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Abstract. We consider a dynamically accelerating, finite length, mode III crack
in an infinite elastic body. This initial boundary value problem has the nature of a
free boundary problem since the crack tip motion is a priori unknown and must be
found as part of the solution after imposition of a fracture criterion. Using an analog
to a Dirichlet-to-Neumann map, we reduce the fracture problem to integrodifferential
equations along the boundary that, for simplicity, we combine with a stress intensity
factor fracture criterion. This approach has the advantage of being applicable to cases
of multiple cracks as well as, in principle, to mode I cracks and to cracks in viscoelastic
materials.

1. Introduction. We extend the methods developed by Walton and Herrmann [12]
to a finite length, mode III crack as a first step in a research effort toward developing
general methods for dynamic fracture of multiple cracks, mode I cracks, and cracks in
viscoelastic solids, with particular attention to simulating the behavior of brittle poly-
mers. For an overview of our long term goals, see [1], [2], and [3]. Building on the
operators developed in [12], we can reduce the dynamic elastic fracture problem to inte-
grodifferential operators along the boundary, which for the semi-infinite crack are quite
simple in structure. Modifying the semi-infinite crack operators to apply to the case of
an asymmetrically growing finite length crack is nontrivial since the crack tip interaction
becomes a significant complication; however, once obtained, these operators provide a
means of straightforward computation of the displacement and stress along the plane
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of the crack. The key difficulty lies in solving for the crack face separation for a given
fracture criterion.

Crucial to creating a physically meaningful model is choosing an appropriate fracture
criterion. Usually fracture criteria rely on a principle of energy balance, first suggested
by Griffith [6]: the crack will propagate if the available energy release rate G equals
some required energy release rate 7 that is dependent 011 material properties and crack
speed. For example, one would expect very different required energy release rates for
a crystalline metal and an amorphous polymer. Determining an appropriate function
7 generally requires a micromechanical model specific to the material involved. Such
analysis is beyond the scope of this paper, and we will focus on the left-hand side, G, of
the energy balance equation. In the quasistatic (elliptic) problem, the function G cannot
implicitly limit the crack tip speed; so one must introduce a function 7 that does. In the
dynamic (hyperbolic) problem, the function G naturally limits the crack speed to the
shear wave speed for the mode III problem and to the Rayleigh wave speed in the mode
I problem. We will assume that 7 is simply constant, which means that only G limits
the crack speed; physically, these speeds are too high to be the limiting speeds for most
materials; so it will be desirable to improve the fracture criterion eventually. For purposes
of illustrating our methods of dealing with G, we will put aside these considerations and
choose a stress intensity factor fracture criterion with a constant critical value.

Friedman and Liu [5] have proven existence and regularity theorems in the case of
a propagating semi-infinite quasistatic crack in a strip. Since the quasistatic available
energy release rate G does not limit crack speed, they introduced the function

7 — 70 /,N ) (1-1)
Woo - < (')

where v(t) is the crack speed, in order to limit the crack speed to the value vx. This
required energy release rate is based 011 elastic-plastic analysis, perhaps not entirely
suited to the clastic problem. Another difficulty is that observed crack speeds are too
high for the quasistatic equations to be valid. In any case, their method for the quasistatic
case cannot be extended to the dynamic (hyperbolic) case since it depends on elliptic
regularity estimates.

See [4], [6], [7], [9], and [10] for further discussion of these issues. We will proceed to
describe a constructive solution to the dynamic crack problem.

2. The mixed boundary value problem. Consider an antiplane shear crack of
finite length in an elastic solid. In the (x, y)-plane, assume that the crack initially lies
along {— ao < x < do, y = 0}. Let w(x,y,t) be the out-of-plane displacement and
°23(x,y,t) be the usual shear stress. Apply a load a23(x,0,t) = A(x,t) along — d(t) <
x < a(t), where a(t) is the position of the right crack tip, —d(t) is the position of the
left crack tip, and A(x,t) is a sufficiently smooth function. See Figure 1. For antiplane
deformations, the balance of linear momentum equation becomes the single scalar wave
equation

wtt = c2{wxx + wyy) (2.1)
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Fig. 1. An accelerating finite length crack

in the upper half (x, y)-plane for t > 0 with boundary conditions

w(x,0,t)=0 for — d(t) > x or a(t) < x, (2.2)

