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Abstract. In the last 35 years the characterization of tumor growth using Gom-

pertzian models has led to a new understanding of the spread of tumor cells, and has

enabled researchers to develop novel therapeutic strategies to eradicate disease in some

cases (see Ciron et al. (2003), Norton et al. (1976), Norton and Simon (1986), and Simon

and Norton (2006)). A long standing assertion is that the Gompertzian framework does

not allow characterizations of complex biological and clinical phenomena such as tumor

regression and dormancy (see Retsky et al. (1998)). We propose a generalized Gom-

pertzian system of delay-differential equations to study host-tumor interaction effects in

the absence of external therapy. Our model is a parsimonious extension of the Norton

et al. (1976) model: N(t) denotes tumor volume, G(t) represents host-tumor interactions,

N ′(t) = K1N(t)G(t) and G′(t) = −K2G(t − τ ), and τ ≥ 0 represents time of response

of the host to the presence of tumor cells. The first step is to set G(t) = exp(λt) and

study λ = K2 exp(λτ ). Setting λ = α(τ )+ iβ(τ ), we derive ODEs satisfied by α(τ ), β(τ ),

and prove existence and qualitative properties of infinitely many branches of solutions.

Therefore, G(t) =
∑

j∈I1
cj exp (αj(τ )t) cos (βj(τ )t)+

∑
k∈I2

dk exp (αk(τ )t) sin (βk(τ )t) ,

where exp (αj(τ )t) cos (βj(τ )t) , exp (αk(τ )t) sin (βk(τ )t) are eigenfunctions. Substituting

G(t) into the N(t) ODE, we: (I) identify an “optimal immunological response” range

τ > 0 where host-tumor interactions can cause a tumor to remain dormant, or regress

from growth state into dormancy, and (II) replicate observed tumor growth in mammo-

grams of 32 breast cancer patients.

1. Introduction. Although great strides have been made in the the last 35 years in

the prevention and treatment of breast cancer, the American Cancer Society estimates

that in 2013, 234,580 new cases of the disease will be diagnosed in the US which will
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result in 40,930 deaths within a 5-year time period. Available information from the

National Cancer Institute indicates that 61% of newly diagnosed breast cancers involve

localized tumors. Only about 2.4% of patients with these localized tumors die within 5

years, but such tumors could potentially have uncontrollabe growth and/or metastasize

over a period of a few years resulting in mortality later on. Hence, when confronted

with the presence of a tumor (perhaps by mammographic detection), the clinician and

patient need to answer several key questions: (i) will the tumor grow and evolve into

invasive cancer, (ii) will it grow too slowly to ever become invasive, or (iii) will the

tumor regress (presumably because of immune system effects) into a state of dormancy?

There is emerging evidence that each of these scenarios can and does occur [36]. In this

paper we propose a new model, a “generalized Gompertzian system”, to investigate these

issues. Our goal is to understand and predict how, in the absence of external treatment,

internal host-tumor interactions (immune system) affect the evolution of tumor growth.

To put our approach into perspective, below we give a description of the model (A),

previous results ((B) and (C)), and our modeling and clinical goals (D).

(A) The Gompertz model. During the last 50 years the Gompertz equation has

played an important role in modeling growth and treatment of tumors [3, 27, 28, 32–35].

The Gompertz model [20] consists of

dN(t)
dt = K1N(t)G(t), N(0) = N0 > 0,

dG(t)
dt = −K2G(t), G(0) = G1 ∈ R.

(1.1)

N denotes tumor volume, G is a feedback inhibitory variable, and K1 > 0, K2 > 0.

Figure 1 (first row) shows growth and decay patterns exhibited by N and G. System (1.1)

is equivalent to

dN(t)

dt
= K2N(t) ln

(
N∞
N(t)

)
, N(0) = N0 > 0, (1.2)

where N∞ = N0 exp
(

K1G1

K2

)
. To see this, note that G(t) = G1 exp (−K2t) . Thus, (1.1)

reduces to dN(t)
dt = K1N(t)G1 exp(−K2t), N(0) = N0. Integrate this equation from t to

∞ to get (1.2).

(B) Tumor growth and treatment. In the 1960s Laird [27, 28] used the Gompertz

model to fit data of tumor growth. In 1976 Norton, Simon, Brereton and Bogden [32]

discovered that solutions of (1.2) closely approximate two different types of tumor growth,

namely, B-16 melanoma and 13276 rat carcinoma. For this they assumed that G1 > 0 so

that N ′(t) > 0 ∀t ≥ 0 and N∞ = N0 exp
(

K1G1

K2

)
> 0. An implicit assumption associated

with the Gompertzian model is that large and small tumors are not as chemo-sensitive

as intermediate sized tumors. To address this issue, Norton and Simon modified (1.2)

to develop strategies for the optimal timing of the administration of a combination of

drugs [33–35,39]. Their modification is

dN(t)

dt
= K2N(t) ln

(
N∞
N(t)

)
(1− L(t)), N(0) = N0, (1.3)



EXPLORING THE ROLE OF HOST-TUMOR INTERACTIONS 133

0 40 80
0

50

N

Threshold Of Detection

t

θ

0 50 100
0

0.5

1

t

G

0 40 80
0

50

N

t

θ

40 48 60
0

10

N

t

Blowup

0 40 80
0

50

N

t

θ

30 40 50
0

10

N

t

Blowup

Fig. 1. Row 1. Graphs of N and G when (K1, K2, N0, G1, N∞) =
(1, .087, .01, 1, 100) (Norton and Simon [33]). Cancer is clinically
observed when N(t) exceeds θ, the threshold of detection. Row 2.
Standard levels of therapy (dashed curves) cause tumor volume N(t)
to regress below θ. The tumor is not totally eradicated and it regrows.
Row 3. The total level of therapy is the same as in Row 2 (i.e. the
areas under L(t) are the same), but now it increases significantly
during the latter stage of its administration. This dose dense level
of therapy causes N(t) to decrease to zero at a first time T ∗ ≈ 47.
Subsequently, N(t) = 0 for all t ≥ T ∗ and the tumor does not regrow.
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where L(t) represents the effective level of therapy at time t. They found that if the level

of therapy is significantly increased during the latter stage of its administration, then

N(t) can reach zero at a finite time T ∗ > 0. Subsequently, N(t) = 0 for all t > T ∗. Thus,

in contrast with strategies of using equal or diminishing intensity of agents, the strategy of

“late intensification” of agents causes an improvement in tumor reduction (see Figure 1).

This concept, later referred to as dose dense, was used as a driving force to generate a

hypothesis for the development of a large, multi-phase III clinical trial (CALGB 9741).

The results of that trial indicated that statistically significant improvements in overall

survival and disease-free survival were observed in patients assigned to dose dense arms

as compared to those assigned to the other arm of the same trial [2]. The original plan

of late intensification was altered slightly in this trial. Nevertheless, the dose intensifica-

tion strategy appears to optimize many pharmacokinetic properties of effective therapy

while having only minor consequences with respect to toxicity compared to longer dosing

schedules [40].

