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Abstract. We consider a new class of N-wave solutions for the KdV with the property
that they periodically transform themselves from leading depression N-w&ves to leading
elevation iV-waves and back. We consider them as a possible model for the tsunami
waves.

Introduction. In reports on tsunamis, descriptions of shorelines receding signifi-
cantly prior to tsunami run-up on the coastline have been frequently documented. One
of the first reports of a harbor emptying before a tsunami's arrival dates back to 1755
when a tsunami struck Lisbon. Of more recent observations, we can mention the Flores
(December, 1992) and Nicaraguan (September, 1993) tsunamis as well as the tsunamis
in Japan (July, 1993), the Philippines (November, 1994) and Mexico (October, 1995)
(Ide et al., [8]; Satake et al., [22]; Synolakis et al., [25]; Tadepalli and Synolakis, [26],
[27]). Until recently, all run-up models dealt with periodic waves or solitary waves and
were intended to describe run-up on the beach (Briggs and Synolakis, [2]; Davletshin and
Lappo, [6]; Iwasaki, [9]; Koryavov, [10]; Mazova and Pelinovskii, [16]; Meyer, [17], [18];
Pelinovski and Talipova, [21]; Synolakis, [23], [24]). In 1994, Tadepalli and Synolakis
proposed a model based on a class of iV-shaped waves (or simply N-waves) obtained
from the Korteweg-de Vries equation (Tadepalli and Synolakis, [26], [27]). In particular,
they suggested that the very phenomenon of the tsunami may be due to the internal
structure of the corresponding wave rather than to the interaction of that wave with the
shoreline. Their results are obtained by taking solutions of an "appropriate linearization"
of the Korteweg-de Vries equation.

In this paper we show that even without preliminary linearization of the Korteweg-de
Vries equation we can obtain TV-shaped exact solutions of this equation whose profiles and
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behavior are similar to those described in Tadepalli and Synolakis, [26], [27]; Williams
and Jordan, [29]; Carrier and Shaw, [5]. Not surprisingly, these solutions exhibit behavior
similar to that of the tsunami waves as corroborated by witnesses of numerous tsunamis.

Models. Following Tadepalli and Synolakis, [26], we assume that at least some as-
pects of tsunami motion should be describable by the Kortweg-de Vries equation of waves
in shallow water (Whitham, [28])

+ \fgh ux + 3^f}uux + \h2\fqhuxxx = 0,v"'"~x ' 2h ' 6'

where u is the surface elevation of water above sea level, t is time, x is the Cartesian
coordinate on the ocean surface along the direction of motion of the traveling wave, h is
the effective depth, i.e., the greatest depth where the vertical component of the motion is
nonzero, \fgh is the linear velocity, and g is the gravitational constant. After appropriate
rescaling of t,x, and u

h h
t^old — 4/itinew, 3>*old — /Tf^newi ^old \ ^new)
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the equation can be rewritten in the form:

ux + Ut + 6 uux + V'XXX (1)

Use of the Korteweg-de Vries equation is justifiable for two reasons: the wave length
of the tsunami waves is of the order of several hundred kilometers, which is much greater
than the depth of the ocean at any point, and so it is appropriate to view them as waves
in shallow water; any variations in the topography of the ocean bed are small compared
to the wave length and therefore their effect 011 the wave is negligible, allowing us to
assume that the ocean bed is flat, and so the conditions of physical applicability of the
Korteweg-de Vries equation are fulfilled (Whitham, [28]) at least in the ocean where the
tsunamis propagate.

