstable in the vicinity of A = 1, and even modes are most unstable for other
values of A. This result disagrees with Hurle, et. al., [4] and Yih [11]. Hurle, et. al., [4]
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0 0.5 1

Fig. 5. Wavenumber for the most unstable even mode

Fig. 6a. Isotherms for the even disturbances with A = ks/k = 1

showed that even modes are always more unstable than odd modes for the rectangular
geometry. Yih [11] showed the opposite trend for the spherical geometry; odd modes are
always more unstable than even modes.

One can speculate about the competition between even and odd modes in confined
geometries with conducting boundaries. The sphere of Yih [11] had confined bound-
aries in all horizontal directions, and odd modes were most unstable. The rectangular
shape of Hurle, et. al. [4] was unbounded in the horizontal direction, and even modes
are most unstable. The cylinder considered here has one bounded direction and one un-
bounded direction, and the most unstable mode may be even or odd. The speculation is
that geometries with unbounded horizontal directions favor even modes, while bounded
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II

'((.

Fig. 6b. Isotherms for the odd disturbances with A = ks/k = 1

geometries favor odd modes. For example, one might hypothesize that a geometry con-
sisting of an ellipse of revolution will be more unstable to odd modes rather than even
modes.

As discussed previously, Gershuni and Zhukhovitskii [2] considered the same problem.
They expanded all variables with

M N

f = (l-r2)J2J2A™x?xz> (21)
771=0 71=0

where / represents any of the dependent variables. The order of the polynomials was
restricted according to

M + N <2 (22)

so that analytic results could be obtained.
A direct comparison between the present results and those of Gershuni and Zhukhovit-

skii [2] is given in Table 2. Gershuni and Zhukhovitskii use the parameter, a, which is
merely the inverse of A. Note that y is listed along with A in Table 2, for convenience.
The present results differ substantially from the older results. For large A the difference
is nearly a factor of two. The two sets of results match best near A of unity.

Table 2. Comparison with Gershuni and Zhukhovitskii of critical
Rayleigh numbers

A i
0.01 100
0.1 10
1 1

oo 0

Odd modes
Gershuni Present

102 136.19
134 144.37
210 206.18
260 406.76

Even modes
Gershuni Present

138 105.77
147 134.49
213 210.63
480 268.62

The present results have been shown to be converged as terms are added to the
expansions. Gershuni and Zhukhovitskii apparently could not perform such a test, due
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to the reliance on a purely analytic result. Furthermore, the choice of simple polynomials
by Gershuni and Zhukhovitskii is not expected to be as accurate as the Bessel function
expansions used here, given the Bessel operators which appear in the governing equations.
Therefore the present results are believed to be correct.

The even modes as k approaches zero show a different trend than that presented by
Gershuni and Zhukovitskii [2], This is evident in Fig. 7, which shows the same two
modes as Fig. 3, plus two more modes, one even and one odd. Thus the modes shown in

4000

3500 -

3000 -

2500 -

R 2000

1500 -

1000 -

Fig. 7. Critical Rayleigh number (R = — 9C"lfa ) for three-
dimensional disturbances for several higher modes, with A = ks/k = 1
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Fig. 7 are the four most unstable modes for A = 1. The present results show that as k
approaches zero, the slope of the curve also approaches zero. Gurshuni and Zhukhovitskii
show a nonzero slope for the first even mode, and then claim that the second even mode
is singular at k = 0. The results of Gershuni and Zhukhovitskii are believed to suffer
excessive truncation error in a region of small k, and the present results are again correct.

Figure 7 also shows that the second odd mode has a minimum at k = 0, and the second
even mode reaches a minimum at a nonzero value of k, as do the first two modes. Note
that the second even mode is much more unstable than the second odd mode, unlike the
first modes at A = 1.
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