(C) Host-tumor interactions. Fisher [9, 16] demonstrated the fundamental role of

host-tumor dynamics in a wide variety of tumors. His insights led to the implementation

of two seminal clinical trials in the surgical management of breast cancer, namely NSABP

Protocols B-04 [11,12] and B-06 [13,14]. The results of these trials and others [26,44,45]

reinforced one component of Fisher’s hypotheses that “due to the systemic nature of the

disease, variations in local or regional therapy are unlikely to have a substantial effect

on overall survival” [9].

Tumor regression. The role of the immune system (host) in the spontaneous eradi-

cation of cancer cells has been explored for many years [16, 43]. Early research focused

on melanomas which are most commonly eradicated by the host [42]. While it was once

thought to be rare that detectable carcinomas associated with solid tumors would spon-

taneously regress, recent findings by Zahl et al. [46] suggest that such regression is not

uncommon. This may be a result of better detection methods which are now available

so that smaller tumor burdens are observed and may be subsequently eradicated by the

host [24, 46]. In most cases, however, the host response is not sufficient to completely

eradicate tumor cells and their subsequent proliferation. Thus, the complex mechanism

of action by the host in its attempt to eradicate tumor cells is not well understood.

This point is emphasized by McAllister et al. [30], who state “... many aspects of tumor

biology can only be explained by a detailed understanding of both local and systemic

interactions, yet we only have a fragmentary understanding of both processes.”

Tumor dormancy. A fundamentally important phenomenon which involves complex

interactions between host and tumor is tumor dormancy where tumor cells do not pro-

liferate for a period of time (possibly many years) [31,37]. It has been hypothesized that

the dormancy period itself may be a result of primary tumors secreting angiostatin into

the bloodstream, thereby inhibiting blood vessel growth at sites typically associated with

tumor metastases [30]. However, such cells may leave the dormancy state and begin to

proliferate at a high rate ([10,25,31]). Many mechanisms for leaving a tumor dormancy

state have been proposed, including:
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(i) Angiogenesis (neovascularization) [18]: the identification of an angiogenic diffusible

factor derived from tumors was made initially by Greenblatt and Shubik in 1968 [21].

(ii) Persistent circulating tumor cells may metastasize at a point in time when the host

system is perturbed [31].

A long-standing belief is that Gompertzian kinetics cannot exhibit such complicated

behavior as tumor dormancy or regression [3, 41]. One of our primary goals (see part

(D) is to show that this is false, and that an extension of the original Gompertz model

to a generalized Gompertzian system does indeed exhibit both regression and dormancy

behavior.

(D) Goals. The Norton and Simon 1976-1977 studies of tumor growth [33, 34] allow

only a limited number of host-tumor interactions. In [34,35] they introduced the external

treatment term L(t) (dashed curves in Figure 1) into (1.3) to study how an external

signal (treatment) affects tumor growth. In this paper our goal is to understand how

host-tumor interactions affect tumor growth, tumor regression, and tumor dormancy

in the absence of external therapy. For this we extend (1.1) and derive a generalized

Gompertzian model. Our approach is to introduce a delay, τ ≥ 0, which we interpret to

represent the time of response of the host to the presence of the tumor, into the inhibitory

feedback variable G, and study the behavior of solutions of

dN(t)
dt = K1N(t)G(t),

dG(t)
dt = −K2G(t− τ ).

(1.4)

The same interpretation of τ was given by Glass and Mackey [19] in the study of forms of

leukemia where the rates of stem cell proliferation entail a time delay. Our investigation

of the generalized Gompertzian model (1.4) has the following theoretical and clinical

goals:

Goal I. We will demonstrate the practical utility of (1.4) by showing how host-tumor

interactions affect “transient” large time tumor growth behavior, and by identifying

an “optimal immunological response” range of positive τ where host-tumor interactions

cause a tumor to remain in a dormant state, or regress from a growth state into a dormant

state.

Goal II. We show how to use (1.4) and results of Goal I to: (i) accurately replicate data

from mammograms of 32 breast cancer patients, and (ii) predict future growth patterns

for each data set.

The first step in achieving Goals I and II is to understand the behavior of

dG(t)

dt
= −K2G(t− τ ), t ≥ 0, τ ≥ 0. (1.5)

A typical initial condition for (1.5) is Gt) = g(t), −τ ≤ t ≤ 0, where g(t) is a given

function. For such initial conditions, a simple method to solve (1.5) is to integrate,

interval by interval of length τ. However, this continuation type process does not usually

result in useful formulas for understanding behavior of solutions, especially for large t

values ([1], p. 53). A second approach is to construct an eigenvalue/eigenvector expansion

of solutions ([1], p. 55). For this, substitute G(t) = eλt into (1.5), and obtain

λ = −K2e
−λτ . (1.6)
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Let λ = α + iβ. Then (1.6) becomes α + iβ = −K2e
−(α+iβ)τ . Separating real and

imaginary parts, we obtain the nonlinear algebraic system

α+K2e
−ατ cos(βτ ) = 0, β −K2e

−ατ sin(βτ ) = 0. (1.7)

Analysis of (1.6)-(1.7). In order to construct and understand the full impact of

eigenvalue/eigenvector expansion solutions of the delay equation (1.5) on tumor volume,

we must first determine the behavior, in terms of τ, of each individual branch of solutions

of the eigenvalue equations (1.6) and (1.7). For this it is necessary to answer the following

fundamental questions:

(Q1) When τ > 0, how many branches of solutions does (1.6)-(1.7) have?

(Q2) For a given branch, let (τmin, τmin) denote its maximal positive interval of existence.

Along each branch, is λ(τ ) = α(τ ) + iβ(τ ) a C1 function of τ ∈ (τmin, τmax)?

(Q3) Along each branch we associate the key subsets

U = {τ ∈ (τmin, τmax) | β(τ ) = 0} and W = {τ ∈ (τmin, τmax) | β(τ ) �= 0}. (1.8)

Note that λ is real if τ ∈ U, and complex if τ ∈ W. Along each branch, what are the

subsets of U and W where α(τ ) < 0, α(τ ) = 0, α(τ ) > 0?

(Q4) Along each branch, what are the limiting values

lim
τ→τ+

min

(α(τ ), β(τ )) and lim
τ→τ−

max

(α(τ ), β(τ )) ? (1.9)

Previous results. The classic text by Bellman and Cooke [1] devotes much attention

to analyzing equations similar to (1.6). There (Chs. 4 and 12), the focus is on using

Laplace transform and contour integration techniques to derive asymptotic estimates for

the location of eigenvalues when |λ| � 1. These methods give partial answers to (Q1)

only when |λ| � 1. They do not apply when |λ| is not large, nor do they give insight

to resolve the issues raised in (Q2)-(Q4). Another classic text, by Diekman et al. [6],

uses functional analysis, complex analysis and nonlinear methods (e.g. semigroup theory,

spectral methods, contour integration, etc.) to analyze (1.5) and (1.6). These methods

give only partial answers to (Q1)-(Q3), and do not provide useful techniques to answer

(Q4). Jeffrey et al. [23] use a winding number method to study existence of branches of

solutions of (1.6). Their method also gives only partial answers to (Q1), and does not

apply to (Q2)-(Q4).

