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PERIODIC ORBITS IN PLANAR SYSTEMS
MODELLING NEURAL ACTIVITY
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Abstract. In this paper we will prove certain properties of a planar dynamical system
modelling the neural activity of a network consisting of two neurons. At first we show
that for a certain region in parameter space (such that there exist three equilibria) the
dynamical system has no periodic orbits. To this end we need a new criterion for the
nonexistence of limit cycles in a system of Lienard type (Lemma 3.1). Next we derive
conditions under which our model system has exactly one periodic orbit, which will be
a stable limit cycle. Finally, we cover a part of the parameter space where we can prove
that the dynamical system has three equilibria such that around two of the equilibria at
most one limit cycle can exist.

1. Introduction. In this work we study the number of periodic orbits of a mathe-
matical model for neural activity of a small network consisting of two nerve cells; see Fig.
1.1. The model takes the following important neurophysiological properties into account
(for details see [14]).

Spatial and temporal integration. A nerve cell collects incoming signals from other
cells on its dendrites which sum up both temporally and spatially to the total potential
at the cell body.

Nonlinear signal generation. The neuron will generate an output signal, which is a
(nonlinear) increasing function of the total potential.

Excitation and inhibition. Neurons can be classified as excitatory and inhibitory neu-
rons. Excitatory neurons cause a positive electrical membrane potential difference at the
next neuron, whereas inhibitory ones cause a negative potential difference.

The network considered consists of an excitatory and an inhibitory neuron; see Fig.
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Fig. 1.1. Connection scheme of the neural network modelled by (1.1)

1.1. The mathematical model describing the dynamics of the network is given by (for
details see [6]):

du\
—j— = —u i + ) — (712^2 + eii

f (1.1)dU2 , \
— = ~u2 + <721<A«i) + e2.

The functions and parameters occurring in system (1.1) have the following neurophysio-
logical meaning.

• U\, u2 : K —> K denote the total potential of the excitatory and inhibitory neuron,
respectively.

• qik is a positive constant that represents the strength of the connection line from
the fc-th neuron to the i-th neuron (see Fig. 1.1). In this work we assume <722 = 0,
i.e., there is no self-inhibition.

• (p : M —» R+ is the transfer function that describes the activity generation of the
1-th (excitatory) neuron as a function of its total potential u\(t). In this work we
choose (see Fig. 1.2):

f{u\) = 1 7—7—\ • (1-2)1 + exp(—4«i)
For the sake of simplicity the transfer function corresponding to the inhibitory
neuron is assumed to be the identity.

• ei,e2 are external stimuli acting on the 1-th (excitatory) and 2-th (inhibitory)
neuron, respectively.

The system (1.1) is a special case of an additive neural network of the form

^7- = -«i + qwfii{u]) - qi2V2(u2) + ei,
f (1.3)dii2 N

— = -u2 + 921<Mui) _ 922^2(^2) + e2;
at

see Cowan and Ermentrout [3], with ip 1 = ip,<p2 = idm, and q22 = 0. If qwq22—q\2q2\ i=- 0,
by setting

Ui = qnvi - qi2v2 + e<, i = 1,2, (1.4)



PLANAR SYSTEMS MODELLING NEURAL ACTIVITY 439

Fig. 1.2. The function ip(u) = 1^exp1(_4U) and its derivatives

the system (1.3) becomes

dv i . .
— = -vi + pi [qnVi - qi2v2 +e1),

f (1-5)dv 2 , s.
— = -v2 + </?2 (<721^1 - Q22V2 +e2),

which is a special case of the following system introduced by Wilson and Cowan (see

[17]):

— r, )• (1 - rivi)<pi(qnvi - qi2v2 + e±),
f (1.6)

dv 2 /1 \ / \
— = -v2 + (l - r2v2)tp2(q2\vi - q22v2 + e2),

with r\ = r2 = 0.
Neural networks of the Wilson-Cowan type (and thus additive networks, too) possess

properties, which play an important role in the information processing in the brain. Two
of these properties are the ability to carry out sustained oscillations and multistability
(see [17], [3]). Neural circuits consisting of excitatory and inhibitory neurons arise in
several regions of the brain, for instance, in the thalamus (see [16, p. 550]). They provide
a possible mechanism of generation of rhythmic activity in the brain which has been
observed in experiments (see [14], [16]). On the other hand, multistable neural networks
can be viewed as models for associative memory (see [10], [9]). Attractors (for example,
stable equilibria or limit cycles) can be interpreted as stored memories. In this context,
the number of attractors characterizes the quality of the model. But not only the number
of stable equilibria and periodic solutions is important. The number of unstable periodic
solutions can also be of particular importance. For instance, unstable periodic orbits in
planar dynamical systems define the boundaries of the attraction domains of attractors
(see Fig. 1.6).