Following the same reasoning as that of Williams and Jordan, [29], Carrier and Shaw,
[5], we look for exponentially modulated oscillating solutions of (1) that preserve their
identities over transoceanic propagation distances. We already know (Gardner et al., [7])
a class of solutions of (1) that preserve their shape over long distances; they are so-called
solitons

u(x, t) = 2k2 sech2 k(x — t — n2t — xo)

with xq and n being arbitrary real constants. To obtain exponentially modulated os-
cillating solutions of (1), it seems only reasonable to try taking complex k = k + ie\
unfortunately, the resulting solutions are complex rather than real valued, which in turn
makes it difficult to provide them with a meaningful physical interpretation. Instead, we
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try formal superposition of two complex solitons (Gardner et al., [7]):

d2 , , (l +
g8K;|t-(K,1+K.2)(x-t)-v32
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with K\ — ^^,^2 = and two arbitrary complex constants ipi, (p2 determined by
the initial conditions. Writing out this formula yields:

u = 2

+ 2

where

2
— cos fc(7 + 3 e2t — k2t + t — x) + cosh e(p + s2t — 3k2t + t — x)

sin fc(7+3e2t—k2t-\-t —x) sinhe(p+e2t—3k2t+t—x)
k £

k sin k( 7 + 3 e2t — k2t +1 — x) + e sinh e(p + e2t — 3k2t + t — x)
sin fc(7+3e2t — k2t-\-t—x)   sinh e(p+g2t—3k2t+t—x)

k e
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e = 0 corresponds to the limit of (2) as e —> 0. Another derivation of (2) based on a
generalization of the Inverse Scattering Theory is given in Kovalyov, [11], [12], [13].

Since the denominator of u vanishes for some value of x at every moment of time t,
functions (2) possess a moving pole of second order whose equation of motion is implicitly
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given by

sinfc(7 + 3 e2t — k2t + t — x) sinhe(p + e2t — 3 k2t + t — x)
k e

In this aspect, our model is similar to those of Meyer, [17], [18] and Carrier and Shaw,
[5], which are also based on singular solutions. Presence of a singularity indicates that
the equations (1) and (2) fail to provide a proper description of the process in a small
neighborhood of the singularity although they seem to work adequately outside that
neighborhood. Simple analysis of (2c) indicates that away from that pole, i.e., for |p +
e2t — 3k2t + t — x\ 1,

u « — A(x, t) cos fc[<y + 3e2t - k2t + t — x + asign(p + s2t - 3k2t + t - a;)],

A(xt) = 2g(g2 +
k sinh e(p + e2t — 3k2t + t — x)

This can be physically relevant (Whitham, [28]), only if the wavelength is large compared
to the amplitude:

^ / ) ;

which is true due to the largeness of (p + e2t — 3k2t + t — x), provided that

(e2 + k2) = 0(1); (3a)

the oscillatory wave moves to the right with velocity close to one:

3e2 - k2 + 1 sa 1, (3b)

and the amplitude is slowly varying:

dA
dt +

\dA
-C \A(x,t)\,

which is true only if

£ = o(l) and £2 — 3 k2 + 1 = O(l). (3c)

Estimates (3) impose the following conditions of physical relevancy:

£ = o(l); ^k2 — £2 = o( 1). (4)

If p is large, we can choose an arbitrary finite space interval (a,b), whose size is small
compared to its distance from the pole, but large relative to the wave length, i.e., ]p| ^
\b — a\ jr^Sl, and an arbitrary finite time interval such that all t G (Ti,!^)
and all x € (a, b) satisfy |£2t — 3k2t + t — x\ Then also, for x G (a, b),t G (Ti, T2),
we obtain a « — -|,

, 2(e2 + k2)s 2 7T. ( s
u(x, t) = —   sm k(7 — 3k t + t — x H—) + o  

k sinh Ep 6 \ sinh £p
The wave in this case is essentially a linear wave plus lower-order terms resulting from the
nonlinearity in (1). The dispersion relationship (Whitham, [28]) u> = (k + ie) — (fc + ie)3
involves dependence on amplitude through the parameter e, which drops out when e = 0.

Even though away from the pole the wave travels to the right, the pole itself can move
in either the right or left direction. The evolution of u(x, t) near the pole is shown in Fig. 1
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(when it moves to the right) and in Fig. 2 (when it moves to the left). As the wave moves,
an elevation wave periodically builds up, jumps over the trough, fades away and after a
while reappears again. This process periodically repeats itself. On the right-hand side of
the pole, u can be written as u+ « — A{x, t) cos k(i + 3s2t — k2t+t — x — a) whereas on the
left-hand side of the pole, u can be written as u- « — A(x, t) cosk("y+3e2t—k2t+t—x+a).
The elevation wave builds up when u+ moves faster than and it fades away when u+
moves slower than tt_.