0"23(£, 0, t) = fiwy(x,0,t) = A(x,t) for — d(t) < x < a(t). (2.3)

Here c is the elastic shear wave speed and /j. is the elastic shear modulus. We assume a
quiescent past with initial conditions w(x,y, 0) - 0 and Wt(x,y, 0) = 0, and we restrict
the speed of the crack tips to be subsonic: 0 < a(t),d(t) < c. To complete this set of
equations, we choose a stress intensity factor fracture criterion: the crack tip at a(t)
(—d(t)) will propagate only if the stress intensity factor Ka(t) (Kd{t)) equals a critical
value A"cr, where

Ka(t) = lim
x—>a(£) +

a(x, t)y/x - a(t)

Kd(t) = lim
s-(-d(t))-

o(x,t)yJ-d{t) - x

(2.4)

(2.5)

Our approach for the finite length crack will be based on the solution method given
in [12] for an accelerating, semi-infinite, antiplane shear crack. This same approach can
be extended to multiple cracks: moreover, in principle, it can be generalized to include
the cases of opening mode cracks and viscoelastic fracture [11]. The method involves
modifying the Dirichlet-to-Neumann map for the governing differential equation and
combining this new map with an appropriate fracture criterion to solve for the crack tip
position functions a(t) and d(t), given a crack face loading A(x,t).

At this point, it will be convenient to introduce some notation. Define characteristic
coordinates ?i = t + x/c and £ = t — x/c and denote space-time functions in characteristic
coordinates via

= f + 0

Let a(x, t) = U23(x, 0, t) and u(x, t) = w(x, 0, t).
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The Dirichlet-to-Neumann maps for the wave equation (2.1) as developed in [12] and
[11] are

r?7 dr d dq^ d [ dr d f ~t ^
) = / , ^7 / /? C7T 5?? ^T] - r 7_r V? - 9 (2.6)

-c 2V d p dq d fv dr
0"W,O = ^7/ rc / u(r,q)-==. 2.1C7T <9£ VZ-qdv J-q Vv-r

By inverting the Abel operators we find the Neumann-to-Dirichlet maps:

u(ri,Q = —£— j ~7p== / 5(r>?)^=> (2-8)2^ J-r, VZ-q J-q VV~r

fv dr ft _ dq
Vt-q' (2.9)

For convenience, we will now consider nondimensionalized equations, using the crack
length parameter ao as the characteristic length. With magnitudes on the order of 10~3
meters for ao and 103 meters/second for c, we define the nondimensional quantities as
follows:

x* = —, t* = —, and <7* = —. (2-10)
ao ao ji

Note that the characteristic time scale r = ^ is on the order of 10~6 seconds. Experi-
ments can now resolve down to microseconds; so we present simulations on the order of
10-100 time units to observe behavior on the scale of experiments.

In the remainder of this paper, we will drop the asterisks and solely consider the
nondimensionalized system. For convenience of notation, introduce retarded and ad-
vanced time scales bo(t) and &i(i), respectively, corresponding to the right crack tip:

bo(t) = t — a(t), bi(t) = t + a(t). (2-11)

Since we impose subsonic crack propagation (0 < a(t) < 1), the functions bo(t) and
bi(t) will be strictly increasing and hence invertible. These functions will be useful in
describing the crack tip path through time when modifying the Dirichlet-to-Neumann
maps. Similarly, we introduce time scales for the left crack tip:

ho{t) = t — d(t), hx(t) = t + d(t). (2-12)

In the next sections we tackle the problem of developing an operator that maps known
boundary values to unknown and that will enable us as well to solve for the crack tip
locations a{t) and —d{t).

3. Solution strategy. As the relations (2.6) and (2.7) stand, to find the stress a(x, t)
along the boundary intervals x < —d(t) and x > a(t), where it is unknown, requires
full knowledge of the displacement u(x,t) along the boundary, which we do not have.
Similarly, using (2.8) and (2.9) to find the displacement along the boundary interval
—d(t) < x < a(t), where it is unknown, requires full knowledge of the stress along the
boundary, which again we do not have. See Figure 2 for an example of the lightcone
that is the region of integration in (2.6)-(2.9), noting the nature of the mixed boundary
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Fig. 2. Lightcone region of integration in the Dirichlet-to-Neumann
and Neumann-to-Dirichlet maps

data. The regions containing known data evolve as the crack propagates in an a priori
unknown manner. In fact, it is this evolution that we are trying to determine as our final
goal.