The first results on the existence of limit cycles and multiple stable equilibria for
the system (1.6) have been proved by Wilson and Cowan [17]; see also [3] for a similar
analysis of the system (1.3). In [2], using computer techniques, a bifurcation analysis of
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Fig. 1.3. The curves of saddle-node bifurcations sni,sri2, Hopf bi-
furcations h\, ft-2 and saddle-node bifurcations of periodic orbits
snpo. dh\,dh,2 are Hopf bifurcation points of codimension > 1.
Taken (modified) from [6]. Regard b = qi2Qi2 and c = ei — <71262•

the system (1.6) is provided with ei and (/21 as bifurcation parameters. In [9] bifurcation
properties of the system (1.6) with <p\ = tp2 are analyzed with e\ and &2 as bifurcation
parameters.

In [6], the bifurcation properties of the system (1.1) for fixed qn are studied, when
the negative feedback b := <712912 and total input c := e\ ~q\2&2 acting on the excitatory
neuron are varied. Using both local mathematical analysis and numerical techniques,
the complete bifurcation diagram in the (b, c)-plane of the system (1.1) with fixed special
value for the parameter qu is provided; see Figures 1.3, 1.4, 1.5, and 1.6.

The bifurcation diagram presented in [6] (see also Figures 1.3-1.6) is consistent with
bifurcation theory (see [4]), but a rigorous verification of its completeness and correctness
is a difficult mathematical problem. For instance, the co-existence of two large periodic
orbits (i.e., periodic orbits surrounding three equilibria) and a small periodic orbit (i.e.,
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-0.5

-0.55

Fig. 1.4. The curves of saddle-node bifurcations sni,sn2, Hopf bi-
furcations h\, ti2 and the curves of saddle loops sl\,sl2,tb\,tb2 are
Takens-Bogdanov bifurcation points. Taken (modified) from [6]. Re-
gard b = 912912 and c = ei — 91262-

a periodic orbit surrounding one equilibrium), and the co-existence of one large periodic
orbit and two small periodic orbits of the system (1.1) with parameters (712912161 —
91262) € C and (912912,61 — 91262) € H (see Figures 1.5 and 1.6), respectively, is based
upon numerical calculations. Rigorous proofs of the occurrence of such phenomena are
still missing.

The objective of this work is to prove the correctness of the bifurcation diagram for
some specific cases.

In this work we prove the following results:
• nonexistence of periodic orbits of system (1.1) for parameters (912912, ei — 91262)

in a large subset of A (see Figures 1.5 and 1.6 (Theorem 4.1));
• uniqueness of periodic orbits for parameters (912912, ei — 91262) G N in the "sym-

metrical" case (see Figures 1.5 and 1.6 (Theorem 4.2));
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Fig. 1.5. A section of the bifurcation diagram of (1.1) (and thus
(1.8)) consisting of the curves of Hopf bifurcations saddle-
node bifurcations 5721,5712, saddle-nodes of periodic orbits snpo and
saddle-loops 5/1,5/2,5/3,5/4. Taken (modified) from [6]. Regard b =
<?i2<7i2 and c = e 1 — <71262-

» uniqueness and nonexistence of two small periodic orbits for parameters (912912,
ei —91262) 6 H and (912912, ei —91262) G K (see Figures 1.5 and 1.6, respectively,
in the "symmetrical" case (Theorem 4.3)).

By the symmetrical case we mean parameters in the (b, c)-plane (regard b = 912912 and
c = e 1 — 9i2e2) that are lying on the straight line given by the intersection point of
the curves of the Hopf bifurcations h\, ho and the intersection point of the curves of the
saddle-node bifurcations sni,sri2; see Fig. 1.3.

It can be shown that for the symmetrical case the solutions of system (1.1) are sym-
metric with respect to the equilibrium (0, ^ + e2). This means that if (u(t),v(t)) is a
solution of system (1.1), then so is (—u{t), <721 + 2e2 — v(t)).

Before we start with the analysis of the system (1.1), let us try to reduce the number
of the parameters by using the following affine transformation.
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Setting

^ stable node or focus

O unstable node or focus
X saddle point

— stable periodic orbit
unstable periodic orbit

Fig. 1.6. Simplified phase portraits corresponding to the regions of
the diagrams in Figures 1.3 and 1.5. Taken (modified) from [6].

u := ui and v := —(— £-2)-, (1-7)
921

the system (1.1) becomes

du , . ,
— = —u + aip(u) — bv + c,

d-t) , .
---v + r(u).