Our approach to analyzing (1.6)-(1.7). We develop a new ODE based technique

which allows us to answer (Q1)-(Q4). In particular, we derive and analyze differential

equations satisfied by α(τ ) and β(τ ). For this, differentiate α and β in (1.7) with respect

to τ and obtain
α′ = 1

(1+ατ)2+(βτ)2

(
β2 − α2 − αβ2τ − α3τ

)
,

β′ = − β
(1+ατ)2+(βτ)2

(
2α+ α2τ + β2τ

)
.

(1.10)

Imaginary eigenvalues found in Section 3 provide the initial values

α

(
(4j + 1)π

2K2

)
= 0 and β

(
(4j + 1)π

2K2

)
= K2, j ≥ 0. (1.11)

Theorem 3.1 (see Section 4) contains our main theoretical advance. There we answer

(Q1)-(Q4) by proving the existence and global properties of infinitely many branches of
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C1 solutions of (1.10)-(1.11) Our ODE approach is completely new and independent of

previous techniques ([1,6,23]) used to analyze system (1.7). The analysis of (1.10)-(1.11)

provides a formidable challenge since (1.10) is a nonautonomous system, hence, standard

techniques such as phase plane analysis do not apply. Our ODE approach to proving

Theorem 3.1 provides the first global analysis of (1.7), and leads to the following distinct

advances over previous studies:

(i) We prove the interval of existence of the branches are not all the same.

(ii) We resolve the issues raised in (Q1)-(Q4) for each branch.

(iii) Our approach is completely constructive: for each j ≥ 0 we can solve (1.10)-(1.11)

numerically, and compute αj(τ ) and βj(τ ) over the entire interval of existence (Figures 4

and 5 in Section 4).

Goals I and II. We show how to use Theorem 3.1 to construct eigenvalue expansions

which allow us to address the modeling and clinical data issues stated above in Goals I

and II. It follows from Theorem 3.1 that

G =
∑
j∈I1

cj exp (αj(τ )t) cos (βj(τ )t) +
∑
k∈I2

dk exp (αk(τ )t) sin (βk(τ )t) , (1.12)

where exp (αj(τ )t) cos (βj(τ )t) and exp (αk(τ )t) sin (βk(τ )t) are eigenfunctions corres-

ponding to eigenvalues λ = α(τ )+iβ(τ ), and coefficients cj and dk determine the strength

of contribution of the eigenfunctions. Substituting (1.12) into (1.4) transforms the tumor

volume equation into

dN

dt
= K1N

⎛
⎝∑

j∈I1

cj exp (αj(τ )t) cos (βj(τ )t) +
∑
k∈I2

dk exp (αk(τ )t) sin (βk(τ )t)

⎞
⎠ .

(1.13)

In Section 5 we show how to use (1.13) to resolve all of the tumor-host interaction issues

in Goal I. In Section 6 we attain Goal II by demonstrating how to apply (1.13) to

accurately replicate the data sets for tumors detected in mammogram examinations of 32

breast cancer patients. Finally, in Section 7 we make conclusions and give suggestions

for future research.

2. Real and imaginary eigenvalues. Real eigenvalues. In this section we prove

the existence and qualitative properties of a unique branch of solutions of (1.7) for which

λ is real. Solutions along this branch form the leading terms in eigenfunction expan-

sion (4.1) in Section 5. Thus, although the results for the real eigenvalue case are well

known, it is necessary to include the details to obtain the most complete understanding

possbile of global behavior of solutions of (1.7). Let β = 0 so that λ = α + iβ = α is

real. Then (1.7) reduces to

α+K2e
−ατ = 0, K2 > 0. (2.1)

If λ = α ≥ 0, then (2.1) has no solution. When λ = α < 0 we solve (2.1) for τ and obtain

τ = − 1

α
ln

(
−α

K2

)
, −∞ < α < 0. (2.2)
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(β,K2) = (0, .087) (left panel) and (β,K2) = (0, 1) (right panel).

For each τ ∈ (0, τ∗) =
(
0, 1

eK2

)
there are two values, α = r1(τ) and

α = r2(τ) such that (τ, ri(τ)) ∈ Λ0, and r2(τ) << r1(τ). Along Λ0

the absolute maximum occurs at (α∗, τ∗) =
(
−eK2,

1
eK2

)
. Thus,

real eigenvalues do not exist when τ > τ∗.

Properties. (i) The function τ (α) = − 1
α ln

(
−α
K2

)
is graphed in Figure 2. It has a

unique relative maximum value τ∗ = 1
eK2

at α = −eK2, no relative minimum, a unique

zero at α = −K2, and

lim
α→−∞

τ (α) = 0 and lim
α→0−

τ (α) = −∞. (2.3)

The corresponding branch Λ0 (see Figure 2) of real eigenvalue solutions of (1.7) is defined

by

Λ0 =

{
(α, β, τ )

∣∣∣∣α < 0, β = 0, τ = − 1

α
ln

(
−α

K2

)}
. (2.4)

(ii) For each α ∈ (−∞, 0) the point (α, 0, τ ) =
(
α, 0,− 1

α ln
(

−α
K2

))
∈ Λ0, and for each

c ∈ R the function G = ceαt solves the corresponding delay equation

d

dt
G(t) = −K2G

(
t+

1

α
ln

(
−α

K2

))
. (2.5)

(iii) There are no real eigenvalues when τ > τ∗ = 1
eK2

where α = −eK. For each

τ ∈ (0, τ∗) = (0, 1
eK2

) there are exactly two negative α values, r2 < r1 < 0, such that

(r1, 0, τ ) ∈ Λ0 and (r2, 0, τ ) ∈ Λ0. Corresponding to r1 and r2 is a two-parameter family

G = G1e
r1t +G2e

r2t (2.6)

Imaginary eigenvalues. We show that there are infinitely many solutions of (1.7)

for which λ is purely imaginary, and that the corresponding solutions of the delay equa-

tion (1.5) are periodic. In Section 3 we show how each periodic solution can be continued

to a global branch of solutions. Let α = 0 so that λ = iβ is purely imaginary. Then (1.7)
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(
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2
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in the first equation of (2.9).

Here (N(0),K1, K2, j) = (.01, 1, 1, 0) so that τ = τ0 = π
2
, hence

G(t) = 8.5 cos(t) is the corresponding periodic solution of G′(t) =
−G(t− π

2
).

reduces to

cos(βτ ) = 0, β −K2 sin(βτ ) = 0. (2.7)

Four families of solutions of (2.7) are given by

(β, τ ) =

⎧⎪⎨
⎪⎩

(
±K2,

(4j+1)π
2K2

)
, j = 0, 1, 2, . . .(

±K2,− (2j+1)π
2K2

)
, j = 1, 3, 5 . . .

(2.8)

For values defined in (2.8), the corresponding solutions of (1.7) are

(α, β, τ ) =

⎧⎪⎨
⎪⎩

(
0,±K2,

(4j+1)π
2K2

)
, j = 0, 1, 2, . . .(

0,±K2,− (2j+1)π
2K2

)
, j = 1, 3, 5 . . .