If there were no left crack tip, we could modify (2.8) as done in [12] by applying the
information that u(x, t) vanishes off the crack, then inverting the relation to obtain a
modification of (2.9) that requires only the given loading data (2.3). We can do a similar
procedure for the finite crack, but the region of integration will still overlap the region
where stress in unknown. See Figure 3 for the contrast between the semi-infinite and
finite crack problems. To overcome this difficulty, we employ an iterative process. First
observe that we can directly use (2.6) to find that the stress cr(x, t) vanishes for ry < —ao
or £ < — ao- The modified version of (2.6)-(2.9) corresponding to a semi-infinite crack
is valid for the finite crack for the regions —ao < rj < do and — ao < £ < ao, before
any shear stress waves have had enough time to travel from one crack tip to the other
(basically, each crack tip acts like the edge of a semi-infinite crack). Once u(x,t) and
a(x,t) are determined for these regions, the maps we will develop in Section 4 can be
used to determine values for the next strip on which diffracted waves travel back again
from one crack tip to the other. This process can be repeated to determine full boundary
information in a finite number of steps for any particular time t > 0. See Figure 4 for an
illustration of these iteration strips.

The procedure for developing the desired maps for a finite crack involves modifying
(2.6)-(2.9) by applying boundary condition (2.2) and inverting the resulting Abel opera-
tors. The functions a(t) and d(t) are a priori unknown; so we assume arbitrary functions
while developing the maps and then use the fracture criterion to determine the crack
propagation corresponding to the crack face loading (2.3). In general, we want to be
able to determine any value of the stress or the displacement along the boundary that
might be needed for application of a fracture criterion. For example, to find the unknown
displacement u(x, t) in the region — d(t) < x < a(t), the region of integration in equation
(2.6) becomes the intersection of the lightcone as in Figure 2 and the crack face region
—d(t) < x < a(t). The resulting relation remains in the form of two Abel operators
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Fig. 3. Regions of integration for maps corresponding to semi-
infinite and finite length cracks

that can be inverted to yield an equation giving the displacement in terms of the known
loading (2.3) plus the stress in a region where it is unknown, as in Figure 3, necessitating
an iteration process as described above. We can also find a similar relation for the stress.

Once we are able to determine full boundary information, we can apply the fracture
criterion to solve for the functions a(t) and d(t) that describe the crack propagation
resulting from the crack face loading (2.3). For a stress intensity factor criterion, we
need to know the coefficient of the square root singularity in the stress at the crack tips.
It turns out that the stress intensity factor is easy to deduce from the maps developed for
the finite crack and is a function of crack tip speed. Applying the fracture criterion with
a constant critical value KCI reduces the problem of finding a(t) and d(t) to a system of
ordinary differential equations.

In the next section, we pursue this solution strategy to yield the precise relations
needed to calculate the crack propagation.

4. Mappings for a finite crack. To solve the moving interface problem (2.1)-(2.3)
along the half-plane boundary, we modify the Dirichlet-to-Neumann map as described
in Section 3 so that its evaluation requires only known boundary values. Let a(t) and
d{t) be arbitrary (sufficiently smooth) functions satisfying 0 < a(t),d(t) < 1. We will
develop integrodifferential operators that yield the displacement and stress along the
boundary corresponding to the crack face loading (2.3). We are unaware of any rigorous
proof that this forms a well-posed closed system. Developing such a theory appears to
be a highly nontrivial enterprise, and investigation of this point is the subject of ongoing
research. Assuming that the problem is well-posed, we develop a constructive method
for computing the solution.