(1.8)

where

a:=qu, b := q12q2\, c := ei - gi2e2. (1.9)

Notice that the new system (1.8) is equivalent to the original system (1.1). The advantage
of the new system (1.8) is that it possesses only three parameters. The physical meaning
of the new parameters a, b and c is clear (see Fig. 1.1): a describes the positive feedback,
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b describes the negative feedback of the system, and c describes the total external input
acting on the 1-th neuron.

2. Preliminaries. In order to be able to state our results, we need some basic prop-
erties of the system (1.8). We start with the existence of equilibria.

It is easily verified that (u,v) E R2 is an equilibrium of (1.8) if and only if

c = 9o(u) :=u-(a- b)<p(u),

V = <p(u).

Lemma 2.1 (Existence of equilibria).
(1) If 1 > a — b, then there is a unique equilibrium of (1.8) for each c E R.
(2) If 1 < a — 6, then there are c\, C2 E R with C2 < c\ such that

(a) for c E {—oo, C2) U (ci, +00) there exists exactly one equilibrium,
(b) for c E {ci, C2} there exist exactly two equilibria,
(c) for cE (c2,ci) there exist exactly three equilibria.

(2.1)

Proof. Since

lim go(u) = ±00, (2-2)
u—>±00

system (1.8) has at least one equilibrium. For 1 > a — 6, the function go is strictly
increasing. This yields the uniqueness of the equilibrium. If 1 < a — 6, then there are
exactly two solutions uoi,uq2, with u01 < 0 < U02 = — W01, of

9o{u) = 1 - (a- b)<p'(u) = 0, (2.3)

such that go is strictly increasing on (—00, «oi] and [U02, +00), and strictly decreasing on
[1/01,^02]; see Figures 2.1 and 2.2.

With

ct := go(iiQi) = uoi - (a - b)ip(u0i), i = 1,2, (2.4)

the lemma is proved.
Remark 2.1. For 1 < a — b, the two solutions «oi,«02 °f Eq. (2.3) are continuous

functions of b < a— 1. This implies that Ci, C2 in Lemma 2.1 are also continuous functions

v = g0(u)

Fig. 2.1. The function go



PLANAR SYSTEMS MODELLING NEURAL ACTIVITY 445

= ¥>'(«)

Fig. 2.2. The first derivative of if

of b < a — 1 given by

Ci(b) := u0i(b) - (a - b)<p(u0i(b)), i = 1,2. (2.5)

The next lemma provides a necessary condition for the existence of periodic orbits.

Lemma 2.2 (Nonexistence of periodic orbits). For 2 > a, system (1.8) has no (non-
trivial) periodic orbits.

Proof. For the divergence of the vector field given by system (1.8), it follows that

div(—u + aip(u) — bv + c, — v + <p(u)) = —2 + a(p'(u). (2.6)

Using the properties of ip' (see Fig. 2) we get —2+aip'(u) < 0 for u ^ 0 and —2+a<p'(u) <
0 for u = 0. Bendixson's criterion (see [7, p. 44]) completes the proof.

Proposition 2.1. If 2 < a, then
(1) there are exactly two solutions uqi,uq2,uoi < 0 < U02 = —Uqi, of

2 - atp'{u) = 0, (2.7)

and
(2) Uqi < uoi < 0 < uq2 < M02, provided b <

"oi = "oi < 0 < U02 = "02, provided b = |,
where uqi and U02 are the solutions of Eq. (2.3).

Proof. Part 1 follows from the monotonicity of <p' on (—oo,0] and [0,+oo) (see Fig.
2.2). For the proof of Part 2 we use that b < | if and only if a — b > |. Then the
monotonicity of ip' on (—oo, 0] and [0,+oo) yields Part 2 (see Fig. 2.2).

Proposition 2.2. If 2 < o, then C2 < C2 < c\ < c\, provided b < | and C2 = C2 < c\ =
ci, provided b = |, where ci and C2 are given by

h := ffo("oi), i = 1,2; (2.8)

and C\,C2 are as in Lemma 2.1.

Proof. For b < |, it follows that (see Proposition 2.1)

"01 < "01 < 0 < U()2 < "02-
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Because go is strictly decreasing on [tioi, U02] we obtain < C2 < c\ < c\. If 6 = |, then
1 — (a — b)ip'(u) — 0 if and only if 2 — cnp'(u) = 0 and thus c, = i = 1, 2.

Proposition 2.3. Suppose 2 < a and b < Then for c € (c2,ci), the system (1.8) has
exactly three equilibria (tti,t;i), (uq,vq), and (u2,v2) and it follows that

«i < w01 < Uo < U02 < u2.

