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Abstract. We consider the problem of an impulsive displacement of a liquid, origi-

nally at rest in a circular pipe, which is displaced by another liquid. The purpose of this

analysis is to show that at a sufficiently high inertia the initial essentially inviscid mo-

tion can be extended to cover the entire displacement process, thus creating an inviscid

window to which an inviscid analysis can be applied. We simplify the problem first, by

considering a 1-liquid problem where the displacing liquid and displaced liquid are the

same. We identify two characteristic times in this problem: the time it takes an inviscid

liquid to be displaced, and the time it takes a viscous liquid to attain a steady state. Tak-

ing the ratio of the two defines the Reynolds number for the problem and we show that

the motion becomes essentially inviscid once the Reynolds number is sufficiently high.

We obtain the general solution of the 1-liquid problem which determines the nondi-

mensional viscous displacement time as a function of the Reynolds number. We derive

from the general solution: a critical Reynolds number above which the motion remains

unsteady throughout the entire displacement process, and a formula which determines

quantitatively whether applying an inviscid analysis to the 1-liquid viscous problem at a

given Reynolds number is admissible within an acceptable error tolerance. We also show

that at the limit the Reynolds number approaches infinity the viscous displacement time

approaches the inviscid displacement time and that the velocity profile and the shape of

the material surface separating the displacing from the displaced liquid approach their

counterpart in the inviscid solution. Second, based on these results we propose that an

inviscid solution is applicable to the 2-liquid viscous problem once the condition of a

high Reynolds number is independently met by the two participating liquids. We obtain

the solution to the inviscid 2-liquid displacement problem and calculate various exam-

ples. Finally, we present a stability analysis of the flat interface between the two inviscid
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liquids, which shows which of the examples is stable, neutrally stable, or unstable. The

paucity of data for an impulsive displacement in the high Reynolds number range makes

quantitative comparisons difficult. However, the excellent agreement obtained between

the critical Reynolds number derived in this analysis and the result obtained in a nu-

merical analysis of the viscous 2-liquid problem elsewhere constitutes at least a partial

validation of the theory. Additional confirmation is obviously recommended.

1. Introduction. We consider a liquid at rest in an inclined circular pipe connecting

two reservoirs A and B containing two immiscible liquids A and B, respectively. The

liquid originally at rest in the pipe is a liquid B. When the constraints maintaining the

liquid at rest are suddenly removed, the liquid is set impulsively into motion. The forces

contributing to this motion are the pressure difference between the entrance pressure pA
and the exit pressure pB, the gravitational forces, and the viscous forces resisting the

motion. The pipe is inclined at an angle θ to the vertical direction so that when θ equals

zero the pipe axis is in the direction of the gravitational acceleration. Liquid displace-

ment under impulsive conditions has been studied extensively for some time; however

most of the effort, whether experimental or theoretical, was directed at steady state and

low inertia. The papers by Taylor and Saffman (1958) and Reinlet and Saffman (1985)

are just two examples. More recently, a numerical solution of the time-dependent viscous

displacement problem, including capillarity effects, was presented by Dimakopoulos and

Tsamopoulos (2003). The effect of inertia was presented in their paper as a sequence of

Reynolds numbers in the low to mid inertia range. It is our purpose to present a theoret-

ical analysis of the impulsive displacement motion of a viscous liquid at the high inertia

range and show that for a high Reynolds number the solution for the displacement time

can be obtained by an inviscid analysis including a quantified estimate of its deviation

from the viscous solution. It is well known that under impulsive conditions the initial

motion is irrotational (see Batchelor (1967)). As shown by Kleinstein (1988), this irro-

tational motion cannot persist and must become rotational through the influence of the

boundaries. In the present problem, similar impulsive conditions exist, and it is expected

that an essentially inviscid motion exists initially. We seek to determine the necessary

condition for the initial essentially inviscid motion to persist throughout the entire dis-

placement process. We designate the time interval where the motion remains essentially

inviscid during the entire displacement process as an inviscid window. First, we simplify

the problem by considering a 1-liquid model where the displacing liquid and the displaced

liquid are the same. This model is free of capillarity effects as well as the penetration and

finger formation associated with the 2-liquid problem. By considering the dimensional

viscous and inviscid solutions of the 1-liquid displacement problem we identify two char-

acteristic times: an inviscid time, the time it takes to displace an inviscid liquid, and a

viscous time, the time it takes a viscous liquid to attain a steady state. Taking the ratio

of these two time scales results in the pipe displacement Reynolds number. Expressing

the dimensional solution of the 1-liquid problem in terms of this Reynolds number we

obtain a general solution which gives the nondimensional viscous displacement time as

a function of the Reynolds number. From this general solution we derive two central re-

sults to this analysis: we determine a critical Reynolds number above which the motion
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remains unsteady throughout the displacement problem, and we derive a formula which

gives the percent deviation of the inviscid displacement time from the viscous displace-

ment time as a function of the Reynolds number. Hence we can test if at a specified finite

Reynolds number an inviscid solution is admissible or inadmissible according to whether

the percent deviation falls within an acceptable tolerance. We also show that at the limit

as the Reynolds number approaches infinity, the viscous displacement time approaches

the inviscid displacement time, and both the form of the velocity profile and the shape of

the material surface separating the displacing liquid from the displaced liquid approach

their counterparts in the inviscid motion. Based on the above results, we propose that

an inviscid window exists for the 2-liquid viscous problem once the condition of a high

Reynolds number, as compared with the critical Reynolds number, is independently met

by the two participating liquids. In section 4, we present the solution to the 2-liquid in-

viscid problem. Various numerical examples are presented in section 5 where, in addition

to the displacement times, the Reynolds numbers associated with the two participating

liquids are also computed to check for admissibility. In section 6 we apply Taylor’s analy-

sis (Taylor (1950)) of the stability of an accelerating infinite interface to the study of the

stability of the finite material interface in the 2-liquid inviscid problem. The results ob-

tained are in general agreement with Taylor’s results. In section 7 we make comparisons

with the numerical calculations of Dimakopoulos and Tsamopoulos (2003). We show a

very good agreement between our predictions of the critical Reynolds number and the

results observed in their calculations. Since the high Reynolds numbers they present are

only slightly above the critical Reynolds number, the comparison we can make is at best

qualitative. For a quantitative assessment of the validity of the theory, additional data

at a high Reynolds number, whether numerical or experimental, is highly desirable.

