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Abstract. A major goal of quantum computing research is to drain all quanta (q)

of thermal energy from a solid at a positive temperature T0 > 0, leaving the object in

its ground state. In 2010 the first complete success was reported when a quantum drum

was cooled to its ground state at T0 = 20mK. However, current theory, which is based

on the Bose-Einstein equation, predicts that the temperature T → 0 as q → 0. We prove

that this discrepancy between experiment and theory is due to previously unobserved

errors in low temperature predictions of the Bose-Einstein equation. We correct this

error and derive a new formula for temperature which proves that T → T0 > 0 as q → 0.

Simultaneously, the energy decreases to its ‘supersolid’ ground state level as q → 0+. For

experimental data our temperature formula predicts that T0 = 9.8mK, in close agreement

with the 20mK experimental result. Our results form a first step towards bridging the

gap between existing theory and the construction of useful quantum computing devices.

1. Background. In 2009-2010 Park and Wang [7], Schliesser et al. [12], Groblacher

et al. [4], and Rocheleau et al. [10] used laser cooling techniques to cool solids to tem-

peratures where the number of remaining quanta (q) are 63, 37, 30 and 4, respectively.

In 2010 O’Connell et al. [6] achieved complete success in reducing the percent of quanta

in a quantum drum to .07 at T0 = 20mK. The key to their breakthrough was to use a

ceramic wafer whose natural frequency, 6GHz., is much higher than frequencies in pre-

vious studies. In 2011 Teufel et al. [14, 15] reduced the number of quanta in a drumlike

membrane to ‘less than one’. They claim that their device remains in the ground state

for 100 microseconds, significantly longer than the 6 nanosecond result in [6].

Theoretical investigations [14, 15] have focused on the assumption that the Bose-

Einstein equation

q =
1

exp
(
hν
kT

)
− 1

(1.1)

for a single atom represents the behavior of the entire solid. Here k is Boltzmann’s

constant, h is Planck’s constant, ν is frequency and T > 0 is temperature. In particular,
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a major component of the analysis by Teufel et al. [14, 15] is crucially dependent on two

well-known predictions of the Bose-Einstein equation:

(P1) Thermal energy is present at every positive temperature.

(P2) T → 0 as q → 0.

When q = .07 equation (1.1) predicts that T = 105mK, much higher than the 20mK

experimental result.

This discrepancy between the experimental results of O’Connell et al. [6] and theoretical

predictions (P1)-(P2) clearly demonstrates that, as the quanta of energy are drained

from a solid, the behavior of the temperature is poorly understood.

The first step in resolving the discrepancy between experiment and theory is to define

the limiting value of the temperature by

T0 = lim
q→0+

T.

Our most important theoretical advance (see Theorem 2.1) is the following:

We derive a new formula for the temperature of a solid which proves that T0 > 0, and

therefore the predictions (P1)-(P2) of the Bose-Einstein equation are false.

To prove this claim we analyze the Einstein model of a solid [2]. The Einstein model

is based on the following assumptions:

(A1) Each of the N atoms in the lattice of the solid is a 3D quantum harmonic

oscillator, and q > 0 quanta of energy have been added to the lattice.

(A2) Each atom is attached to a preferred position by a spring.

(A3) The oscillators have the same frequency ν > 0.

In agreement with the single atom model, the Einstein model assumes monochromatic

vibrations of the atoms making up the solid. Thus, the Einstein model is the natural

extension from the single atom model to an entire solid.

In 1907 Einstein derived his classical formula for specific heat, at constant volume, of

a solid which satisfies (A1)-(A2)-(A3):

CV = 3NAk
( ε

kT

)2 exp( ε
kT )(

exp( ε
kT ) − 1

)2 , 0 < T < ∞, (1.2)

where NA is Avogadro’s number, ε = hν is the quantum of energy, and ν is frequency.

Formula (1.2) has the following basic property: let ε
k > 0 be fixed. Then (see Figure 1)

CV is well defined for all T > 0 and lim
T→0+

CV = 0. (1.3)

Property (1.3) is widely quoted in textbooks and reference books in the statistical me-

chanics, thermal physics and modern physics literature (e.g., see Prathia [9], p. 175,

Schroeder [13], p. 309, or Tipler and Llewellyn [16], p. 347). Our second most important

advance is to prove that both parts of (1.3) are false.

To prove the claims made above, we reexamine the details of the derivation of for-

mula (1.2). There are two standard methods to derive (1.2). We follow the micro-

canonical ensemble approach [9, 13], since it is based on standard statistical mechanics

principles which precisely describe how temperature and energy change as the quanta
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are drained from the solid. The second method, the macro-canonical approach, uses par-

tition functions [3, 9] which do not immediately show the effect of decreasing the number

of quanta. However, the details of their derivation do show such effects.