Proof. From Proposition 2.2 we know that c2 < C2 < Ci < ci. Then Lemma 2.1 pro-
vides the existence of the three equilibria (ui,t>i), (tto,«o), and (u2,v2) °f (1-8), provided
c € (c2,ci). By Proposition 2.1 we get U01 < uo\ < ^02 < uo2- This yields u\ < u01 and
«02 < u2; see also Figures 2.1 and 2.2. Finally, the monotonicity of go on [uoi,wo2] and
Eq. (2.1) imply that Uqi < uq < Uo2-

The symmetrical case. Substitution of

c = |(6 — a) (2.9)

into system (1.8) yields
du b — a
— = -u + a<p(u) -bv -1 —,
7 2 (2.10)du
-=-v + ^(«).

From Lemma 2.1 we obtain

Lemma 2.3 (Existence of equilibria in symmetrical case).
(1) If 1 > a — 6, then (u,v) = (0, ^) is the only equilibrium of (2.10).
(2) If 1 < a — b, then there exist exactly three equilibria (u 1, v\), (uq, i>o), and (u2, v2)

of (2.10) and it follows that

U1 < U() = 0 < U2 = —u\.

Proof. (u,v) € R2 is an equilibrium of (2.10) if and only if

gos(u) := u - (a - b)(<p(u) - ±) = 0, v = ip(u). (2.11)

This yields the assertions of the lemma (see also the proof of Lemma 2.1).
Remark 2.2. We call this case symmetrical because, under the condition (2.9), sys-

tem (1.8) exhibits symmetry with respect to the equilibrium (0, |). To be more precise,
if (u(t),v(t)) is a solution of system (2.10), then so is (—u(t), 1 — v(t)).

Proposition 2.4. Suppose 2 < a, 1 < a — b. and c = ^(b — a). Then there exists
b G (|, a — 1) such that

(1) tii < W01 < Wo = 0 < U02 < u2, provided 0 < b < b,
(2) tti = Uqi < Uq = 0 < uq2 = «2> provided b = b, and
(3) ttoi < tii < uo = 0 < ti2 < tto2> provided b < b < a — 1.

Proof. Differentiating Eq. (2.11) with respect to b, one obtains

s(«) = ~MU) - 5)-
This implies that U\ is a strictly increasing function of b < a — 1 and that u2 is a strictly
decreasing function of b < a — 1, while tii = u2 = 0 for b = a — 1.
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Furthermore, from Proposition 2.3 and Lemma 2.3, we know that U\ < Uoi < uo =
0 < W02 < U2, if b < |. Then, the continuity and the monotonicity of u\ and u2 provide
the existence of b with the properties above, and thus the proof of the proposition is
complete.

3. Lienard systems. The first aim of this section is to show how system (1.8) can
be reduced to a system of the form:

jr = y-F(x),
f (3.1)dy , v
dt = ~9{x)-

System (3.1) is referred to as a Lienard system. There exists an extensive literature on
periodic solutions of the Lienard system; see for instance [15], [18], and [21]. Most results
concern the nonexistence, existence, or uniqueness of limit cycles of system (3.1). After
the reduction of system (1.8) to a Lienard system, we will state three lemmas that will
appear to be useful in the sequel.

Let (u,v) £ R2 be an equilibrium of (1.8). We will use new coordinates

x := u — u,

y := u — u — b(v — v). (3.2)

Then from system (1.8) and Eq. (2.1) we get

dx
— = y - (2oc - a{f{x + u) - <p(u))),

dv
— = ~{x - (a _ b)(tp(x + u)~ 1p{u))).

Clearly system (3.3) is of the form (3.1) with

F(x) := 2x — a(ip(x + u) — <p(u)),

g(x) := x — (a — b)(tp(x + u) — <p(u)).

(3.3)

(3.4)

Next let us state some lemmas that guarantee nonexistence or uniqueness of limit cycles
for the Lienard system (3.1).

Lemma 3.1 (Nonexistence of limit cycles). Consider the Lienard system (3.1). Suppose
that F(x),g(x) are continuously differentiate functions on the interval (a,/3) where
a < 0 < f3. Assume that

(i) there exist xi,x2 with a < xi < 0 < x2 < (3 such that

g{x 1) = 5(0) = g{x2) = 0,

g(x) > 0, for x £ (x\, 0) U (x2,/?),

g(x) < 0, for x £ (a,xi) U (0,3:2);
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F(x2)

Fig. 3.1. Level sets of A(x,y); k = —F(x2), x > 0

(ii) there exist xi,x2 with x\ < x\ < 0 < x2 < x2 such that

F(:h) = F( 0) = F(x2) = 0,
F(x) > 0, for x G (xi, 0) U (x2,/3),

F(x) < 0, for x € (a,ii) U (0,0:2).

Then system (3.1) has no periodic orbits in the strip a < x < j3.