2. Hypotheses and definitions. We make the following hypotheses:

H1. The liquids A and B are Newtonian, incompressible and immiscible.

H2. The liquid pressure at the pipe entrance pA is a constant.

H3. The liquid pressure at the pipe exit pB is a constant.

H4. The velocity of the liquids in the pipe on either side of the 2-liquid interface is

unidirectional, i.e., V = (u, v, w) = (u, 0, 0).

H5. The liquids are inviscid (in the 2-liquid inviscid analysis).

H6. The liquids are initially at rest.

H7. The interface remains flat and its normal remains parallel to the pipe axis (in the

2-liquid inviscid analysis).

H8. The pressure on the interface is uniform.

We also make the following definitions:

tDI An inviscid displacement time

tDV A viscous displacement time

t̃ = νt/a2 Nondimensional viscous time

t̄ = t/tDI Nondimensional displacement time

t̂ =
√
g/lt

t∞ The characteristic time it takes to attain a steady state (see Appendix A)
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Rep = d
ν

√
pA−pB+ρgl cos θ

2ρ

(
l
d

)−1
The pipe displacement Reynolds number

ρA The displacing liquid density

ρB The displaced liquid density

λ = 1− ρA/ρB
P = (pA − pB) / (ρBgl) Nondimensionalised pressure difference

θ The pipe inclination to the vertical direction (when θ = 0 the pipe axis is in the

direction of the gravitational acceleration).

3. Analysis of the 1-liquid viscous displacement problem.

3.1. The viscous and inviscid solutions. The initial boundary value problem describing

the impulsively starting motion of a viscous fluid initially at rest in a horizontal circular

pipe of a fixed diameter d, subject to a constant pressure gradient, is defined by the

differential equation
∂u

∂t
− ν

(
∂2u

∂r2
+

1

r

∂u

∂r

)
= −1

ρ

∂p

∂x
, (3.1)

with the initial conditions at t = 0, u = 0 for r ∈ (0, a), and the following boundary

conditions: at r = 0, ∂u/∂r = 0, and at r = a, u = 0 for all t, where a = d/2 is the

radius of the pipe. The solution for the velocity distribution, first derived by Szymanski

(1932), can be found for example in Batchelor (1967) as

u = − 1

ρν

dp

dx
a2

(
1− (r/a)

2

4
− 2

∞∑

n=1

J0(βnr̄)

(βn)
3J1(βn)

e−β2
nνt/a

2

)

, (3.2)

where βn are the positive roots of the Bessel function J0 (βn) = 0.

The mass flow rate

ṁ =

∫
ρudA =

∫ a

0

ρu2πrdr,

as computed from (3.2), is given by

ṁ = − 1

ν

dp

dx

π

8
a4

(

1− 32
∞∑

n=1

1

βn
4 e

−(βn)
2νt/a2

)

. (3.3)

Integrating equation (3.3) over time results in the total mass M(t) displaced out of the

pipe at t as

M(t) =

∫ t

0

ṁdt =-
1

ν

dp

dx

π

8
a4

(

t− 32
a2

ν

∞∑

n=1

1

(βn)
6

(
1− exp

(
−(βn)

2 ν

a2
t
))

)

. (3.4)

Now, the mass contained initially in the pipe is πa2lρ; thus, the time it takes to

displace this mass out of the pipe is obtained by solving for t from the equation

− 1

ν

dp

dx

π

8
a4

(

t− 32
a2

ν

∞∑

n=1

1

(βn)
6

(
1− exp

(
−(βn)

2 ν

a2
t
))

)

= πa2lρ, (3.5)

which determines tDV , the viscous displacement time.

Following the same procedure for an inviscid fluid, starting with the differential equa-

tion
∂u

∂t
= −1

ρ

dp

dx
,



IMPULSIVE DISPLACEMENT OF A LIQUID AT HIGH REYNOLDS NUMBERS 161

and the initial conditions t = 0, u = 0, gives the inviscid velocity as

u = −1

ρ

dp

dx
t. (3.6)

Equating the corresponding inviscid fluid displaced mass M(t) to the mass originally at

rest in the pipe, πa2lρ, we obtain an explicit solution for the inviscid displacement time

as

tDI =
l

√
pA−pB

2ρ

, (3.7)

where
√
(pA − pB) /2ρ is the average inviscid velocity.

In equation (3.7) we set − dp
dx = pA−pB

l , where pA is the pressure at the entrance, pB
the pressure at the exit, ρ is the density and l is the length of the pipe.

The state of the motion of the liquid in the pipe, following an impulsive start, changes

with time from an initially unsteady, essentially inviscid motion, through an unsteady

viscous motion, to finally a fully developed viscous steady state, a Poiseuille flow. In

the displacement problem the displacement process can terminate in any of these states

depending on a particular combination of the five dimensional parameters: the pipe

geometry defined by its length l and radius a, the pressure difference pA − pB, the

density ρ, and the kinematic viscosity ν. It is our primary interest to determine those

solutions of equation (3.5) which at the end of the displacement process, when t = tDV ,

the motion, while slightly more viscous, still remains essentially inviscid. We define an

interval 0 ≤ t ≤ tDV where the motion remains essentially inviscid during the entire

displacement process, an inviscid window. It is expected, from its definition, that in

an interval where the motion remains essentially inviscid the viscous displacement time

approaches the inviscid displacement time:

tDV → tDI . (3.8)

In the next section we determine the nondimensional parameter for the displacement

problem and the condition imposed on it so that the resulting motion is essentially

inviscid.

3.2. The pipe displacement Reynolds number and the inviscid window. We identify

two characteristic times in the problem: an inviscid characteristic time tDI , defined as

the time it takes to displace the entire inviscid liquid originally at rest in the pipe, given

by equation (3.7) as

tDI =
l

√
pA−pB

2ρ

,

and a viscous characteristic time t∞, defined as the time it takes for a viscous liquid

to attain a fully developed viscous steady state in the pipe, i.e., a Poiseuille flow. The

viscous characteristic time was derived in Appendix A, and it is given as

t∞ = 0.1907a2/ν. (3.9)