(2.9)

Thus, for each nonnegative integer j, the points (α, β, τ ) =
(
0,±K2,

(4j+1)π
2K2

)
generate

the two-parameter family G(t) = c1 sin(K2t) + c2 cos(K2t) of periodic solutions of the

delay equation
d

dt
G(t) = −K2G

(
t− (4j + 1)π

2K2

)
. (2.10)

Figure 3 illustrates a periodic solution of (1.4) when K1 = K2 = 1, j = 0 and τ = τ0 = π
2 .

Similarly, for each integer j ∈ {1, 3, 5, . . . }, the points (α, β, τ ) =
(
0,±K2,− (2j+2)π

2K2

)
generate periodic solutions G(t) = d1 sin(K2t) + d2 cos(K2t) of delay equation d

dtG(t) =

−K2G
(
t+ (2j+1)π

2K2

)
.

3. Complex eigenvalues. In this section we prove, in Theorem 3.1, the existence

of infinitely many branches of complex eignevalue solutions of (1.7). The first step of the
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proof is to assume that eigenvalues have the form λ = α(τ ) + iβ(τ ), and show that α(τ )

and β(τ ) solve the ODEs

α′ = 1
(1+ατ)2+(βτ)2

(
β2 − α2 − αβ2τ − α3τ

)
,

β′ = − β
(1+ατ)2+(βτ)2

(
2α+ α2τ + β2τ

)
.

(3.1)

We use the discrete set of points defined in (2.9) as initial values in (3.1). Note that if

(α(τ ), β(τ )) solves (3.1), then (α(τ ),−β(τ )) also solves (3.1). Thus, for positive τ values

we restrict our attention to initial values

α

(
(4j + 1)π

2K2

)
= 0, β

(
(4j + 1)π

2K2

)
= K2, j ≥ 0. (3.2)

The second step in the proof of Theorem 3.1 is to analyze (3.1)-(3.2) and prove the

existence and global behavior of a continuous branch of solutions for each j ≥ 0. (see

Figures 4 and 5). Our method of proof can easily be adapted to prove the existence

and qualitative properties of continuous branches of solutions of (3.1) corresponding to

the second set of points in (2.9) where (α, β, τ ) =
(
0,±K2,− (2j+2)π

2K2

)
. In Sections 5

and 6 we use these branches to construct families of solutions of the full tumor volume

model (1.4) which resolve the issues described in Goal I and Goal II.

Theorem 3.1 (Global Existence and Behavior of Solutions of (3.1)). For each integer

j ≥ 0, there are C1 functions αj(τ ) and βj(τ ) which exist for all τ in a maximal open

interval containing τj =
(4j+1)π

2K2
, and satisfy

αj(τ ) +K2e
−αj(τ)τ cos(βj(τ )τ ) = 0,

βj(τ )−K2e
−αj(τ)τ sin(βj(τ )τ ) = 0.

(3.3)

At τ = (4j+1)π
2K2

the solution (αj(τ ), βj(τ )) satisfies(
αj

(
(4j+1)π

2K2

)
, βj

(
(4j+1)π

2K2

))
= (0,K2). (3.4)

Global qualitative properties of solutions of (3.3)-(3.4) are summarized in two cases:

Case I. Let j = 0 and define τ∗ = 1
eK2

. Then α0(τ ) and β0(τ ) exist for all τ ∈ (τ∗,∞) ,

α0(τ ) < 0 and β0(τ ) > 0 ∀τ ∈
(
τ∗,

π

2K2

)
, (3.5)

0 < α0(τ ) <
1

τ

(
ln(τ )− ln

(
π

2K2

))
,

π

2τ
< β0(τ ) <

3π

2τ
(3.6)

and β′
0(τ ) < 0 ∀τ >

π

2K2
,

and

lim
τ→τ∗+

(α0(τ ), β0(τ )) = (−eK2, 0) and lim
τ→∞

(α0(τ ), β0(τ )) = (0, 0) . (3.7)

Case II. Let j ≥ 1. Then αj(τ ) and βj(τ ) exist for all τ ∈ (0,∞) ,

β′
j(τ ) < 0 and

2jπ

τ
< βj(τ ) <

(4j + 1)π

2τ
∀τ ∈

(
0,

(4j + 1)π

2K2

)
, (3.8)
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Fig. 4. Left: Graphs of α0(τ), α1(τ), α2(τ) and the real eigenvalue
branch Λ0. Right: Graphs of β0(τ), β1(τ) and β2(τ). Horizontal axes
give τ values; all curves are computed atK2 = 1. The functions α0(τ)
and β0(τ) are bounded. Their interval of existence is [τ∗,∞) =

[ 1
e
,∞). However, α1(τ), α2(τ), β1(τ) and β2(τ) are all unbounded

and exist on the entire interval (0,∞.) Note that α0(τ0) = 0 and
α1(τ1) = 0, i.e. the eigenvalues are imaginary at τ0 = π

2
and τ1 =

5π
2
.

and there is a τ̄ ∈
((

4j+1
2K2

)
πe

−
(
1+ 1

4j2π2

)
, (4j+1)

2K2
π

)
such that

αj(τ ) < −1

τ
∀τ ∈ (0, τ̄), αj(τ̄) = −1

τ̄
, −1

τ
< αj(τ ) < 0 ∀τ ∈

(
τ̄ ,

(4j + 1)π

2K2

)
. (3.9)

A uniformly valid lower bound for τ̄ is

τ̄ ≥ 5π

2K2
e−(1+

1
4π2 ) ∀j ≥ 1. (3.10)

When τ ≥ (4j+1)π
2K2

the solution (αj(τ ), βj(τ )) satisfies

β′
j(τ ) < 0 and

(4j + 1)π

2τ
≤ βj(τ ) <

(4j + 3)π

2τ
∀τ ≥ (4j + 1)π

2K2
(3.11)

and

0 ≤ αj(τ ) ≤
1

τ

(
ln(τ )− ln

(
(4j + 1)π

2K2

))
∀τ ≥ (4j + 1)π

2K2
. (3.12)

Remarks. Figure 4 illustrates the fundamental differences in the behavior of (αj(τ ),

βj(τ )) between the cases j = 0 and j ≥ 1. When j = 0, the solution (α0(τ ), β0(τ ))

remains bounded over its interval of existence (τ∗,∞) =
(

1
eK2

,∞
)
. When j ≥ 1 the

interval of existence of (αj(τ ), βj(τ )) is (0,∞), but now (αj(τ ), βj(τ )) is unbounded,

with αj(τ ) → −∞ and βj(τ ) → ∞ as τ → 0+.

Proof of Theorem 3.1. The first part of the proof uses the Implicit Function Theorem

applied to (1.7). For this define the functions on the left side of (1.7) by

f(α, β, τ ) = α+K2e
−ατ cos(βτ ) and g(α, β, τ ) = β −K2e

−ατ sin(βτ ). (3.13)
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Fig. 5. Left: The graphs of α−1(τ), α−2(τ) and the real eigenvalue
branch Λ0. Right: The graphs of β−1(τ) and β−2(τ). All curves
computed at K2 = 1. Note that α−2(τ), α−2(τ), β−1(τ)) and β2(−τ)
are all unbounded at τ = 0, and exist on the entire interval (−∞, 0.).