The first step is to show how expressions for internal energy, entropy and temperature

lead to the underlying Bose-Einstein equation. Secondly, we prove that the discrepancy

between experiment and current theory is due to previously unobserved mathematical

errors that arise in the Bose-Einstein equation as q → 0+. We then present our approach

to resolve these errors. Our results are stated in Theorem 2.1.

The possible energy states of the atoms are Ek = ε
(
nk + 1

2

)
, 1 ≤ k ≤ N ′ = 3N.

Thus, the total internal energy is

U =

N ′∑
k=1

ε

(
nk +

1

2

)
= εq + U0, (1.4)

where q =
∑N ′

k=1 nk is the number of quanta and U0 = N ′ε
2 is the ground state energy.

The Boltzmann formula for entropy is S = k ln(W ), where W is the number of ways

that q quanta can be distributed over N ′ = 3N degrees of freedom. Thus, W = (q+N ′−1)!
q!(N ′−1)!

and S = k ln
(

(q+N ′−1)!
q!(N ′−1)!

)
. Therefore,

S = k (ln((q + N ′ − 1)!) − ln(q!) − ln((N ′ − 1)!)) . (1.5)

The standard statistical mechanics approach to simplify (1.5) is to use Stirling’s approx-

imation ln(M !) = M ln(M) − M, M � 1 [9, 13]. Applying Stirling’s approximation

to (1.5) when q � 1 and N ′ � 1 gives

S = k ((q + N ′ − 1) ln(q + N ′ − 1) − q ln(q) − (N ′ − 1) ln(N ′ − 1)) , (1.6)

Temperature and specific heat satisfy

1

T
=

∂S

∂U
and CV =

1

n

∂U

∂T
, (1.7)

where n = N
NA

(moles). It follows from (1.4), (1.6) and (1.7) that

1

T
=

dS

dq

dq

dU
=

k

ε
ln

(
q + N ′ − 1

q

)
. (1.8)

An inversion of (1.8) gives the Bose-Einstein equation for the solid:

q =
N ′ − 1

e
ε

kT − 1
. (1.9)

Next, ignore −1 in the numerator since N ′ � 1, substitute (1.9) into (1.4), and get

U =
εN ′

e
ε

kT − 1
+

N ′ε

2
. (1.10)

Finally, set N ′ = 3N, n = N
NA

, and combine (1.10) with CV = 1
n

dU
dT . This gives Einstein’s

specific heat formula (1.2).
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2. The mathematical error and its resolution. It follows from the Bose-Einstein

equation (1.9) that

T0 = lim
q→0+

T = 0. (2.1)

Equations (1.9) and (2.1) predict, in agreement with predictions (P1)-(P2) of the single

atom model, that thermal energy is present in the solid at every positive temperature,

and that T → 0 as the quanta are drained from the solid. However, (1.9) and (2.1) are

mathematically illegitimate since their derivations are directly dependent on the Stirling

approximation ln(q!) = q ln(q) − q, which is accurate when q � 1, but rapidly loses

accuracy as q → 0+ : the relative error is 13 percent at q = 10, and 188 percent at

q = 2. Indeed, the term q ln(q) − q is actually negative at q = 1 or q = 2. To correct

this unacceptable loss of accuracy, our approach is to return to formula (1.5) for S, and

replace each term of the form ln(M !) with the exact value ln(M !) = ln(Γ(M +1)), where

Γ is the Gamma function. This transforms (1.5) into

S = k (ln (Γ(q + N ′)) − ln (Γ(q + 1)) − ln (Γ(N ′))) ∀q ≥ 0. (2.2)

In Theorem 2.1 we use (2.2) to derive new expressions for T, U and CV which are

completely accurate over the entire range 0 < q < ∞.

Theorem 2.1. Let ε > 0 and N ′ � 1 be fixed. The temperature is given by

T =
ε

k

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)−1

> 0 ∀q ≥ 0. (2.3)

T is an increasing function of q. Its lowest value is

T0 = lim
q→0+

T =
ε

k

(
Γ′(N ′)

Γ(N ′)
+ γ

)−1

> 0, (2.4)

where γ is Euler’s constant.

Energy, U, is an increasing function of q, and satisfies

lim
q→0+

U = N ′ ε

2
= Ground State Energy. (2.5)

Specific heat is given by

CV = −k

n

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)2 [
d

dq

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)]−1

> 0 ∀q ≥ 0.

(2.6)

CV is an increasing function of q. The lowest value of CV is positive and is given by

C0 = lim
q→0+

CV = −k

n

(
Γ′(N ′)

Γ(N ′)
+ γ

)2
[
d

dq

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

) ∣∣∣∣
q=0

]−1

> 0.