We note first from equations (3.7) and (3.9) that the two characteristic times are

independent, namely tDI = f(l, pA − pB, ρ) and t∞ = g(a, ν), and that all of the five

dimensional parameters of the displacement problem are included in the definition of the
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two characteristic times. Hence by taking the ratio tDI/t∞ we obtain the nondimensional

parameter for the displacement problem. Second, it follows from the definition of the

numerator that the more inviscid the motion the smaller tDI is, while it follows from the

definition of the denominator that the more inviscid the motion the larger t∞ is. Thus by

taking the ratio tDI/t∞ we obtain a parameter which becomes smaller the more inviscid

the motion is. Substituting from equations (3.7) and (3.9) into the ratio results in the

nondimensional parameter,

tDI

t∞
= 21

(
l

d

)
⎛

⎝
d
√

pA−pB

2ρ

ν

⎞

⎠

−1

= 21Rep
−1, (3.10)

where in (3.10) we introduce

Rep =

⎛

⎝
d
√

pA−pB

2ρ

ν

⎞

⎠
(
l

d

)−1

(3.11)

as the pipe displacement Reynolds number. Now, when the motion is essentially inviscid,

by the arguments presented above, tDI/t∞ � 1 and, by equation (3.10), the Reynolds

number satisfies the condition Rep � 1. Assuming Rep � 1, we obtain from (3.10) that

tDV /t∞ � 1 and thus the motion is essentially inviscid. Hence, the condition

Rep � 1 (3.12)

is a necessary and sufficient condition for an essentially inviscid motion to exist. In the

next section we show that the condition (3.12) is also the necessary condition for an

inviscid window.

3.3. The general solution of the 1-liquid displacement problem. Expressing the dimen-

sional solution to the displacement problem, equation (3.5), in terms of the Reynolds

number defined by equation (3.11) and the nondimensional displacement time as t̃DV =

νtDV /a
2, we arrive at a general solution of the 1-liquid displacement problem in the form

t̃DV − 32
∞∑

n=1

1

(βn)
6

(
1− exp

(
−(βn)

2t̃DV

))
= 64Rep

−2, (3.13)

which gives t̃DV as a function of the Reynolds numberRep. An analysis of equation (3.13)

shows how the various states of motion correlate with specific ranges of the Reynolds

number. The condition that a Poiseuille flow emerges just as the displacement process

ends is defined by equating the viscous displacement time to the viscous characteristic

times, i.e.,

tDV

t∞
=

t̃DV

t̃∞
= 1. (3.14)

This is the time the motion undergoes a transition from an unsteady to a steady state.

From equations (3.14) and (3.9) we obtain that t̃DV = t̃∞ = 0.1907. Thus we calculate

from equation (3.13) the critical Reynolds number corresponding to this time as

(Rep)C = 28.47. (3.15)
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Accordingly, for all Reynolds numbers in the range Rep < (Rep)C , the motion undergoes a

transition from its initial essentially inviscid motion through an unsteady viscous motion

into a fully developed viscous steady state, before the displacement process is complete,

while for all Rep > (Rep)C , the motion is unsteady throughout the entire displacement

process. In this range, the velocity profile which is initially a flat uniform profile becomes

curved but falls short of becoming a parabolic profile. With the critical Reynolds number

defined, we can sharpen the inequality (3.12) to

Rep � (Rep)C = 28.47. (3.16)

Next we consider the limit of equation (3.13) as Rep → ∞. By inspection, equation

(3.13) shows that as Rep → ∞, t̃DV → 0. As shown in (3.8), it is anticipated that tDV

should approach tDI , a finite positive number, or, nondimensionalised that t̃DV → t̃DI .

To show that indeed this is the case we stretch the coordinate t̃ by introducing a new

time variable scaled by the inviscid characteristic time, namely, t̄ = t/tDI . We have then

t̄ = (1/4) t̃Rep. (3.17)

Expressing t̃DV in equation (3.13) in terms of the new variable by taking t̃DV =

4t̄DV Rep
−1, then expanding (3.13) with respect to Rep

−1 as Rep → ∞, gives, after

retaining a few leading terms,

t̄2DV − 16

3
Rep

−1t̄3DV − 1 +O
(
Rep

−2t̄4DV

)
= 0. (3.18)

Taking the limit of (3.18) as Rep → ∞ gives

t̄DV → 1. (3.19)

Expressing (3.19) dimensionally we obtain

tDV → tDI , (3.20)

which is what is expected at an inviscid window. Thus we showed that the condition

Rep → ∞ is the necessary and sufficient condition for both an essentially inviscid motion

and an inviscid window.

The application of an inviscid analysis to the viscous displacement problem involves

an approximation which can be calculated with the aid of equation (3.13). We define the

percent deviation of the inviscid displacement time from the viscous displacement time

as

pdiv (Rep) = 100

(
1− tDI

tDV

)
= 100

(
1− 4Rep

−1

t̃DV (Rep)

)
. (3.21)

Equation (3.21) assigns a quantitative measure to the quality of the inviscid window. The

percent deviation at Reynolds numbers higher than 1.45×104 is less than 1 percent, at a

Reynolds number equal to 612 the percent deviation increases to 5 percent. It increases

to 10 percent at a Reynolds number equal to 162 and to 20 percent at a Reynolds number

equal to 45.

The above analysis can be extended to an inclined pipe by replacing the constant

pressure gradient ∂p
∂x by the constant modified pressure gradient ∂Π

∂x , where the modified

pressure Π is defined by Π = p−ρgixi (Batchelor 1967, p.176). Accordingly the pressure
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difference pA − pB ≥ 0 can be replaced with pA − pB + ρgl cos θ ≥ 0, where the radial

component, which is of order O(ρgd sin θ), has been neglected.

In the following subsections we investigate the form of the velocity profile, the dis-

placement thickness, and the shape of the material interface in an inviscid window and

show that as the Reynolds number increases they approach their inviscid counterpart.

3.4. The effect of high Reynolds numbers on the velocity profile, the displacement

thickness, and on the initial material surface.

3.4.1. The velocity distribution at high Reynolds numbers. Writing the velocity, equa-

tion (3.2), in terms of the time variable t̄ = (1/4)Rept̃ (equation (3.17)), then expanding

the exponential term for small Rep
−1 we obtain to second order

u = − 1

ρν

dp

dx
a2

×
(
1

4

(
1− (r̄)

2
)
− 2

∞∑

n=1

J0 (βnr̄)

(βn)
3J1 (βn)

(
1− 4(βn)

2
t̄Rep

−1 + 8(βn)
4(
t̄Rep

−1
)2

+ ..
)
)

.

(3.22)

In the above expansion the first term in the summation cancels the parabolic velocity

profile, and the remaining two terms become

u = −1

ρ

dp

dx
t

(

2
∞∑

n=1

J0 (βnr̄)

(βn)J1 (βn)
− 4t̄Rep

−1

( ∞∑

n=1

J0 (βnr̄) (βn)

J1 (βn)

)

+ ..