We begin by finding a relation to determine unknown values of the displacement along
the boundary. For (?/,£) satisfying — d(t) < x < a(t), apply to (2.6) the fact (2.2) that
the displacement vanishes off the crack face:

2d f" dr d d(]o-{v,0=-—jr I i (4-1)
7T OTj Jmax{— — ao} V 'H T Jrnax{ —?',6qo61 1(r)} v£ Q
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Fix £ and invert the outer Abel operator:

I ^(r^) • J== = 2-)c f _ u(r,q)-^=. (4-2)
Jmax{—ao} V'/ ' ./rnax{ — r),boob1 1 (rj)} VS Q

Fix rj and invert the inner Abel operator:

«(»7>f) — - J- f _ -7== I o{r,q)-^=. (4.3)
Jmax{—r],boob1 1(r/)} VS Q </max{ —q,—ao} V

This relation holds for (77, £) satisfying — d(i) < x < a(t), that is, along the crack face. By
starting with equation (2.7), we obtain an alternative map to calculate the displacement
along the crack faces:

u(ih0 = -^-[ -J= [ a{r,q)-^=. (4.4)
^ Jrnax{— ^,hooh1 1 (£)} Jmax{ — r, — ao} Vs Q

Next we want an operator that finds the stress outside the crack face in terms of the
given loading (2.3). In particular, for (77, £) satisfying x > a(t),

2d fb lObo'f?) dr Q i.min{C,fc1ofc^1(r)} dq
^ ,J- / 7 / u(r,q)-==. (4.5)

71" OT) Jmax{_^,-ao} V7? ^ «/max{— r,boob1 1 (r)} Vs Q

Substituting equation (4.2) into (4.5) yields

°'(?7'0 = -q-/ —/== / ^(s,0-7= (4-6)
7T OTj Jmax{-(,-ao} Vv ^ imax{-(,-oo} V* ^

bo-1(«) \/fc,o"1(C) - r
cr (r — £,r) — dr. (4.7)

1

This relation holds for (77, £) satisfying a; > a(i), that is, to the right of the crack.
Similarly, for (77, £) satisfying x < —d(t), we have the relation

1 5 dq fq dp
<r(.V,£) = ~-~z / —== / <7(77, p) —===== (4.8)

^ imax{-77,—ao} Vs Q imax{-r),—ao} v*ZP

1 1 [k°1(,) , ^\/ho\v)-q
= , / cr(v-q,q)-—7 dg. (4.9)

^ yt - /i0 *(77) Wo.V1} q

To find the stress intensity factor (2.4), observe that by L'Hopital's rule,

x — a(£) , . . .
lim ^ = 1 - a(t), (4.10)

«-»a(t)+ t — bQ (£)

and take the limits of (4.7) as x —» a(/;)+ and of (4.9) as x -» (—d(t))~. Wc then find
that

i   rt ,/r
Ka{t) = —\A - a(t) / a{r-b0(t),r)  , (4.11)

7T ,/o Vi - r

Kd{t) = --\J 1 - d(t) [ cr(ho(t) — r,r) t--— (4.12)
7T v 7o vi - r
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If the crack were semi-infinite under a load with support in (—d(t),a(t)), these equa-
tions would be sufficient to directly determine the unknown displacement and stress
along the boundary, as well as the stress intensity factor, from the known loading data.
For a finite crack, these equations will still be sufficient, but cannot be applied blindly;
we must "bootstrap" up to find the unknown boundary values. The relations (4.7) and
(4.11) agree with those found by Ivostrov [8] for a finite length, antiplane shear crack,
but his method of obtaining the results does not seem to extend either to the plane strain
case or to viscoelastic materials. Also, Kostrov does not indicate how to extend his result
for the finite crack beyond the time it takes stress waves to travel the length of the crack.

The first steps in this "bootstrap" process involve direct applications of (4.9) and (4.7).
For clarity of presentation, we will refer to the original crack tip position as ao rather
than as "1" in the rest of the paper, as this usage suggests the wave fronts associated
with the crack tips. If £ < —ao or < —ao, then a(x,t) = 0. If —ao < £ < ao, then we
can directly find the unknown displacement and stress as in the semi-infinite crack case:

= / _ ~7T= [ (4'13)^ Jmax{— rj,boob1 1(r/)} VS Q «/max{—q,—ao} V'7 '

for x < a(t), while we have for x > a(t),

1 1 [bo1(5) \/bo\0 - r
a(x,t) =  a / A(r-£,r)— dr. (4-14)

l~r

Similarly, if —ao < T] < ao, then

, If dr ^ ~ dq
"t'/.s) r" / r—- / A(r,g)  • (4.15)

^ ^max{-^,/ioo/ij 1(^)} v V ^ Anax{-r,-ao} Vs Q

for x > —d(t), while we have for x < —d(t),

1 1 rKl(v) \/h01(rj)-q
a(x,t) =  / A(r? - q,q)~—  dq. (4.16)

* yjt - hoHv) J°
The stress a(x, t) is now known in a large enough region for the operators in (4.7) and

(4.9) to yield a(x,t) for ao < rj < bi o 60"1(a0) and 00 < ( < /i-i o /z^"1(ao), respectively.
Once a(x, t) has been determined for some n > 0 on the regions

r] < (61 ok"1 ohi ohQ1)n(a0), (4.17)

£ < hi o h^1 o (bi o 1 o hi o ft" 1)"(a0), (4-18)

it can subsequently be computed in the adjacent strips in the following order:

(bi o bg1 o hi o hg1)n(a0) < rj < (61 o 1 o hi o h^1)™+1(a0)i (4-19)

hi o h.Q1 o (bi o b^1 o hi o /i^"1)n(a0) < £ < hi o h^1 o (bi o b^1 o hi o h$ 1)n+1(ao).

(4.20)

Each strip will have height parallel to the t-axis of at least 2ao; so any value cr(x, t) can
be computed in a finite number of steps. See Figure 4.
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Fig. 4. Bootstrapping strips for iterative calculation of the stress
and displacement along the x-axis

Thus far we assumed arbitrary functions a(t) and d(t). Next we apply the iterative
procedure to these operators to solve the inverse problem of determining the functions
a(t) and d(t) corresponding to the chosen fracture criterion. To determine the right crack
tip position a(t), we apply the fracture criterion: a(t) = 0 if \Ka(t)\ < Kcr; otherwise
0 < a(t) < c and \Ka(t)\ = Kcr. Apply an analogous criterion to the left crack tip. The
system now simplifies to two ordinary differential equations:

a (t) =
0 if \Ka(t)\ < K„,

(4.21)

if \Kd(t)\ < KCI,
d(t)={_ ( ^ \2    „ (4.22)

so that given A(x,t), it is straightforward to compute the crack tip position functions
a(t) and d(t).

5. Example: fixed constant load. To illustrate application of these mappings,
consider an accelerating crack under a fixed constant load

. , ^ (-0-o if-ao<z<ao, 1N
(5.1)

[0 if a0 < \x\ < a(t),

for which the crack will propagate symmetrically: d[t) = a(t). As discussed in [4], we
expect to observe dynamic overshoot of the stress intensity factor. Before the first "crack
tip interaction," the stress intensity factor K(t) increases; after this point, K(t) will de-
crease during the next time interval, after which it may oscillate (the terms corresponding
to each successive iterative strip alternate in sign).
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The time at which information from one accelerating crack tip first reaches the other
crack tip (that is, accelerating in the opposite direction) will be t = 6(^"1(ao). For t 6
[0,6o1(ao)]i the stress intensity factor is exactly the same as for a semi-infinite crack:

Ka(t) = — \/l - a(t)(Vt - y/a(t) - ao). (5.2)
7T

The crack will begin to propagate at time

Krrir\2 .. . Kr

KSi(t) = — y/l - a(t)(\/a(t) + a0 - y/a(t) - a0). (5.4)

to \2aoJ lf a° ~ 2y^oo' (5'3)

otherwise the crack will remain stationary. K(t) is strictly increasing on the interval
(0,min{io, 1(ao)})i then remains constant with value Kcv until time t = 6(^"1(ao); the
crack cannot arrest until after this first time interval.