Although (2), just like the N-waves of Tadepalli and Synolakis, [26], [27], are obtained
from KdV with similar profiles, there are certain differences in their behaviors. The
N-waves of Tadepalli and Synolakis, [27], are assumed to be linear and non-dispersive,
thereby allowing them to keep the same profile over constant depth. These Ar-waves are
essentially modeled by solitons. The waves (2), however, arise as dispersive nonlinear
solutions of KdV that preserve their oscillating "identities" as they travel, even though at
different points they materialize at different stages with a different profile. The dispersion
here does not lead to dispersing waves but rather to the creation of N-waves, which
periodically change from leading depression N-waves (abbreviated hereafter as LDN) to
leading elevation N-waves (abbreviated hereafter as LEN) to simple depression waves
and back to LDN.

What is interesting is that (2) seems to provide an explanation as to why the shoreline
recedes before the tsunami's arrival, the reason for that being the ever-present leading
depression iV-wave. Indeed, if there were an island located at the interval [25,30] in Fig.
1, first the leading depression part of LDN would arrive resulting in a receding shoreline,
and then a large elevation wave would hit the island from the left.

Babi Island effect. Another observed phenomenon is illustrated in Fig. 2. If there
were an island located at the interval [30,40] in Fig. 2, the elevation wave would hit the
left side of the island not the right side, notwithstanding that the wave is coming from
the right. This phenomenon was observed during the 1992 Indonesian earthquake, when
the villages on the south side of Babi Island were the hardest hit by a tsunami wave
even though the wave came from the north (Liu, [14]). Similar phenomena are suggested
from the account of the Hokkaido Island tsunami as well as in a number of other cases
described in Liu. The standard explanation of this according to Briggs et al., [3], and
Liu et al., [14], is that the incoming tsunami wave splits into two waves refracting around
the island and that these two waves collide on the lee side into a large elevation wave
which splashes up and is responsible for all the destruction. There is no denial that this
phenomenon, at least partially, contributes to the Babi Island effect.

Our model suggests that another phenomenon may also be in the works. Recall
that the Babi Island effect has been recorded when tsunamis hit islands whose size was
considerably smaller than the wave length of the incoming wave (Babi Island itself is only
2km in diameter). As we know from the classical theory of linear waves, obstacles whose
size is considerably smaller than the wave length do not affect the wave besides possibly
slightly distorting it in a small neighborhood of the obstacle. (It is for that reason that
the resolution of a regular microscope is inferior to that of an electron microscope.) If
we assume that the same is true for the solutions (2) and the tsunami wave near an
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Fig. 1. Graph of u(x,t) given by (2) with e = 0,7 = 0,p = 6.0, fc =
0.45, plotted for selected values of time shown at the top of each
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Fig. 2. Graph of u(x, t) given by (2) with e = 0,7 = 0,p = 42.0, k =
0.7, plotted for selected values of time shown at the top of each frame
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island is plane and given by (2), wc are led to the conclusion that the location of the
leading elevation N-wave and its motion will not be affected much by the presence of
the island. Thus if the LEN happens to build up close to the lee side of the island and
the parameters £ and k satisfy e2 — 3k2 + 1 <0, the LEN will appear to be moving
towards the lee side of the island in the direction opposite to the direction of motion of
the tsunami itself as shown in Fig. 2 and as observed whenever the Babi Island effect
takes place. The phenomenon described is especially pronounced if the size of the island
is very small compared to the wave-length 1 /k of the wave. Indeed, as described in Liu,
[14], during the Flores and Okushiri tsunami the ratio of the island diameter to the wave
length is important to the Babi Island effect. One can conjecture that three different
processes contribute to this, namely collision of the trapped waves, the process we just
proposed, and the influence of the ocean bed topography.