)

. (3.23)

We define an axisymmetric Heaviside function as

H(1− r̄) = 1 when 0 ≤ r̄ < 1 and H(1− r̄) = 0 when r̄ = 1. (3.24)

Then, expanding the function H(1 − r̄) in terms of the Bessel functions J0 (βnr̄), we

obtain

H(1− r̄) = 2

∞∑

n=1

1

βn

J0(βnr̄)

J1(βn)
, (3.25)

which equals the first summation in (3.23). We designate the second summation in (3.23)

as the function

f (r̄) =
∞∑

n=1

J0 (βnr̄) (βn)

J1 (βn)
. (3.26)

The integral of the function f(r̄) over the cross section of the pipe is given by
∫ 1

0

f (r̄)r̄dr̄ = 1.

Substituting equations (3.24) to (3.26) into (3.23) gives the viscous velocity profile at

high Reynolds numbers as

u(r̄, t) = −1

ρ

dp

dx
t
(
H(1− r̄)− 4f (r̄) t̄Rep

−1...
)

(3.27)

and at the limit as Rep → ∞, we obtain the viscous velocity profile as

u(r̄, t) = −1

ρ

dp

dx
H(1− r̄)t. (3.28)
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Comparing equation (3.28) with the inviscid solution equation (3.6) shows that the two

solutions coincide for all r̄ in 0 ≤ r̄ < 1 and deviate at r̄ = 1, where the velocity of the

viscous solution vanishes at the wall. We have thus demonstrated that within O
(
Rep

−1
)

the viscous motion is inviscid everywhere in the pipe, except next to the wall, where it

satisfies the no-slip condition.

It is instructive to investigate the viscous layer next to the wall and to determine the

shear stress τw at the wall. We stretch the coordinate (1 − r̄) by defining a stretched

coordinate η as

η = Rep (1− r̄) ,

which vanishes at the wall ar r̄ = 1. Expressing the Bessel function J0 (βnr̄) in terms of

η we obtain:

J0(βnr̄) = J0
(
βn

(
1− ηRep

−1
))

.

Expanding with respect to small η gives:

J0
(
βn

(
1− ηRep

−1
))

= J0 (βn) + J1(βn)Rep
−1βnη + · · · .

Substituting this result into the Heaviside function (3.25), and then substituting the

result into equation (3.28), gives the velocity in the viscous layer in the form

u = −2

ρ

dp

dx
tRep

−1η. (3.29)

The shear, computed from (3.29) and nondimensionalised with respect to the pressure

difference, gives
τw

pA − pB
= 4Rep

−1 d

l
t̄.

At t = tDV , t̄ = tDV /tDI = 1 + O(Rep
−1); hence this result gives the highest value of

the shear at the wall, to first order in Rep
−1, as

(τw)max

pA − pB
= 4Rep

−1 d

l
.

Multiplying the numerator of the above equation by the pipe surface area 2πal and the

denominator by the cross-sectional area πa2, then taking the inverse, we obtain the ratio

of inertia forces to viscous forces as

Inertia Forces

Viscous Forces
=

1

16
Rep, (3.30)

which shows that the Reynolds number Rep is proportional to the ratio of inertia forces

to the viscous forces acting on the liquid volume in the pipe. At the critical Reynolds

number the ratio of inertia to viscous forces is about 1.8, which is far from high inertia.

3.4.2. The displacement thickness. The displacement thickness, δ∗, in an axisymmet-

ric internal flow is defined as the thickness of a fluid ring next to the wall that can

accommodate the difference between the inviscid mass flow rate and the viscous mass

flow rate. Accordingly we have

δ∗

a
=

∫ 1

0

(
1− uv

uI

)
r

a
d
r

a
,
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where uv and uI are the viscous and inviscid velocities, respectively. Writing this equation

directly in terms of the mass flow rates we obtain

2πρuIaδ
∗ = ṁI − ṁv,

where ṁv is given by equation (3.3) and ṁI = − dp
dxπa

2t as obtained from equation (3.6).

Expanding equation (3.3) in powers of the small parameterRep
−1 to second order results

in

ṁv = − 1

ν

dp

dx

π

8
a4

(

1− 32
∞∑

n=1

1

(βn)
4

(
1− 4t̄Rep

−1βn
2 +

1

2

(
βn

24t̄Rep
−1

)2
+

))

and after replacing the infinite sums of the Bessel roots in the above by the appropriate

constants (see Watson (1952)), we obtain

ṁv = − dp

dx
πa2t

(
1− 8Rep

−1t̄
)
.

Thus, the difference in the mass flow rates becomes

ṁI − ṁv = −8
dp

dx
πa2Rep

−1t̄t.

Dividing this result by ρuI2πa
2 gives

δ∗

a
= 4Rep

−1t̄.

Thus δ∗grows linearly with time and at the end of the displacement process at t̄ = t̄DV

we have, since t̄DV = tDV /tDI → 1, to first order inRep
−1,

δ∗

a
=

4

Rep
.

This shows that the viscous layer at the wall thickens as the inverse of the Reynolds

number. This result also supports the notion that as the Reynolds number increases the

velocity profile remains essentially flat.

3.4.3. The motion of the material surface. The geometry of a material surface as it

evolves in time is determined by the integral

x(r, t) =

∫ t

0

u (r, t) dt+ x(r, 0), r ∈ [0, a],

where x(r, 0) is the initial distribution of the fluid at t = 0. In the displacement problem

we select the initial position of the material surface at t = 0 as x (r, 0) = 0, for all

r ∈ (0, a), which describes a disk perpendicular to the pipe axis. Carrying out the

integration using the velocity from equation (3.27) we obtain the description of the initial

material surface as it changes with time as

x(r, t) = −1

ρ

dp

dx

t2

2

(
(H(1− r̄)− 8

3
Rep

−1f (r̄) t̄

)
. (3.31)

As seen from the above equation, at the limit as Rep → ∞, the geometry of the

material surface is described as an expanding cylindrical shell, anchored at x(a, 0) = 0,
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which is capped at x(r, t) by a disk defined over the interval 0 ≤ r̄ < 1. The disk moves

at the velocity

w =
dx

dt
= −1

ρ

dp

dx
H (1− r̄) t, r̄ ∈ [0, 1],

which is zero at the wall.