(2.7)

The proof of Theorem 2.1 is given in the Appendix. We make the following conclusions:

(I) Minimum temperature and energy. It follows from (2.4) that temperature

decreases to a positive value T0 > 0 as q → 0+ and cannot go lower. This result,

which overturns predictions (P1)-(P2) of the Bose-Einstein equation, is surprising and

unexpected since the Bose-Einstein equations have not previously been known to give
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Fig. 1. Left panel: Einstein’s Cv function (1.2) vs. T for diamond:
data from [3], frequency ν = 2.727× 1013. Superimposed is the new
Cv function (2.6). Right panel: blowup showing both functions vs.
T when 23.1 < T < 23.3. The large dot corresponds to T0 = 23.205,
the positive temperature where the solid reaches its ground state.

mathematically erroneous predictions. Furthermore, as q → 0+ property (2.5) shows

that energy decreases to the ‘supersolid’ ground state level where all atoms in the lattice

have the same energy ε = hν. Thus, at T = T0 quantum effects are expected, e.g.

superposition of states [8] or possibly superfluidity [5].

(II) Comparison with experiment. To test formula (2.4) we use data from O’Connell

et al. [6]: frequency = 6GHz and N ≈ 1 trillion atoms. Thus, ε = 3.98 × 10−24,

N ′ = 3N ≈ 3 × 1012, and formula (2.4) gives

T0 ≈ 9.8mK, (2.8)

which closely agrees with the 20mK experimental result of O’Connell et al. [6].

(III) Diamond. When n = 1 mole, (2.4) predicts that T0 depends only on frequency:

T0 = 8.508 × 10−13ν, 0 < ν < ∞. (2.9)

Formula (2.9) shows that T0 can be large, potentially reaching room temperature, when

ν is large. When ν = 2.726 × 1013, the value given by Einstein [2] for diamond, (2.9)

gives (see Figure 1, right panel)

T0 = 23.2K .

This high value is expected since diamond is extremely hard, hence its natural frequency

is high. This prediction, which is easily tested, is in agreement with the results of

O’Connell et al. [6], which show that a high frequency solid more easily reaches its

ground state at a positive temperature.

(IV) New experiment. Recently, Romero-Isart et al. [11] proposed an interesting

experiment to extend the ground-breaking results of O’Connell et al. [6]. Their proposal

is to cool a sphere containing millions of atoms to its ground state, where they predict it
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will exhibit the quantum property of superposition of states. Our temperature estimates

in Theorem 2.1 may provide valuable insights for the design of such experiments.

(V) Specific heat. We conclude from (2.6)-(2.7) that Cv decreases to a positive value

C0 > 0 as q → 0+ and cannot go lower (Figure 1, right panel). This is our second most

important theoretical prediction since it overturns (1.3), the widely acclaimed principle

that “Cv is well defined for all T > 0, and limT→0+ Cv = 0”.

(VI) The Debye model. The 1913 Debye model of a solid extends Einstein’s assump-

tion (A3) to include solids with variable frequencies in the lattice of atoms [1]. The

Debye model is also well known to satisfy (1.3). However, a modification (not shown) of

the techniques in this paper proves that T0 > 0, and therefore property (1.3) is not true

for Debye’s model.

3. Appendix. Proof of Theorem 2.1. The first step is to prove crucial properties

of entropy, S, and internal energy, U. We conclude from (2.2) and (1.4) that

dS

dq
= k

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)
and

dU

dq
= ε ∀q > 0. (3.1)

Temperature. It follows from the fact that 1
T = ∂S

∂U and (3.1) that

1

T
=

dS

dq

dq

dU
=

k

ε

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)
∀q ≥ 0. (3.2)

This, together with the property

d

dx

(
Γ′(x)

Γ(x)

)
=

∫ ∞

0

te−xt

1 − e−t
dt > 0 ∀x > 0, (3.3)

implies that

T =
ε

k

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)−1

> 0 ∀q ≥ 0. (3.4)

This proves property (2.3).

Next, let ε, k and N ′ be held fixed in (3.4). Then the only way that T can increase,

or decrease, is to change q. We claim that T is an increasing function of q. The first step

in proving this claim is to differentiate (3.4). This gives

dT

dq
= − ε

k

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)−2
d

dq

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)
∀q ≥ 0. (3.5)

To prove that T is an increasing function of q, we need to show that the right-hand side

of (3.5) is positive when q ≥ 0. The second term is negative since

d2

dx2

(
Γ′(x)

Γ(x)

)
= −

∫ ∞

0

t2e−xt

1 − e−t
dt < 0 ∀x > 0. (3.6)

Therefore, the right-hand side of (3.5) is positive; hence

dT

dq
> 0 ∀q ≥ 0. (3.7)
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Thus, T is an increasing function of q. From this and (3.4) we conclude that the lowest

possible value of the temperature is positive and is given by

T0 = lim
q→0+

T =
ε

k

(
Γ′(N ′)

Γ(N ′)
− Γ′(1)

Γ(1)

)−1

=
ε

k

(
Γ′(N ′)

Γ(N ′)
+ γ

)−1

> 0, (3.8)

since Γ
′
(N ′) > 0, Γ(N ′) > 0, Γ(1) = 1 and Γ′(1) = −γ.