For each j ≥ 0 it is easily verified that f
(
0,K2,

(4j+1)π
2K2

)
= g

(
0,K2,

(4j+1)π
2K2

)
= 0.

The matrix of partial derivatives of f and g with respect to α and β satisfies det(A) �=
0 when (α, β, τ ) =

(
0,K2,

(4j+1)π
2K2

)
, j ≥ 0. Thus, for each j ≥ 0, the Implicit Function

Theorem implies that there is an εj > 0 such that if τ ∈
(

(4j+1)π
2K2

− εj ,
(4j+1)π

2K2
+ εj

)
, then

there are unique C1 functions αj(τ ), βj(τ ) which satisfy system (3.3). For each j ≥ 0,

let (τmin(j), τmax(j)) denote the the maximal interval of existence of (αj(τ ), βj(τ )). To

determine (τmin(j), τmax(j)) and the behavior of αj(τ ) and βj(τ ) on (τmin(j), τmax(j))

we derive and analyze related ODEs. It follows from a differentiation of (3.3) that

αj(τ ) and βj(τ ) satisfy

(1 + αj(τ )τ )α
′
j − βjτβ

′
j = β2

j − α2
j , αj

(
(4j+1)π

2K2

)
= 0,

βjτα
′
j + (1 + αjτ )β

′
j = −2αjβj , βj

(
(4j+1)π

2K2

)
= K2.

(3.14)

An algebraic manipulation transforms (3.14) into the nonautonomous, nonlinear ODE

system

α′
j =

1
(1+αjτ)2+(βjτ)2

(
β2
j − α2

j − αjβ
2
j τ − α3

jτ
)
, αj

(
(4j+1)π

2K2

)
= 0,

β′
j = − βj

(1+αjτ)2+(βjτ)2

(
2αj + α2

jτ + β2
j τ

)
, βj

(
(4j+1)π

2K2

)
= K2.

(3.15)

Our analysis of (3.15) makes use of the functionals Q(τ ) = βj(τ )τ and H(τ ) = αj(τ )τ+1.

It follows from (3.15) that Q and H satisfy

Q′ = Q
τ(H2+Q2) , Q

(
(4j+1)π

2K2

)
= (4j+1)π

2 ,

H ′ = 1
τ − H

τ(H2+Q2) , H
(

(4j+1)π
2K2

)
= 1.

(3.16)
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Below, we show that the qualitative behavior of (αj(τ ), βj(τ )) is the same for each j ≥ 0

when τ ≥ (4j+1)π
2K2

. However, when τ < (4j+1)π
2K2

there is a fundamental difference in

behavior between the cases j = 0 and j ≥ 1. Thus, we divide the remainder of the proof

into three parts:

(i) The analysis of (αj(τ ), βj(τ )) when τ ≥ (4j+1)π
2K2

and j ≥ 0.

(ii) The analysis of (αj(τ ), βj(τ )) when τ < (4j+1)π
2K2

and j ≥ 1.

(iii) The analysis of (α0(τ ), β0(τ )) when τ < π
2K2

.

Part (i). The analysis of (αj(τ ), βj(τ )) when τ ≥ (4j+1)π
2K2

and j ≥ 0.

Our goal here is to show that if j ≥ 0, then τmax(j) = ∞ and αj(τ ), βj(τ ) satisfy

β′
j(τ ) < 0 and

(4j + 1)π

2τ
≤ βj(τ ) <

(4j + 3)π

2τ
∀τ ∈

[
(4j + 1)π

2K2
,∞

)
(3.17)

and

0 ≤ αj(τ ) ≤
1

τ

(
ln(τ )− ln

(
(4j + 1)π

2K2

))
∀τ ∈

[
(4j + 1)π

2K2
,∞

)
. (3.18)

We begin by assuming that there is a j ≥ 0 such that τmax(j) < ∞ and obtain a

contradiction. If τmax(j) < ∞, then standard theory implies that

lim sup
τ→τmax(j)−

(
|α′

j(τ )|+ |β′
j(τ )|

)
= ∞, (3.19)

where α′
j(τ ) and β′

j(τ ) are computed from the ODE system (3.15). To show that (3.19)

cannot occur, we use Q = βj(τ )τ. It follows from (3.16) that

Q′(τ ) > 0 and Q(τ ) ≥ (4j + 1)π

2
∀τ ∈

[
(4j + 1)π

2K2
, τmax(j)

)
. (3.20)

Substituting Q = βj(τ )τ into (3.20) gives the lower bound

βj(τ ) ≥
(4j + 1)π

2τ
∀τ ∈

[
(4j + 1)π

2K2
, τmax(j)

)
. (3.21)

From (3.21) we also conclude that βj(τ ) ≥ π
2τ ∀τ ∈

[
(4j+1)π

2K2
, τmax(j)

)
, hence

1

(1 + αj(τ )τ )2 + (βj(τ )τ )2
≤ 4

π2
∀τ ∈

[
(4j + 1)π

2K2
, τmax(j)

)
. (3.22)

Next, we derive the lower bound αj(τ ) > 0 ∀τ ∈
(

(4j+1)π
2K2

, τmax(j)
)
. It follows from (3.15)

that α′( (4j+1)π
2K2

) =
(

2K2

(4j+1)π

)2

> 0. Thus, αj(τ ) > 0 for small τ − (4j+1)π
2K2

> 0. Suppose

that there is a τ̃ ∈
(

(4j+1)π
2K2

, τmax(j)
)
such that

αj(τ ) > 0 ∀τ ∈
(
(4j + 1)π

2K2
, τ̃

)
and αj(τ̃) = 0. (3.23)

Then the functional H = αj(τ )τ + 1 satisfies

H

(
(4j + 1)π

2K2

)
= 1, H(τ ) > 1 ∀τ ∈

(
(4j + 1)π

2K2
, τ̃

)
and H(τ̃ ) = 1, (3.24)
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and therefore

H ′(τ̃) ≤ 0. (3.25)

However, substituting τ = τ̃ into the second equation of (3.16) givesH ′(τ̃) = Q2(τ̃)
τ̃(1+Q2(τ̃)) >

0, contradicting (3.25). We conclude that

αj(τ ) > 0 ∀τ ∈
(
(4j + 1)π

2K2
, τmax(j)

)
. (3.26)

Next, it follows from (3.3) that

cos(βj(τ )τ ) = −αj(τ)
K2

eαj(τ)τ and sin(βj(τ )τ ) =
βj(τ)
K2

eαj(τ)τ . (3.27)

Combining (3.21), (3.26) and (3.27) implies that cos(βj(τ )τ )<0 ∀τ ∈
(

(4j+1)π
2K2

, τmax(j)
)
,

hence
(4j + 1)π

2τ
≤ βj(τ ) <

(4j + 3)π

2τ
∀τ ∈

[
(4j + 1)π

2K2
, τmax(j)

)
. (3.28)

We also conclude from (3.15), (3.26) and (3.28) that

β′
j(τ ) < 0 ∀τ ∈

[
(4j + 1)π

2K2
, τmax(j)

)
. (3.29)

Remark. The derivation of (3.26), (3.28) and (3.29) is the same when τmax = ∞.