Proof. First we note that, under the above conditions, system (3.1) has three equi-
libria: 0(0,0), A(x2, F(x2)), and A'(x\, F(x\)). It is easy to check that O is a saddle
while A and A' are antisaddles. Recall that an antisaddle is an equilibrium of which
the product of the eigenvalues of the linearization matrix is positive. Therefore, limit
cycles in system (3.1) either surround exactly one equilibrium (A or A') or exactly three
equilibria. We will refer to the first type of limit cycles as "small" and to the latter type
as "large".

The main tool we will need in the proof is the use of an energy function X(x,y),
depending on a parameter k:

A(z,j/) = \{y + k)2 + G(x), (3.5)

where G(x) = fo 9(s) ds.
Note that the level curves of A(x, y) are all closed. For the rate of change of trajectories

of system (3.1) along such a curve we find

~(E = ^ + ^'dt + = ~9^X^F^ + (3'6)
First we will consider trajectories of system (3.1) in the half-plane x > 0. Now we choose
k = —F(x2) < 0. Then the level sets of A(x,y) for x > 0 are as depicted in Fig. 3.1.
Note that all closed level sets of A(x,y) contain A(x2, F(x2)).

It is easy to check that for k = —F(x2), it follows from (3.6) that ^ < 0, for x > 0.
Therefore, any trajectory of system (3.1) intersects a level set of X(x,y), x > 0, in the
exterior-to-interior direction. This implies that system (3.1) has no small limit cycles
surrounding A because a small limit cycle surrounding A has to be situated in x > 0.
Obviously A is asymptotically stable.
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Hx>y) = j(vo- f(x2))2

-I/O-.

Fig. 3.2. The trajectory 7

Next we consider a trajectory 7 of system (3.1), x > 0, starting in (0,yo), where
?/o > —k = F{x2) > 0. Let y'0 be the y-coordinate of the intersection of the level set of
X(x,y), k = —F(x2), with the y-axis below y = —k, which also contains (0,yo). Note
that this level set satisfies \{y — F(x2))2 + G(x) = \{yo — F(x2))2. It follows that

y'o = -2/0 + 2F(x2) > -yo- (3.7)

If 7 does not intersect the negative y-axis then 7 will have A as its w-limit set. Therefore
we will assume that 7 intersects the negative y-axis, say in (0, y\). Note that this implies
that we assume y'0 < 0.

Because ^ < 0 for k = —F(x2), x > 0, it follows that

yi > y'o > -yo; (3.8)

see Fig. 3.2.
To complete the proof we will consider trajectories of system (3.1) in the half-plane

x < 0 and choose n = — F(x\) > 0. Then in a similar way as in the case x > 0 one can
prove that A'(xi, F(xi)) is asymptotically stable and not surrounded by a small limit
cycle. We can also show that for a trajectory starting in (0, j/i), y\ < — k = F(xi) < 0,
crossing the positive y-axis, say in (0,2/2), we have

2/2 < -2/1- (3.9)

Combining (3.8), (3.9) we find that y% < yo and therefore there can be no limit cycles
containing the three equilibria O, A, and A'. This completes the proof.

Lemma 3.2 (Uniqueness of limit cycles). Consider the Lienard system (3.1) on R2,
where the functions g(x) and F(x) are continuously differentiable functions. Assume
that

(i) g{-x) = -g{x) and F(-x) = -F(x);
(ii) g(x) > 0 for x > 0;
(iii) there exists a constant C > 0 such that F(0) = F(() = 0 and F(x) < 0 for

x e (0,C);
(iv) for x > (, F(x) is monotonically increasing and lim^oo F(x) = 00.
Then system (3.1) has exactly one limit cycle. The limit cycle is stable and hyperbolic.
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Lemma 3.2 is basically due to Lienard [12]; see also [11]. An alternative proof of this
lemma, which also concludes on the hyperbolicity of the limit cycle, can be found in [13].

Lemma 3.3 (Uniqueness of limit cycles). Consider the Lienard system (3.1) where the
functions F(x),g(x) are continuously differentiate on the open interval (a,/3). Define
f{x) EE £F(X).

Suppose:
(i) there exists a £ G (a, (3) such that (x — £)g(x) > 0 for x G (a,/3) \ {£};

(ii) there exists a ^ G (a,/3) such that (x — At)/(x) > 0 for x G (a, (3) \ {/it}.
Then if

(a) there exists k G E such that /(x) — K.g(x) does not change sign, then system (3.1)
has no limit cycles in the strip a < x < (3\

(b) if fj, < £ and ^(^y) < 0 for x G (a, /x) U (£, /3), then system (3.1) has at most one
limit cycle in the strip a < x < /3, which is unstable and hyperbolic if it exists.