From the inviscid velocity, equation (3.6), we obtain the description of the initial

material surface as it changes in time as

x(r̄, t) = −1

ρ

dp

dx

t2

2
for all r̄ in 0 ≤ r̄ ≤ 1 , (3.32)

as compared with equation (3.31).

In sum, we have demonstrated that when the pipe Reynolds numbers Rep � 1, the

deviation between the viscous and the inviscid solutions for the displacement time, the

velocity profile, and the deformation of the material surface separating the displacing

liquid from the displaced liquid, vanishes asymptotically. Thus, in an inviscid window of

a viscous liquid the application of an inviscid analysis is justified. We propose therefore

that in the 2-liquid viscous displacement problem, if both liquids satisfy the condition

Rep � 1, an inviscid window exists, and thus an inviscid analysis is justified. However,

when the material surface of the 1-liquid problem is replaced with a material interface

in the 2-liquid problem, this interface is susceptible to the Rayleigh-Taylor instability,

which we address in section 6. In the following section we solve the 2-liquid inviscid

problem.

4. Control volume analysis of the 2-liquid inviscid displacement problem.

4.1. Formulation of the 2-liquid inviscid displacement problem. We derive the equa-

tions of motion for the two liquids in the pipe during the displacement process subject to

the hypothesis that the liquids are incompressible (H1), and the motion is unidirectional

(H4). Let the variables ρ, u, g, θ, p, x, l designate the density, the velocity of the liquid

along the axis, the gravitational acceleration, the inclination of the pipe, the pressure,

the position of the interface in the pipe, and the pipe length, respectively. As shown by

Batchelor (1970, p.179), subject to these assumptions the velocity component u becomes

independent of x. If in addition the fluid is inviscid (H5) and at time t = 0, u = constant

(H6), then u = u(t) for all t ≥ 0. Applying a control volume analysis to the liquids in the

pipe subject to these assumptions we obtain the following pair of differential equations:

For the displacing liquid, liquid A:

ρAx
duA

dt
= ρAxg cos θ + (pA − pIA) (4.1)

and for the displaced liquid, liquid B:

ρB(l − x)
duB

dt
= ρBg(l − x) cos θ + (pIB − pB), (4.2)

where pIA(x(t)) is the time-dependent pressure at theA side of the interface and pIB(x(t))

is the time-dependent pressure at the B side of the interface. Applying the jump condi-

tions at the material interface we obtain

pIA = pIB = pI ,
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where pI is the pressure at the interface, and

uA = uB =
dx

dt
,

where dx/dt is the velocity of the interface.

Substituting the jump conditions into equations (4.1) and (4.2) gives the two differ-

ential equations for the position of the interface and the pressure at the interface as

ρAx
d2x

dt2
= ρAxg cos θ + (pA − pI) (4.3)

and

ρB(l − x)
d2x

dt2
= ρBg(l − x) cos θ + (pI − pB). (4.4)

Eliminating the unknown pI between the two equations we obtain a single ordinary,

second order, nonlinear differential equation for the position of the interface x(t) as

ρB(l − λx)
d2x

dt2
= ρB(l − λx)g cos θ + (pA − pB), (4.5)

which is subject to the initial conditions at t = 0: x = 0, and dx/dt = 0, and where

λ = 1− ρA/ρB.

Rewriting equation (4.3) as

ρAx

(
d2x

dt2
− g cos θ

)
= (pA − pI)

and equation (4.5) as

ρB(l − λx)

(
d2x

dt2
− g cos θ

)
= (pA − pB),

then taking the ratio we obtain

pA − pI (x(t))

pA − pB
=

(1− λ)x(t)

l − λx(t)
, (4.6)

which gives the pressure at the interface pI , as a function of the position of the interface

x(t).

We define the time it takes the interface to reach the pipe exit l the displacement

time tDI ; thus x(tDI) = l. As can be seen from equation (4.6), when the interface is at

x = 0 the interface pressure is equal to pA, and when the interface reaches the end of the

pipe the interface pressure becomes equal to pB. We note also that when ρA/ρB → 0

and hence λ → 1, the pressure in the pipe between the entrance and the interface is a

constant equal to the pressure at the entrance pA. Consequently, the same effect on the

displacement time would be obtained if the displacing fluid is a gas which is maintained

at constant pressure. This completes the formulation of the 2-liquid inviscid displacement

problem.
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4.2. The general solution of the 2-liquid inviscid displacement problem. Substituting

the nondimensional pressure parameter P = (pA − pB)/ρBgl, the nondimensional time

variable t̂ =
√
g/lt, and the nondimensional space variable x̄ = x/l into (4.5) we arrive

at the nondimensional differential equation

d2x̄

dt̂2
= cos θ +

P

1− λx̄
, (4.7)

which holds in 0 ≤ x̄ ≤ 1, subject to the initial conditions at t̂ = 0, x̄ = 0 and dx̄/dt̂ = 0.

Multiplying (4.7) by dx̄/dt̂ and integrating with respect to t̂ gives

(
dx̄

dt̂

)2

= 2

(

x̄ cos θ + P ln (
1

1− λx̄
)
1/λ

)

+ c.

Applying the initial conditions determines the constant c to be zero, and the velocity of

the interface becomes

w̄ =
dx̄

dt̂
=

√√√
√2

(

x̄ cos θ + P ln (
1

1− λx̄
)
1/λ

)

, (4.8)

where the dimensional interface velocity is related to w̄ by w = w̄
√
gl. The position of

the interface in the pipe is determined by the integral

t̂ =

∫ x̄

0

dξ
√
2ξ(cos θ + P

ξλ ln( 1
1−λξ ))

, (4.9)

and the nondimensional inviscid displacement time becomes

t̂DI =

∫ 1

0

dξ
√
2ξ(cos θ + P

ξλ ln( 1
1−λξ ))

. (4.10)

Given the parameters P = (pA− pB)/ρBgl, λ = 1− ρA/ρB, and the inclination of the

pipe θ, the position of the interface in the pipe as a function of time is determined from

equation (4.9) and subsequently the velocity from equation (4.8).