This proves (3.17) and the lower bound in (3.18). Next, it follows from (3.27) that

1 = sin2(βj(τ )τ ) + cos2(βj(τ )τ ) =
α2
j (τ ) + β2

j (τ )

K2
2

e2αj(τ)τ . (3.30)

This, and the fact that αj(τ ) > 0 when τ > (4j+1)π
2K2

, imply that

α2
j (τ ) + β2

j (τ ) ≤ K2
2 ∀τ ∈

[
(4j + 1)π

2K2
, τmax(j)

)
. (3.31)

Thus, from (3.22), (3.31) and the first equation in (3.15) we conclude that

|α′
j(τ )| ≤

4

π2

(
α2
j (τ ) + β2

j (τ )
)
(1 + |αj(τ )|τ ) ≤

4K2
2

π2
(1 +K2τmax(j)) . (3.32)

Similarly, it follows from (3.31) and the second equation in (3.15) that

|β′
j(τ )| ≤

4|βj(τ )|
π2

(
|αj(τ )| (2 + |αj(τ )|τ ) + β2

j (τ )τ
)
≤ 4K2

2

π2
(2 +K2τmax(j)) . (3.33)

Thus, both α′
j(τ ) and β′

j(τ ) are bounded on
[
(4j+1)π

2K2
, τmax(j)

)
, hence (3.19) cannot hold

for any j ≥ 0. We conclude that τmax(j) = ∞ ∀j ≥ 0 as claimed.

Finally, we derive the upper bound for αj(τ ) given in (3.18). First, it follows from

(3.26) that H = αj(τ )τ+1 ≥ 1 ∀τ ≥ (4j+1)π
2K2

. From this and the second equation in (3.16)

we conclude that

H ′(τ ) ≤ 1

τ
∀τ ∈

[
(4j + 1)π

2K2
,∞

)
. (3.34)

An integration gives

1 < H(τ ) < 1 + ln(τ )− ln

(
(4j + 1)π

2K2

)
∀τ ∈

(
(4j + 1)π

2K2
,∞

)
. (3.35)
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Substituting H = αj(τ )τ + 1 into (3.35), we obtain

0 < αj(τ ) <
1

τ

(
ln(τ )− ln

(
(4j + 1)π

2K2

))
∀τ ∈

(
(4j + 1)π

2K2
,∞

)
. (3.36)

This completes the proof of (3.17)-(3.18).

Part (ii). The analysis of (αj(τ ), βj(τ )) when τ ≤ (4j+1)π
2K2

, for j ≥ 1. In this part

we let j ≥ 1 and prove that τmin(j) = 0, that αj(τ ), βj(τ ) satisfy

β′
j(τ ) < 0 and

2jπ

τ
< βj(τ ) ≤

(4j + 1)π

2τ
∀τ ∈

(
0,

(4j + 1)π

2K2

]
, (3.37)

and that there exists a τ̄ ∈
(
0, (4j+1)π

2K2

)
such that

αj(τ ) < −1

τ
∀τ ∈ (0, τ̄), αj(τ̄) = −1

τ̄
, −1

τ
< αj(τ ) < 0 ∀τ ∈

(
τ̄ ,

(4j + 1)π

2K2

)
. (3.38)

The first step is to assume that there is a j ≥ 1 such that τmin(j) �= 0, and obtain a

contradiction. The first possibility to eliminate is that

τmin(j) > 0. (3.39)

It follows from (3.16) and uniqueness of the solution Q = 0 that

Q′(τ ) > 0 and 0 < Q(τ ) = βj(τ )τ ≤ Q

(
(4j + 1)π

2K2

)
=

(4j + 1)π

2

∀τ ∈
(
τmin(j),

(4j + 1)π

2K2

]
.

(3.40)

We claim that sharper bounds on Q(τ ) are given by

2jπ < Q(τ ) ≤ (4j + 1)π

2
∀τ ∈

(
τmin(j),

(4j + 1)π

2K2

]
. (3.41)

If the lower bound in (3.41) is false, then there exists τ̂ ∈
(
τmin(j),

(4j+1)π
2K2

)
such that

Q(τ̂) = 2jπ. Setting τ = τ̂ in the second equation of (3.3) gives βj(τ̂) = 0, hence

Q(τ̂) = βj(τ̂)τ̂ = 0, which contradicts (3.40). Thus, τ̂ does not exist and (3.41) is

proved.

Next, since we are assuming that τmin(j) > 0 is finite, then standard theory implies

that

lim sup
τ→τmin(j)+

(
|α′

j(τ )|+ |β′
j(τ )|

)
= ∞. (3.42)

Because of (3.42), the term (1 + αj(τ )τ )
2 + (βj(τ )τ )

2) in (3.15) satisfies

lim inf
τ→τmin(j)+

(
(αj(τ )τ + 1)2 + (βj(τ )τ )

2)
)
= 0. (3.43)

This implies that there is a positive, decreasing sequence {τ j} such that

τ j → τmin(j)
+ and Q(τ j) = βj(τ

j)τ j → 0 as j → ∞. (3.44)

Thus, Q(τ j) < 2jπ for large j, which contradicts (3.41). This eliminates possibility (3.39)

and we conclude that τmin(j) ≤ 0 ∀j ≥ 1. Suppose that τmin(j) < 0 for some j ≥ 1.

Setting τ = 0 in the second equation of (3.3) gives βj(0) = 0, which contradicts (3.40).

Thus, we conclude that τmin(j) = 0 ∀j ≥ 1, as claimed.
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Next, we prove that β′
j < 0, and the bounds on αj(τ ) in (3.38). First, (3.3) and (3.37)

imply that

αj(τ ) = −K2e
−αj(τ)τ cos(βj(τ )τ ) < 0 ∀τ ∈

(
0,

(4j + 1)π

2K2

)
. (3.45)

Second, we need to show that

α2
j (τ )τ + 2αj(τ ) + β2

j (τ )τ > 0 ∀τ ∈
(
0,

(4j + 1)π

2K2

]
. (3.46)

When τ = (4j+1)π
2K2

the left side of (3.46) reduces to (4j+1)K2π
2 > 0. Also, (3.46) is a

quadratic in τ. Thus, since βjτ > 2jπ, the discriminant D of (3.46) satisfies

D = 4− 4β2
j τ

2 ≤ 4− 4(2jπ)2 < 0 ∀j ≥ 1. (3.47)

This implies that (3.46) holds. Finally, from (3.15), (3.45), (3.46) and the lower bound

βj(τ ) > 0, we conclude that β′
j < 0 ∀τ ∈

(
0, (4j+1)π

2K2

)
. This completes the proof of (3.37).

It remains to prove (3.38). The first step is to show that there is a τ̄ ∈
(
0, (4j+1)π

2K2

)
such that αj(τ̄) = − 1

τ . Suppose that there is a j ≥ 1 for which such a τ̄ does not exist.