Implication (a) follows after an application of Dulac's criterion with Dulac function
B(x,y) = exp(—/ty) to (3.1). Implication (b) follows from a modification of a theorem
by Zhang Zhi-fen [19], [20].

4. Application to the neuron model. Now we are in a position to state and to
prove the results mentioned in the introduction on the number of periodic orbits of system
(1.8). The first theorem provides conditions that guarantee the nonexistence of periodic
orbits in the case that system (1.8) possesses three equilibria.

Theorem 4.1 (Nonexistence of periodic orbits).
(1) For 2 > a, the system (1.8) has no periodic orbits.
(2) Suppose 2 < a and b < |. Then for c G (c2,ci), the system (1.8) has no periodic

orbits, where c.\ and c-2 are given by Eq. (2.8).

Proof. The first part follows from Lemma 2.2. The proof of the second part is an
application of Lemma 3.1. In Sec. 3 we have demonstrated that system (1.8) can be
transformed to a Lienard system with

F(x) := 2x — a(ip(x + u) — ifi(u)),
_v ,_xx (4.1)g(x) := x — (a — b)(<p(x + u) — <p{u)).

Prom Proposition 2.3 we know that for c G (c2,ci), system (1.8) has exactly three
equilibria (ui,Ui), (uo,vo), and (Uo,V2) with U\ < uq < U2■ We set u = Uq and we study
the properties of the functions g and F.

We start with the function g(x). First note that 2 < a and b < | imply 1 < a — b.
Now, from 1 < a — b it follows (see proof of Lemma 2.1): g is strictly increasing on
( —oo,Moi ~ uo] and [U02 — "o, +oo); and g is strictly decreasing on [uoi — uq,uq2 — Uo],
where uoi and M02 are given by Eq. (2.3). Since uq\ — uo < 0 < u02 — Uo,g(0) = 0,
and lim^^-too g{x) = ±oo, this implies the existence of x\ and X2, x\ < 0 < X2 (note,
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y

y = ip(x + uo) - v(«o)

Fig. 4.1. The zeros of the functions F and g

xt — Ui — uo, i = 1,2) such that

g{x i) = 5(0) = g(x2) = 0,

g(x) > 0, for x e (xi, 0) U (x2, oo),

g(x) < 0, for x e (—oo,xi) U (0, X2).

Note that we apply Lemma 3.1 with a = —oo and /3 = oo.
Now let us consider the function F. The first derivative of F satisfies

F\x) = 2 — aip'(x + Mo)- (4-2)

Since 2 < a and c £ (c2,ci) (see Propositions 2.1 and 2.3) this yields: F is strictly
increasing on [—oo,Uoi — mo] and [«02 — Uo,+oo); and F is strictly decreasing on [uoi —
uq,uq2 ~ Mo], where u0i and U02 are given by Eq. (2.7). Then, since uq\ - uq < 0 <
U02 — uo, F(0) = 0, and lim^^ioo F(x) = ±oo, this provides the existence of xi and X2,
X\ < 0 < X2 such that

F(xi)=F(0) = F(x2)=0,
F{x) > 0, for x G (ii, 0) U (x2, oo),

F(x) < 0, for x € (—oo,xi) U (0,X2).

In order to be able to apply Lemma 3.1, we still need to prove that X\ < Xi < 0 < X2 < x2-
Because F(x) = 0 if and only if ~x — (<p(x + uq) — *f(uo)) = 0, and g{x) = 0 if and only
if ~t^x — (>f{x + uo) — ip(uo)) = 0, from b < | we get X\ < X\ < 0 < x2 < X2 (see Fig.
4.1). This completes the proof of the theorem.

Theorem 4.2 (Uniqueness of periodic orbits). Suppose 2 < a, 1 > a — 6, and c = |(6 —
a). Then system (1.8) has exactly one limit cycle, which is stable and hyperbolic.

Proof. The theorem is a consequence of Lemma 3.2. Again we will work with the
Lienard system (3.1) where (4.1) holds and in addition c— ^(b — a).

Prom Lemma 2.3 we know that when 1 > a — b and c = |(6—a), the unique equilibrium
of system (1.8) is (u,v) = (0, |). We set u = 0 and we study the properties of the
functions g and F. It is easy to see that both g and F are symmetric, that is, g{—x) =
—g(x) and F(—x) = —F(x). Prom 1 > a — b it follows (see proof of Lemma 2.1) that g
is strictly increasing on M. Then, because g(0) = 0, we get xg{x) > 0, for x ^ 0.
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Now let us consider the function F. As in the proof of Theorem 4.1, the assumption
2 < a yields the existence of X\ and x?, Xi < 0 < X2, such that

F(£i) = F(0) = F(x2) = 0,
F(x) > 0, for x € (xi, 0) U (x2, oo),

F(x) < 0, for x € (—oo, xi) U (0,X2).