5. Examples. In this section we consider various examples for high inertia displace-

ment. In all of the examples considered the pipe length is taken as l = .30m and its

diameter as d = 0.025m. The liquids selected are water with a density ρ = 997.5kg/m3

and a kinematic viscosity ν = 8.64 × 10−7m2/s, and oil with a density ρ = 840kg/m3

and a kinematic viscosity ν = 2.03 × 10−5m2/s. Any additional data required for the

solution are presented in the examples. The first three examples are closed form solu-

tions; the others are computed numerically. Verification of the accuracy of the numerical

integration is obtained by comparing results with the closed form solutions. The percent-

age error computed was found to be better than 10−4. In addition to the displacement

times, the results presented include the Reynolds numbers, which are required to sat-

isfy the condition Rep � 28 in order for the inviscid theory to apply and the percent

deviation to be as computed from equation (3.21).
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Example 5.1. Zero pressure difference. pA − pB = 0, i.e., P = 0.

This example represents a free fall solution. We obtain from (4.10),

t̂(x̄) =

√
2

cos θ
x̄1/2,

which, in dimensional form gives the displacement time as

tDI =

√
2l

g cos θ
.

The result is independent of λ and hence valid for any pair of liquids. For a vertical

pipe where θ = 0, using water as the displacing liquid (liquid A) and oil as the displaced

liquid (liquid B) the displacement time tDI = 0.247s and the pipe Reynolds numbers are

RepA = 2.924 × 103 and RepB = 124. The percent deviation for the oil as computed by

equation (3.21) is 11.5 percent, which makes the inviscid solution unacceptable. Using

instead a pipe with a diameter of 0.05m, the displacement time remains unchanged while

the Reynolds numbers becomeRepA = 1.17 × 104 and RepB = 498, which reduces the

percent deviation for the oil to about 5.5 percent.

Example 5.2. Same density displacement. ρA/ρB = 1, (λ = 0).

By taking the limit as λ → 0 in (4.10) or directly from the differential equation (4.7),

we obtain the nondimensional displacement time as

t̂DI =

√
2

cos θ + P
. (5.1)

which for a horizontal pipe, reduces to t̂DI =
√
2/P ; or, dimensionally to tDI =

l/
√
(pA − pB) /2ρ.

Using water as the working substance and a pressure difference of one atmosphere

gives the displacement time tDI = 0.0421s and Rep = 1.718 × 104. If we compute the

viscous displacement time tDV for this displacement problem using equation (13) with

Rep = 1.718 × 104, we obtain tDV = 0.0425s. Comparing this result with the inviscid

solution tDI shows a percent deviation better than one percent.

Example 5.3. A horizontal pipe (θ=π/2).

For a horizontal pipe, setting θ = π/2, then introducing the transformation y =√
1
λ ln( 1

1−λξ ), we obtain the displacement time as a function of the position of the inter-

face x̄ and λ as

t̂ (x̄, λ) =

√
2

P

∫ √
1
λ ln 1

1−λx̄

0

e−λy2

dy, (5.2)

which, by setting x̄ = 1, gives the nondimensional displacement time as

t̂(1, λ)DI =

√
2

P

∫ √
1
λ ln 1

1−λ

0

e−λy2

dy. (5.3)

Taking the limit of (5.3) as λ → 1 corresponding to ρA/ρB → 0, we arrive at the closed

form solution

t̂DI (1, 1) =

√
2

P

∫ ∞

0

e−y2

dy =

√
π

2P
, (5.4)
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which in dimensional variables becomes

tDI = l

√
π

2

ρB
pA − pB

. (5.5)

Taking the limit of (5.3) as λ → 0, corresponding to the case ρA = ρB , gives

t̂DI (1, 0) =

√
2

P

∫ 1

0

dy =

√
2

P
;

hence, the ratio tDI(1, 1)/tDI(1, 0) =
√
π/4 = .886, which makes the ρA/ρB → 0 case

almost 13.0 percent faster than the ρA = ρB case.

As a numerical example, let the pressure difference be pA − pB = 1atm, the density

ratio ρA/ρB → 0, and water is the displaced liquid. Using the exact solution, equation

(5.5), we find tDI = .037306s and the Reynolds number Rep = 1.718 × 104. Using air

as the displacing fluid, which has a density ρ = 1.2kg/m3, and hence λ = 0.99879, the

displacement time as calculated by equation (5.3) becomes tDI = .037319s with the

Reynolds number for water Rep = 1.718× 104 and for air Rep = 2.854× 104.

Next we show that for an inclined pipe at a prescribed P = (pA − pB) /(ρBgl), the

shortest displacement time for any density ratio ρA/ρB ≥ 0 is obtained whenρA/ρB → 0.

Proof. For an inclined pipe the forcing function for the acceleration of the interface

as shown in (4.2) is given by F (x̄, θ, λ) = cos θ + P/(1− λx̄).

Let F1 = F (x̄, θ, 1) = cos θ + P/(1− x̄) and Fλ = F (x̄, θ, λ) = cos θ + P/(1− λx̄) for

λ 
= 1. Now, for any ρA/ρB ≥ 0, λ = 1− ρA/ρB ≤ 1; hence 1− x̄ ≤ 1− λx̄ and therefore

F1 ≥ Fλ for x̄ ∈ [0, 1], where the equality sign is for x̄ = 0, where F1 = Fλ = P + cos θ.

Since at t = 0, we have x̄ = 0, dx̄/dt̂ = 0, and F1 = Fλ = P + cos θ, and we have

F1 > Fλ for x̄ ∈ (0, 1], the shortest displacement time is obtained when ρA/ρB → 0. For

a horizontal pipe the result is given by equation (5.5).

Example 5.4. Oil-water displacement.

We consider a pressure difference of one atmosphere with oil as the displacing liquid

and water the displaced liquid with θ = (0, π/2, π). Using equation (4.10) the numerical

integration gives tDI = (0.04095s, 0.04153s, 0.04212s), respectively. The corresponding

pipes Reynolds numbers are: for the oil Rep = (807, 797, 787) and for the water Rep =(
1.743× 104, 1.718× 104, 1.693× 104

)
. The oil results indicate a percent deviation with

the viscous solution (equation (3.21)) of between 4 to 5 percent.

Example 5.5. Water-oil displacement.

This is the same as Example 5.4, but the role of displacing and displaced liquids is inter-

changed. The numerical results for θ=(0, π/2, π) are tDI=(0.03873s, 0.03921s, 0.03972s),

respectively, with corresponding pairs of Reynolds numbers as in Example 5.4.