The crack behavior will diverge from that of the semi-infinite case after this first crack
tip interaction. The stress intensity factor for t > x(ao) for a semi-infinite crack with
faces along x < a(t) under the loading (5.1), and traction-free on the remaining crack
face, will be

2cto
7T

Once the crack arrests, Ksi(t) will remain constant with value Kcr. For the finite length
crack, the effect of the crack tip interaction appears as an additional term:

1 /  rbl'oboit) .
Ka(t) = Ksi(t) \/l - a(t) / a(r-b0{t),r)  (5.5)

n J(b0(t)-a0)/2 \Jt ~ r

Even after crack arrest, this additional term will continue to change, unlike the first term.
In general, the stress intensity factor will decrease on [6^"1(ao), b^1 o b\ o 1 (cio)], after
which it may oscillate. (See Figure 5.)

Comparing the quasistatic and dynamic behavior of the semi-infinite and finite cracks
further illustrates the effect of crack tip interaction. Note that the semi-infinite crack
case can be considered an approximation for the finite length crack in which we disregard
the presence of a second crack tip. The quasistatic stress intensity factor for the semi-
infinite crack is the same as in the dynamic case but without the term y/l — a(t). The
quasistatic stress intensity factor for the finite length crack under the loading (5.1) is

CTOV/2a(f) . a0
Kqs{t) = arcsm ——. (5.6)

7T CL\t J

The quasistatic model predicts that if ao < Kcr \J2/clq the crack will remain stationary,
while the dynamic model predicts that if cr0 < nKcr/^2ao the crack will remain station-
ary. If the applied load is great enough to force the crack to propagate, the quasistatic
estimate of the final crack length a/ satisfies

ttKci = ao J2a< arcsin —, (5.7)
af

while the estimate for a dynamically acclerating semi-infinite crack is

aS = °o + - j)2, wheieC=~^~- (5-8)
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Fig. 5. Propagation of a finite crack under a constant fixed load:
(a) Crack tip paths under a constant fixed load; (b) Crack tip veloc-
ities under a constant fixed load; (c) Stress intensity factors under
a constant fixed load; (d) Crack face profile at time t = 4.0 under a
constant fixed load

The dynamic values for a/ are much greater than those predicted by the quasistatic
model, but less than those predicted for a semi-infinite crack (for which the quasistatic
and dynamic predictions agree). See Figure 6 for a comparison of these three cases.

6. Example: constant load on entire crack face. As another simple example,
consider an accelerating crack under a constant load on the entire crack face:

A(a;,£) = —<7o H—a(t) < x < a(t), (6.1)

for which the crack will again propagate symmetrically: d(t) = a(t). As before, the crack
will remain stationary if <Jo < TrKcr/y/2ao; otherwise, the crack will begin to propagate
at time t0 = (^f^)2- For t 6 [0,6c71(a0)],

Ka(t) = 2<Jov^ yfl _ a(t). (6.2)
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1"
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Nondimensionfil Critical Stress Intensity Factor K

Fig. 6. Comparison of final crack length predictions

For t > 6(y1(ao), we can write the stress intensity factor as was done in the previous
example;

Ksi{t) = — \/l - a{t)Jt- 1 o b0{t), (6.3)71" v

1 /  rb^boit) ^
Ka(t) = Ksi(t) y/l - a(t) / cr(r - bQ(t),r)- . (6.4)

71" J(b0(t)-a0)/2 t — r

If the crack propagates, it will have velocity a(t) = 1 — to ft for t in the interval
[to, to exp(2ao/to — 1)]. After this time interval, the presence of the second crack tip may
cause the stress intensity factor to oscillate, so that the crack may arrest, arrest and start
again, or accelerate to the limiting speed as a semi-infinite crack would. See Figure 7 for
examples of these behaviors.

7. Conclusion. The goal in this and succeeding papers is to reduce initial boundary
value problems for dynamic, accelerating cracks to integrodifferential equations that are
amenable to computation, coupled with a fracture criterion. One of the advantages of
this method lies in its potential applicability to more general material behavior, such
as in viscoelastic materials. The problem of choosing a physically appropriate fracture
criterion is highly material dependent and is an issue that will be dealt with separately.
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Fig. 7. Propagation of a finite crack under a constant load on the
entire crack face: (a) Crack tip paths under constant load on entire
crack face; (b) Crack tip velocities under constant load on entire
crack face; (c) Stress intensity factors under constant load on entire
crack faces; (d) Crack face profile at time t = 30.0 under constant
load on entire crack face
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