Then

H(τ ) = αj(τ )τ + 1 ∈ (0, 1) ∀τ ∈
(
0,

(4j + 1)π

2K2

)
and H

(
(4j + 1)π

2K2

)
= 1. (3.48)

This, (3.45) and the lower bound Q(τ ) > 2jπ imply that the term H
τ(H2+Q2) , which is an

increasing function of H, satisfies

0 <
H

τ (H2 +Q2)
<

1

τ (1 + 4j2π2)
∀τ ∈

(
0,

(4j + 1)π

2K2

)
. (3.49)

Substituting (3.49) into the second equation in (3.16) gives

H ′ ≥ 1

τ
− 1

τ (1 + 4j2π2)
=

4j2π2

τ (1 + 4j2π2)
∀τ ∈

(
0,

(4j + 1)π

2K2

)
. (3.50)

Integrating (3.50) from τ to (4j+1)π
2K2

gives

H(τ ) ≤ 1 +
4j2π2

(1 + 4j2π2)

(
ln(τ )− ln

(
(4j + 1)π

2K2

))
∀τ ∈

(
0,

(4j + 1)π

2K2

]
. (3.51)

The right side of (3.51) is negative when τ =
(

4j+1
2K2

)
πe

−
(
1+ 1

4j2π2

)
. Thus, we conclude

that there is a

τ̄ ∈
((

4j + 1

2K2

)
πe

−
(
1+ 1

4j2π2

)
,
(4j + 1)

2K2
π

)
(3.52)

such that

H(τ̄ ) = 0 and H(τ ) > 0 ∀τ ∈
(
τ̄ ,

(4j + 1)

2K2
π

]
. (3.53)

It follows from (3.52) that a uniformly valid lower bound for τ̄ is

τ̄ ≥ 5π

2K2
e−(1+

1
4π2 ) ∀j ≥ 1. (3.54)
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This proves the lower bound (3.10) in the statement of the theorem. Finally, an integra-

tion of the second equation in (3.16) from τ to τ̄ gives

H(τ ) = −
∫ τ̄

τ

1

x
exp

(∫ x

τ

dη

η(H2(η) +Q2(η))

)
dx < 0 ∀τ ∈ (0, τ̄). (3.55)

Since H = αj(τ )τ + 1, it follows from (3.53)-(3.55) that αj(τ ) satsifes (3.38). This

completes the proof of (3.37)-(3.38).

Part (iii). The analysis of (α0(τ ), β0(τ )) when τ ≤ π
2K2

. In this part we let j = 0

and prove that τmin(0) = τ∗ = 1
eK2

, and that α0(τ ), β0(τ ) satisfy

α0(τ ) < 0 and β0(τ ) > 0 ∀τ ∈
(

1

eK2
,

π

2K2

)
, (3.56)

lim
τ→τ∗+

(α0(τ ), β0(τ )) = (−eK2, 0) . (3.57)

We begin by assuming that τmin(0) �= 1
eK2

and obtain a contradiction. The first possi-

bility is

τmin(0) ≤ 0. (3.58)

We make use of the functional Q = β0(τ )τ, which satisfies

Q′ = Q
τ(H2+Q2) , Q

(
π

2K2

)
= π

2 . (3.59)

From (3.58) and (3.59) we conclude that there is a Q̄ ∈
[
0, π2

)
such that

Q′(τ ) > 0 and 0 < Q(τ ) <
π

2
∀τ ∈

(
0,

π

2K2

)
, and lim

τ→0+
Q(τ ) = Q̄. (3.60)

Next, it follows from (3.3) that α0(τ ) and β0(τ ) satisfy

α0(τ ) +K2e
−α0(τ)τ cos(β0(τ )τ ) = 0,

β0(τ )−K2e
−α0(τ)τ sin(β0(τ )τ ) = 0.

(3.61)

From (3.60) and the second equation in (3.61) we conclude that

lim
τ→0+

τK2e
−α0(τ)τ = lim

τ→0+

Q(τ )

sin(Q(τ ))
=

Q̄

sin(Q̄)
= δ > 0. (3.62)

Thus,

e−α0(τ)τ ∼ δ

τK2
as τ → 0+, (3.63)

which in turn implies that

lim
τ→0+

α0(τ )τ = −∞. (3.64)

Next, combine the two equations in (3.61) and conclude from (3.60) and (3.62) that

lim
τ→0+

−1

α0(τ )τ
= lim

τ→0+

tan(Q(τ ))

Q(τ )
=

tan(Q̄)

Q̄
= γ > 0. (3.65)

Therefore

lim
τ→0+

|α0(τ )τ | =
1

γ
< ∞, (3.66)

which contradicts (3.64). Thus, our assumption in (3.58) that τmin(0) ≤ 0 has led to a

contradiction. We conclude that τmin(0) > 0 as claimed.
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It remains to prove that τmin(0) = 1
eK2

. Since τmin(0) > 0 is finite, then standard

theory implies that

lim sup
τ→τmin(0)+

(|α′
0(τ )|+ |β′

0(τ )|) = ∞, (3.67)

where α′
0(τ ) and β′

0(τ ) are computed from the ODE system

α′
0 = 1

(1+α0τ)2+(β0τ)2

(
β2
0 − α2

0 − α0β
2
0τ − α3

0τ
)
, α0(

π
2K2

) = 0,

β′
0 = − β0

(1+α0τ)2+(β0τ)2

(
2α0 + α2

0τ + β2
0τ

)
, β0(

π
2K2

) = K2.
(3.68)

Because of (3.67), the term (1 + α0(τ )τ )
2 + (β0(τ )τ )

2 in (3.68) must come arbitrarily

close to zero as τ → τmin(0)
+. That is,

lim inf
τ→τmin(0)+

(
(α0(τ )τ + 1)2 + (β0(τ )τ )

2
)
= 0. (3.69)

Since Q(τ ) = β0(τ )τ is a positive increasing function on
(
τmin(0),

π
2K2

)
, it follows

from (3.69) that

lim
τ→τmin(0)+

Q(τ ) = lim
τ→τmin(0)+

β0(τ )τ = 0. (3.70)

This, and the fact that τmin(0) > 0, imply that

lim
τ→τmin(0)+

β0(τ ) = 0. (3.71)

Next, combine the two equations in (3.61) and conclude from (3.70) that

− 1

α0(τ )τ
=

tan(Q(τ ))

Q(τ )
→ 1 as τ → τmin(0)

+. (3.72)

From (3.72) and the first equation in (3.61) it follows that

α0(τ ) = −K2e
−α0(τ)τ cos(Q(τ )) < 0 ∀τ ∈ (τmin(0),

π

2K2
) (3.73)

and limτ→τmin(0) α0(τ ) = −K2e. Combining these properties with (3.72) gives τmin(0) =
1

eK2
. This, (3.71) and (3.73) imply that

lim
τ→τ∗

(α0(τ ), β0(τ )) = (−K2e, 0) . (3.74)

This completes the proof of (3.56)-(3.57).