Examples 5.4 and 5.5 show that an increase in the gravitational force shortens the

displacement time, and when the heavier and lighter liquids exchange positions, when

the heavier liquid is displacing the lighter liquid at a fixed angle, the displacing time

is shorter. A general proof to that effect is presented in Appendix B. The solutions

presented above are mechanically admissible; i.e., they satisfy the global equations of

mass conservation and momentum conservation. In the following section we consider the

stability of these solutions.
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6. Stability of the 2-liquid inviscid displacement problem. Taylor (1950) an-

alyzes the stability of an infinite material interface between two inviscid immiscible fluids

that is accelerating in the direction perpendicular to the interface. His major conclusions

are that the surface is stable or unstable according to whether the acceleration is in the

direction from the heavy fluid to the lighter fluid or vice versa, and that the growth rate

of the instability is proportional to
√
(ρB − ρA) / (ρB + ρA), where ρA < ρB . In applying

Taylor’s theory to the 2-liquid inviscid displacement problem, we are extending it from

consideration of an infinite interface to a finite interface. For clarity in applying Taylor’s

analysis, we reproduce some of its basic elements here. Taylor considers the stability of

the material interface between a liquid A, located in the half space x < 0 and a liquid B,

located in the half space x > 0. The liquids are assumed inviscid and immiscible. The

direction of x is taken as positive in the direction of the gravitational acceleration g, and

the coordinate system is fixed on the moving interface which is accelerating at g1 in the

negative x direction. By applying potential theory, Taylor obtains the equation of the

perturbed interface as

η = A1n
−1kent cos kz, (6.1)

where A1 is the amplitude of the perturbed surface, n the complex frequency, k the wave

number, and the coordinate z is tangential to the unperturbed surface. By imposing the

continuity of the normal velocity component of the interface and the pressure across the

interface, he derives the square of the complex frequency as

n2 = −k(g + g1)
ρB − ρA
ρB + ρA

. (6.2)

It follows directly from equation (6.2) that when g1 = 0, the interface is stable if ρA < ρB,

a familiar result for the Air-Ocean interface. Setting θ = 0 in equation (4.5) so that the

pipe axis is oriented in the direction of the gravitational acceleration, we replace the

acceleration g1 in equation (6.2) by the acceleration given in (4.5) with due account for

the direction of g1 to obtain

−g1 =
d2x

dt2
= g +

pA − pB
ρB(l − λx)

. (6.3)

Substituting from equation (6.3) into equation (6.2) we obtain the square of the frequency

as

n2 =
k

l

pA − pB
ρA + ρB

ρB − ρA
ρB − (ρB − ρA)x̄

. (6.4)

In equation (6.4), the function ρB − (ρB − ρA)x̄ is a linear interpolation of the density

between ρB and ρA, and hence positive for x̄ ∈ [0, 1]. Since by definition the pressure

difference pA− pB ≥ 0, then, if pA− pB > 0, the interface is unstable when ρA < ρB and

stable when ρA > ρB, and the interface is neutrally stable when pA − pB = 0, which is

in agreement with Taylor’s result.

According to these results, the solutions in Examples 5.1 and 5.2 are neutrally stable,

those in Examples 5.3 and 5.4 are unstable, and those in Example 5.5 are stable.

We consider next the growth rate of the unstable solutions, since if the interface

can arrive at the pipe exit at a shorter time than the characteristic time required for

the instability to grow, then the unstable solution still holds. The growth rate of the
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instability is its frequency n. We define its inverse τ , which is the e-folding time for the

growth of the instability, as the characteristic time for the instability to grow. Hence we

have

τ−1 = n =

√(
k

l

)
pA − pB

ρB − (ρA − ρB)x̄

ρB − ρA
ρB + ρA

, (6.5)

where in (6.5), ρA < ρB . Replacing the wave number k with k = 2πm/d, where m is the

sequence of positive integers m = 1, 2, 3, ..., we obtain

τm
−1 =

1

l

√

2πm

(
l

d

)
pA − pB

ρB − (ρA − ρB)x̄

ρB − ρA
ρB + ρA

. (6.6)

As can be verified from (6.6) the growth rate is proportional to
√
(ρB − ρA) / (ρB + ρA)

and to
√
l/d; it is linearly proportional to the pipe Reynolds number Rep and inversely

proportional to the pipe cross-sectional area. As an example we consider two limiting

cases, both in a horizontal pipe: the first is ρA/ρB → 0 and the second is ρA/ρB → 1.

In the first case the rate of the displacement is the fastest; in the second case the growth

of the instability is the slowest.

Case 1. ρA/ρB → 0. As shown in Example 5.3, this density ratio provides the fastest

displacement time for a horizontal pipe which is given by equation (5.5) as

tDI = l

√
π

2

ρB
pA − pB

.

Applying the condition ρA/ρB → 0 to (6.6) we derive

τm
−1 =

1

l

√

2πm

(
l

d

)
pA − pB
ρB(1 + x̄)

.

Hence the ratio is
tDI

τm
= π

√
l

d

m

1 + x̄
> 1,

which shows that for all positive integers, the instability grows faster than it takes the

interface to arrive at the exit.

Case 2. ρA/ρB → 1. The instability growth rate is the slowest when ε = 1−ρA/ρB <

1 approaches zero. For sufficiently small ε, equation (5.4) takes the form

τm
−1 = n˜

1

l

√

πm

(
l

d

)
pA − pB

ρB
ε.

The corresponding tDI as ε → 0, as shown in Example 5.3, is

tDI =
l

√
pA−pB

2ρB

,

and hence
tDI

τm
˜

√

2πmε
l

d
.

Consequently, although unstable, we find that the time it takes the interface to arrive

at the exit is shorter or longer than the corresponding characteristic time τm, according

to whether the positive integer m is smaller or larger than the real number q(ε), where
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q(ε) = (d/l) /(2πε). Hence at small ε > 0 the interface escapes the low frequencies, but

it is vulnerable to the high frequencies.

7. Comparison of the theory with a numerical analysis. We compare the re-

sults of our analysis with the numerical data obtained by Dimakopoulos and Tsamopoulos

(2003) where they analyze the displacement of a viscous liquid, including the effects of

surface tension, with a highly pressurized air. In comparing our results we are mostly

concerned with the effect of inertia, which is presented in their paper by a sequence of

Reynolds numbers. In their analysis the Reynolds number is defined by

Rdt =
ρa3(pA − pB)

lμ2
,

where we use the subscript dt to distinguish between their Reynolds number and the one

we use in our analysis. The relation between the two Reynolds numbers is given by

Rep = 2

(
l

d

)−1/2

Rdt
1/2.