There are some regions where the elevation wave never builds up at all. Indeed, the
elevation wave builds up in (2) whenever the denominator e sinh(7 + 3e2t — k2t + t — x) —
k sinh s(p + e2t — 3k2t + t — x) has a double zero and that happens for t close to '
in the neighborhood of the point

7(3k2 -e2 - 1) + (3e2 - k2 + l)(p + 2n7r)
X~ 2(s2 + k2)

where n is an arbitrary integer. If these points are sufficiently spaced out, some intervals
between them may not experience elevation wave buildup at all. For example, if e =
0,k = 0.75,p = 6.0,7 — 0 (the same parameters as for u shown in Fig. 1), there is no
elevation wave building up on the interval [15,20], direct numerical computations show
that on this interval, u < 0.5 for all values of t. So if there were an island located on
[15,20] we would still be able to witness the lowering of the water level followed only by a
relatively small tidal wave. This helps perhaps to explain why a tsunami wave causing a
lot of damage at some points on its path may be harmless at the other points. According
to our model, the strength of the wave when it hits an island or a coastline depends
mainly on at what stage the wave arrives there; the boundary conditions on the coastline
and the interaction of the wave with the shoreline seem to be only of secondary nature.

One can define nonlinear superposition of waves (2) (Gardner, [7]) as follows. Let hi, £/,
/ = 1, 2,..., n, be the "frequencies'' of n waves of the form (2) and let Ji,pi, I — 1,..., n,
be their "phases". Then nonlinear superposition of these TV-waves is defined to be the
function

d2
un(x, t) = ~2— lndet A, (5)

where A is a 2n x 2n matrix whose entries are

pien?t-(tn+n m)x
Alm ~ Sim +

fj,[ + /im

and for 1 < I < n, m = ikt + et, /in+; = -ikt + £/, Pi = 2£;e2ifci7,+2p'£', and j3n+i =
2ele~2lkni+2p,£l. It has been shown in Kovalyov, [11], [12], that a sufficiently large class of
solutions of (1) that decays at infinity sufficiently fast can be approximated by a nonlinear
superposition of waves (2). So it is not surprising that tsunami profiles obtained by other
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authors by solving (1) or similar equations resemble profiles in Figures 1 and 2 (Tadepalli
and Synolakis, [26], [27]: Williams and Jordan, [29]; Carrier and Shaw, [5]).

Singularities. Having discussed certain advantages of our presentation, we should
also mention a weak spot: presence of a singularity indicated by breaks in the graphs.
Clearly, tsunamis do not possess that kind of singularity. What they do possess is some
sort of a "center" in the very close neighborhood of which the model breaks down.
Such a situation is similar to the failure of the electromagnetic theory to model the
electromagnetic field in the very close proximity of a moving electron; for that purpose,
quantum theory is required. Closer to home analogues may be found in fluid mechanics,
e.g., the theory of shock waves does not explain what exactly happens in the very close
proximity of a moving shock wave; instead, it replaces it with a discontinuity, yet it
provides a fairly decent description of the shock propagation. In a similar manner,
our model may provide a fairly good description of the tsunami motion including an
explanation of certain effects related to the behavior of the wave near the singularity,
e.g., the Babi Island effect, receding shoreline. The reason is that the effects exhibit
themselves long before the singularity renders solutions (2) inapplicable for modeling
tsunamis. The model clearly fails in a very close proximity to the "center", and that
failure is reflected by the appearance of a singularity.

Conclusion. In this note we have shown that some singular solutions (2) of the
Korteweg-de Vries equation seem to be able to provide a qualitative explanation to a
number of aspects of tsunami waves observed by witnesses. Profiles of these waves closely
resemble profiles obtained by other authors with other models. One should understand,
however, that the model described is based on the one-dimensional Korteweg-de Vries
equation and thus is rather limited. A better model would be provided by consider-
ing appropriate solutions of the Boussinesq equations or perhaps the two-dimensional
Kadomtsev-Petviashili equation. It is also clear that a model based on (1) or its gener-
alizations may describe only some aspects of tsunami waves of a certain origin as it does
not take into account terrain of the ocean bed and the planet's curvature.
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