Note that limx_,±oc, F(x) = ±oo, and because of the symmetry of F, x2 = — X\. Finally,
it is easy to check that F is strictly increasing on (—oo, xi) and (x2,oo). The theorem
follows from Lemma 3.2.

Theorem 4.3. Suppose 2 < a, 1 < a — b, and c — |(b — a). Then, if b € [0, a/2] U [b, a — 1),
system (1.8) has no small limit cycles, and, if b € (a/2,6), system (1.8) has at most one
small cycle around each of the equilibria (U\,v\) and (u2,v2), with & as in Proposition
2.4.

Proof. We will use Lemma 3.3 after transforming system (1.8) to a Lienard system.
If we take

u = 0, v — 5, (4.3)

then for c = ^(6 — a), the transformation (3.2) reduces system (1.8) to

dx
it y-F{x)■
dv , x
it - -9{x)•

with
F(x) = 2(x + 2 dip(x) — d),

g{x) = x + 2r^p{x) - rj,

where

(4.4)

(4.5)

d=-\a, v = -l(a-b), <p(x) :=1 + exp(_4x)- (4'6)

It follows from 2 < a, 1 < a — b that

d<- i, r)<-\. (4.7)

Note that F(—x) = —F(x) and g(—x) = —g{x) and therefore system (4.4) is symmetric
with respect to the origin.

As usual we define f(x) = ^(F(x)) = 2(1 + 2dtp'(x)).
For the proof of Theorem 4.3 we will need the following lemma.

Lemma 4.1. For all k > 0, the function /(x) — ng{x) = 0 has at most two positive zeros,
multiplicity taken into account.

The proof of Lemma 4.1 will be stated later.
If 0 < b < |, Theorem 4.1 yields the nonexistence of any periodic orbit. For f < b <

a— 1, we will apply Lemma 3.3 to the system (4.4) in the strip (0, oo), i.e., a = 0, (3 = oo.
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Fig. 4.2. The function 4^, u > £9(x) > f "»

Fig. 4.3. The function ^4, u < £g(x)' i" s

Clearly condition (i) is satisfied, where £ is the unique positive zero of p(a;). Note that
£ = «2- Furthermore, for d < — /(x) has a unique positive zero /x. Note that fi = uo2-
First we consider the case b < b < a — 1. This provides /i > £, i.e., the equilibrium
(£,i7'(£)) is unstable. Let us study the graph of for this case. Because this function
has vertical asymptotes at x = 0, x = £ and a horizontal asymptote at y = 0, it follows
from application of Lemma 4.1 that the graph of is as depicted in Fig. 4.2.

Obviously, there exists a constant k > 0 such that = k, and hence f(x) — ng(x) = 0
has no positive zeros. It follows from Lemma 3.3, implication (a), that system (4.4) has
no limit cycles in the strip 0 < x < oo. Because system (4.4) is symmetric with respect
to the origin, this implies that system (4.4) has no small limit cycles in the whole phase
plane.

Next we consider the case | < b < b. It follows that /x < £, i.e., (£, F(£)) is asymp-
totically stable. Again we study the graph of and use the fact that x = 0,x —
and y = 0 are asymptotes; see Fig. 4.3.

It follows from Lemma 4.1 that, on the intervals (0, y) and (£, oo), ^(^y) < 0 holds.
It follows from Lemma 3.3, implication (b), that system (4.4) has at most one small limit
cycle in the strip 0 < x < oo. If it exists, it is unstable and hyperbolic. By symmetry,
system (4.4) has at most two small limit cycles in the whole phase plane.
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Finally, we consider the case b = b. This yields /j = £, i.e., the situation where the Hopf
bifurcation occurs. We will use Lemma 3.3, implication (a), to prove the nonexistence of
a small limit cycle in this case. Let h(x) = f(x) — Kog(x) with Kq = Then h(x) has
a multiple zero at x = £. According to Lemma 4.1, the zero x = £ has multiplicity two
while there are no other positive zeros. Hence by Lemma 3.3, implication (a), system
(4.4) has no small limit cycles in the strip 0 < x < oo. Again by symmetry, there are
no small limit cycles in the whole phase plane for this case. This finishes the proof of
Theorem 4.3.

Proof of Lemma 4.1. Define

, , , ,, , , \ „ 16dexp(-4x) ( 2r/
h{x) = f{x) — ng(x) = 2 + — -— — k I x 1

(1 + exp(—4x))2 \ l+exp(—4x)

Substitution of

exp(-4ar) = y (4.8)

yields

h*{y) = h(x(y)) = 2 + - « (-] ln(y) +   v) ■ (4-9)

(4.10)

(1 + y)2 \ 4 l+y
Note that because x 6 (0, oo), it follows from (4.8) that y S (0,1).