The sequence of Reynolds numbers presented in their paper is

Rdt = 8.33, 83.33, 1250, 1666, and 4165,

which, with a fixed aspect ratio of l/d = 6, translates into

Rep = 2.36, 7.45, 28.87, 33.33, and 52.69 (7.1)

in our notation. By the criteria for a high Reynolds number, Rep � (Rep)C = 28.47,

derived in section 3.3, equation (3.16), none of the above may be considered a high

Reynolds number. According to equation (3.21) the percent deviation for the highest

Reynolds number is about 18 percent, and according to equation (3.30) the ratio of the

viscous forces to the inertia forces at the end of the displacement process is approximately

30 percent. As discussed in section 3.3, for Reynolds numbers smaller than (Rep)C , the

velocity attains a parabolic profile some time during the displacement process. The two

lowest Reynolds numbers in equation (7.1) fall into this group. The observation made by

Dimakopoulos and Tsamopoulos of a faster formation of the parabolic profile with the

lower Reynolds number is in agreement with the general solution equation (3.13). As

can be seen from the data presented in their paper for Rdt = 1250, the interface does not

retain its original flat interface, neither does it become parabolic; it is a transitional case

corresponding to Rep = 28.87 in our notation. We find the close agreement between the

transition point in the state of motion as predicted by our 1-liquid viscous model and

the numerical results for a 2-liquid model, including surface tension, quite remarkable.

Additional data to validate this result is obviously necessary.

For the Reynolds numbers higher than the critical number any comparison must be

at best qualitative. We demonstrated a steepening of the velocity profile as well as the

interface with increasing Reynolds numbers in the 1-liquid analysis which is in agreement

with Dimakopoulos and Tsamopoulos observations for Rdt = 1666 and Rdt = 4165, who

show that the interface becomes flat faster as the Reynolds number increases. In their

paper the displacing fluid is air and the displaced fluid is a liquid. Hence, once the
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interface becomes flat, or at portions of the interface which become flat, the surface

becomes susceptible to the Rayleigh-Taylor instability. For comparison with their results

for the growth rate of the instability we consider our results for the density ratio ρA/ρB →
0 determined in Case 1 of section 6. This growth rate can be written as

τm
−1 =

ν

2s
Rep

(
l

d

)1/2
√

π3m

1 + x̄
,

where s is the cross-sectional area of the pipe. As can be seen from this equation the

growth rate at any frequency m is proportional to the pipe Reynolds number Rep cal-

culated for the displaced liquid, the square root of the aspect ratio l/d and inversely

proportional to the cross-sectional area of the pipe. The data in the numerical results

of Dimakopoulos and Tsamopoulos also indicate a faster instability growth rate as the

Reynolds number increases. No qualitative or quantitative comparison could be made

beyond these points.

For a quantitative comparison between the results of this analysis and either numerical

or experimental results, additional data at high Reynolds numbers at either stable or

unstable displacement problems are required.

Appendix A. The characteristic time to attain a fully developed viscous

steady state. Taking the limit of equation (3.2) as t → ∞ gives the steady state

Poiseuille flow

U = − 1

μ

dp

dx

a2

4

(
1−

( r
a

)2
)
,

which has a maximum velocity at the center given by

Umax = − 1

μ

dp

dx

a2

4
.

The characteristic time to approach steady state is determined as we let the nondimen-

sionalised deviation from steady state defined by the expression

Δū =
U − u

Umax
= 8

∞∑

n=1

J0 (βnr̄)

βn
3J1 (βn)

exp
(
−βnt̃

)

go to zero. As t̃ → ∞, the largest contribution to Δū comes from the smallest eigenvalue;

hence

Δū ≈ 8
J0 (β1r̄)

β1
3J1 (β1)

e−β1
2 t̃

with its maximum value on the axis as

Δūmax ≈ 8
J0 (0)

β1
3J1 (β1)

e−β1
2 t̃.

Setting the nondimensional deviation equal to e−1 defines this e-folding time as the

characteristic time for the flow to attain a steady state. Introducing the entries β1 =

2.4048, J0 (0) = 1, and J1 (β1) = .519 (Watson (1952)), we obtain t̃∞ = .1907 and thus

the characteristic time for the velocity to attain a steady state is

t∞ = 0.1907a2/ν.
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Appendix B. A preferential choice for the denser liquid. We prove that given

two liquids with densities ρ1 and ρ2 such that ρ1 > ρ2, a specified pressure difference

pA − pB such that pA > pB, and an inclination angle θ, the displacement time is shorter

if the denser liquid ρ1 is displacing the lighter liquid ρ2.

Proof. A first integral of Equation (4.1) determines the velocity u of the interface as

a function of x̄, the displacing liquid ρA, and the displaced liquid ρB with ρA 
= ρB in

the form
1

2
u2 = xg cos θ +

pA − pB
ρA − ρB

ln

(
1 +

(
ρA
ρB

− 1

)
x̄

)
. (B.1)

Consider two liquids ρ1 and ρ2 such that ρ1 > ρ2. We select first ρ1 = ρA as the

displacing liquid and ρ2 = ρB as the displaced liquid to obtain the velocity u1 as

1

2
u1

2 = xg cos θ +
pA − pB
ρ1 − ρ2

ln

(
1 +

(
ρ1
ρ2

− 1

)
x̄

)
. (B.2)

Second, we select ρ2 = ρA as the displacing liquid and ρ1 = ρB as the displaced liquid

to obtain the velocity u2 as

1

2
u2

2 = xg cos θ +
pA − pB
ρ2 − ρ1

ln

(
1 +

(
ρ2
ρ1

− 1

)
x̄

)
. (B.3)

Subtracting Equation (B.3) from Equation (B.2) gives

1

2
u1

2 − 1

2
u2

2 =
pA − pB
ρ1 − ρ2

ln

(

1 +

(√
ρ1
ρ2

−
√

ρ2
ρ1

)2 (
x̄− x̄2

)
)

. (B.4)

Since x̄ > x̄2 in the interior of the closed interval [0, 1], and x̄ = x̄2 at its boundaries

x̄ = 0 and x̄ = 1, the difference 1
2u1

2− 1
2u2

2 = 1
2 (u1−u2)(u1+u2) is positive, and hence

u1 − u2 is also positive in x̄ ∈ (0, 1) and it is equal to zero at the boundaries. It follows

that the displacement time is shorter when the denser liquid is the displacing liquid than

when the lighter liquid is the displacing liquid. This completes the proof. (This proof

was suggested by private communication with Prof. Lu Ting of the Courant Institute.)
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