Energy. It follows from (1.4) that the internal energy, U, is given by

U = εq + U0, (3.9)

where U0 = N ′ε
2 is ground state energy, and q =

∑N ′

k=1

(
nk + 1

2

)
is the total number of

quanta of thermal energy. We conclude from (3.9) that

lim
q→0+

U =
N ′ε

2
= Ground State Energy. (3.10)

This proves property (2.5).

Specific heat. We conclude from (1.7) and (3.1) that

CV =
1

n

∂U

∂T
=

1

n

∂U

∂q

∂q

∂T
=

ε

n

∂q

∂T
. (3.11)

It follows from (3.5) and (3.7) that

∂q

∂T
= −k

ε

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)2 [
d

dq

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)]−1

> 0 ∀q ≥ 0.

(3.12)

Combining (3.11) and (3.12) gives

CV = −k

n

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)2 [
d

dq

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

)]−1

> 0 ∀q ≥ 0.

(3.13)

From (3.13) it follows that CV is an increasing function of q. Thus, the lowest possible

value of the specific heat is found by letting q → 0+. This gives

lim
q→0+

CV = C0 = −k

n

(
Γ′(N ′)

Γ(N ′)
+ γ

)2
[
d

dq

(
Γ′(q + N ′)

Γ(q + N ′)
− Γ′(q + 1)

Γ(q + 1)

) ∣∣∣∣
q=0

]−1

> 0.

(3.14)

This proves property (2.7). The proof of Theorem 2.1 is now complete.

Acknowledgement. The author thanks the following people for valuable criticisms:

Stewart Anderson, Brent Doiron, Richard Field, Stefanos Folias, Richard Gass, Rachel

Hastings, Stuart Hastings, Chris Horvat, and Robert Miura.

References

[1] P. Debye, Zur theorie der spezifischen warme Annalen der Physik (Leipzig) 39 (1912) 789.
[2] A. Einstein, Die plancksche theorie der strahlung und die theorie der spezifischen warme. Annalen

der Physik 22 (1907) 180–190.
[3] H. Eyring, D. Henderson, B. J. Stover and E. M. Eyring, Statistical Mechanics and Dynamics.

Wiley, Second Edition, New York, 1982.



338 WILLIAM C. TROY

[4] S. Groblacher, B. Hertzberg, M. Vanner, D. Cole, G. Gigan, S. K. Schwab and M. Aspelmeyer,
Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature
Physics 5 (2009) 485–488.

[5] E. Kim and M. H. W. Chan, Probable observation of a supersolid helium phase. Nature 427 (2004)
225 – 227

[6] A. D. O’Connell, M. Hofheinz, M. Ansmann, C. Bialczak, M. Lenander, E. Lucero, E. M. Neeley,
D. Sank, D. H. Wang, M. Weides, J. Wenner, J. M. Martinis and A. N. Cleland, Quantum ground

state and single-photon control of a mechanical resonator. Nature 464 (2010) 697–703.
[7] Y. Park and H. Wang, Resolved-sideband and cryogenic cooling of an optomechanical resonator.

Nature Physics 5 (2009) 489–493.
[8] D. Powell, Moved by Light. Science News 179 (2011) 24–25.
[9] D. K. Prathia, Statistical Mechanics. Addison-Wesley, 1999.

[10] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk and K. C. Schwab, Preparation
and detection of a mechanical resonator near the ground state of motion. Nature 463 (2010) 72–75.

[11] O. Romero-Isart, A. C. Pflanzer, F. Blaser, FR. Kaltenbaek, N. Kissel, M. Aspelmeyer and J. I.
Cirac, Large quantum superpositions and interference of massive nanometer-sized objects. Phys.
Rev. Lett. 107 (2011) 02405–02408.

[12] A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T. J. Kippenberg, Resolved-sideband cool-
ing and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty
limit. Nature Physics 5 (2009) 509–514.

[13] D. V. Schroeder, An Introduction to Thermal Physics. Addison-Wesley, 1999.
[14] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker and R. W. Simmonds,

Circuit electromechanics cavity in the strong coupling regime. Nature 471 (2011) 204–208.
[15] J. D. Teufel, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert and R. W.

Simmonds, Sideband cooling of micromechanical motion to the quantum ground state. Nature 475
(2011) 359–363.

[16] P. A. Tipler and R. A. Llewellyn, Modern Physics. W. H. Freeman and Co., New York, Fifth
Edition, 2008


	1. Background
	2. The mathematical error and its resolution
	3. Appendix
	Acknowledgement
	References