FYom (4.9) it follows that

dh*(y) Ky+ (8 /try + 3k — 64 d)y~ + (64 d + 3k, + 8kt/)j/ + n
dy 4y(l + y)3

= hi(y)
~ 4y(l + y)3'

Because /ii(0) > 0, hi(±oo) = ±oo, and hi (I) = 8k(1 + 2 ij) < 0, it follows that hi(y)
has a unique zero yi on (0, l).

Prom (4.10) it follows that

d2h*(y) ny4 + (4k — 128d + 16 KT])y3 + (256d + 6k + 16 nrj)y2 + 4nriy + k
dy2 4y2(l + y)4 ^

= h2{y)
~ 4y2(l + y)4'

Because /i2(0) > 0, h'2(0) > 0,/i2(±oo) = oo, and /i2(l) = 128d + 16k(1 + 2T)) < 0, it
follows that h2{y) has a unique zero y2 on (0,1).

Finally, we need information about h*(y) on the end-points y = 0, y m 1. One can
prove that

limh*(y) = — oo, h*(l) = 1 + 2d < 0. (4-12)
y 10

Note that for 0 < y < 1, we have sgn(^) = sgn(/ii(y)) and sgn(^-) = sgn(~h2(y)).
First we prove that yi < y2- Suppose that yi > y2. Then for y € (0,y2), h*(y) is

increasing with negative second derivative. At the inflection point y = y2 the second de-
rivative becomes positive; so cannot become zero at y = yi, which is a contradiction.

Let us draw in one figure hi and —h2\ see Fig. 4.4.
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-My)

Fig. 4.4. The functions h\(y) and —h,2(y)

Fig. 4.5. The function h*(y)

Prom Fig. 4.4 and (4.12) it can be deduced that h*(y) has at most two positive zeros
for 0 < y < 1; see also Fig. 4.5.

Because h(x) and h*(y) are related through the bijection (4.8) it follows that h(x) has
at most two positive zeros. This finishes the proof of Lemma 4.1.

Remark 4.1. The results stated in Theorems 4.1 and 4.2 easily can be generalized for
a wide class of transfer functions p(u), with the same properties as the function we have
chosen in (1.2). In fact, for any ip € C'1 satisfying limu_+_00 <p(u) = 0, limu_+as <p(u) =
C < oo, <p'{u) > 0, and tp'(-u) = <p'(it), one can prove that results similar to Theorems
4.1 and 4.2 are valid. The generalization of Theorem 4.3 is more difficult because we have
to verify the conditions of Lemma 3.3 for every individual choice of <p. As an example
we mention that it can be shown that for ip(u) = the analogue of Theorem 4.3
holds true.

5. Conclusions. In this work, we have studied the number of periodic solutions
of a planar dynamical system modelling the neural activity of a network consisting of
two neurons. Our results provide relationships between the parameters of the system,
which can be, in some cases, biologically interpreted (cf. [6]). For instance, if the positive
feedback a = qu is so much stronger than the negative feedback b = 912921 that a > 6+1,
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then for stimulus configurations with c = ei — q\2&2 € (C2,C2) (see Theorem 4.1) the
network considered here is convergent, i.e., every trajectory converges to some equilibrium
as t goes to infinity (see [8]). In this case the neural network considered cannot have
periodic activity. Convergent neural networks can be viewed as models for associative
memory (see [1, 8, 10, 9]). The stable equilibria are the stored memories. System (1.8)
with (b, c) € A (see Fig. 1.3) provides a model for a simple associative memory with two
stored memories, i.e., the two stable equilibria (see Fig. 1.6.A).

On the other hand, if the negative feedback b = q\2Q2i dominates such that b > |,
provided that the positive feedback is strong enough such that a = qn > 2, the network is
oscillatory, i.e., every trajectory tends asymptotically to a periodic (perhaps stationary)
orbit (see [8]). Notice that (1.8) with a < 2 cannot have periodic activity (see Theorem
4.1). Rhythmic activity has been observed in several neurophysiological experiments and
seems to play an important role in the information processing in the brain (see [1, 5]).
Our model shows that both strong interaction between excitatory and inhibitory neurons
and strong recurrent excitation can give rise to oscillatory dynamics. System (1.8) with
(b,c) e N (see Fig. 1.3 and Fig. 1.6.N) possesses a unique stable periodic orbit. Note
that periodic oscillations are the only sustained oscillations that can be simulated by
planar systems of ordinary differential equations.
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