4. The effects of host-tumor interactions. In this section we address the issues

in Goal I (see Section 1). We show how our theoretical results can lead to new un-

derstandings of host-tumor interactions effects in the absence of external therapy. Of

fundamental importance is the parameter, τ ≥ 0, which we interpret to represent a delay

in the time of response of the inhibitory variable, G(t). We address the following:

(I) Develop methods to analytically show whether, for large periods of time, tumor

volume N(t) persists at a detectable level, regresses to an undetectable level, or whether

N(t) can fluctuate indefinitely between these states.

(II) For small τ ∈ (0, τ∗) = (0, 1
eK2

), why do host-tumor interactions result in tumor

growth?

(III) When τ∗ < τ ≤ τcrit =
π

2K2
, how can host-tumor interactions affect tumor persis-

tence or regression?
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(IV) When τ∗ < τ ≤ τcrit, how can host-tumor interactions result in a dormant state?

(V) When τ > τcrit, how can tumor volume exhibit runaway growth?

(I) Analytic methods. To resolve (I)-(V) within the framework of our generalized

Gompertzian model we develop methods to characterize both transient and limiting

behaviors of solutions. We let θ > 0 denote the level of detection of a tumor. Its

value decreases as detection techniques improve. Because detection techniques have

improved drastically, some tumors which previously had been undetectable, and which

subsequently would have regressed, are now treated using more aggressive local therapies

such as mastectomy. Such treatment strategies have not been shown to be associated

with improved survival [12–14,26,44,45]. Furthermore, it has recently been asserted that

there is high probability that some cancer patients with small tumors are overtreated [8].

However, small tumors are associated with cell types which can occasionally develop

into metastatic cancer. In this situation, systemic treatment (chemotherapy, hormonal

therapy) would be appropriate to treat such cancers. Thus, it is important to characterize

tumor volume behavior in terms of the inhibitory response G(t).

General form of G(t). Recall from Theorem 3.1 that there are infinitely many eigen-

value solutions λi = αi(τ )+ iβi(τ ) of the transcendental equation λ = −K2e
−λτ derived

in Section 1 (see eq. (1.6)). Thus, G(t) can be expressed in terms of corresponding

eigenfunctions, and system (1.4) becomes

dN(t)
dt = K1N(t)G(t), N(0) = N0 > 0,

G(t) = C1e
r1(τ)t + C2e

r2(τ)t

+
∑

j∈I1
cj exp (αj(τ )t) cos (βj(τ )t) +

∑
k∈I2

dk exp (αk(τ )t) sin (βk(τ )t) .

(4.1)

G(t) describes the internal response of the host to the presence of the tumor. This

response is determined by the collective activity of a large number of individual cells.

The second equation of (4.1) posits that the response of each cell group is character-

ized by eigenfunctions C1e
r1(τ)t, C2e

r2(τ)t, cj exp (αj(τ )t) cos (βj(τ )t) or dk exp (αk(τ )t)

sin (βk(τ )t) . The coefficients denote strength of response of the cell group to the tu-

mor. The term exp (αj(τ )t) gives the natural growth rate, or decay rate, of the cell’s

activity. The function, cos (βj(τ )t), represents the characteristic oscillatory compo-

nent of the cell’s activity, with natural frequency 2π
βj
. A similar interpretation applies

to dk exp (αk(τ )t) sin (βk(τ )t) . The product N(t)G(t) in (4.1) describes the interaction

between the internal response of the host with the tumor.

(II) Classical Gompertzian growth when 0 < τ � τ∗ = 1
eK2

. We prove that tumor

growth exhibits the same classical Gompertzian growth that occurs at τ = 0 (see Sec. 1).

The first step is to determine the relative sizes of the real parts of the eigenvalues in the

G(t) component of (4.1) when 0 < τ � τ∗. It follows from Case I of Theorem 3.1 that

α0(τ ) does not exist when τ < τ∗. From (3.9)-(3.10) in Theorem 3.1 we conclude that

αj(τ ) ≤ − 1
τ ∀τ ∈

(
0, 1

eK2

)
, j ≥ 1. Thus,

αj(τ ) → −∞ as τ → 0+ uniformly with respect to j ≥ 1 (4.2)
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It is easily shown that the real eigenvalues r1(τ ) and r2(τ ) satisfy

r2(τ ) � r1(τ ) < 0 and er2(τ)t � er1(τ)t when 0 < τ � τ∗, (4.3)

r2(τ ) → −∞ and r1(τ ) → −K2 as τ → 0+. (4.4)

It follows from (4.2)-(4.4) that the eigenfunctions in the G(t) component of (4.1) satisfy

| exp(αj(τ )t) cos(βj(τ )t)| � er1(τ)t and | exp(αk(τ )t) sin(βk(τ )t)| � er1(τ)t, (4.5)

for small τ > 0, uniformly with respect to j ≥ 1 and k ≥ 1. These effects become more

pronounced as t increases. For small τ > 0, these properties suggest that the second

term in the G(t) component of (4.1), as well as the terms in the summation, have an

insignificant effect on the behavior of G(t) in comparison to the first term. Thus, when

τ > 0 is small, the G(t) component of (4.1) reduces to G = G1e
r1(τ)t. Substituting this

function gives
dN(t)
dt = K1N(t)G1e

r1(τ)t, N(0) = N0 > 0, (4.6)

where 0 < τ � τ∗ and r1 ≈ −K2. The solution of (4.6) is

N(t) = N0 exp
(

K1c1
r1

(er1t − 1)
)
, t ≥ 0. (4.7)

We conclude from (4.7) that, when G1 > 0, N(t) increases as t increases and exhibits the

same classical Gompertzian growth pattern as in the original model (1.2) where τ = 0.

(III) Tumor regression when τ∗ < τ ≤ τcrit =
π

2K2
. Figure 6 demonstrates tumor

regression for the parameter set (K1,K2, N0, θ) = (1, 1, .01, 13) and τ = τcrit = π
2 .

When τ = π
2 , Theorem 3.1 shows that there are no real eigenvalues, and infinitely many

complex eigenvalues, one of which is purely imaginary. We solve (4.1) using a three-term

expansion for G(t) based on the eigenvalues

α0

(π
2

)
+ iβ0

(π
2

)
, α1

(π
2

)
+ iβ1

(π
2

)
and α2

(π
2

)
+ iβ2

(π
2

)
. (4.8)

Graphs of α0(τ ), α1(τ ), α2(τ ), β0(τ ), β1(τ ) and β1(τ ) are shown in Figure 4. Thus,

G(t) = c0 cos(t) + c1e
α1(

π
2 )t cos

(
β1

(π
2

)
t
)
+ c2e

α2(
π
2 )t cos

(
β2

(π
2

)
t
)
, (4.9)

which is a solution of G′(t) = G
(
t− π

2

)
. Substituting (4.9) into the first equation of (1.4)

gives

N ′(t) = N(t)
(
c0 cos(t) + c1e

α1(
π
2 )t cos

(
β1

(π
2

)
t
)
+ c2e

α2(
π
2 )t cos

(
β2

(π
2

)
t
))

. (4.10)

Figure 6 shows the solution of (4.9)-(4.10) when c0 = −20, c1 = −11 and c2 = 9. The left

panel shows that tumor volume becomes detectable at t ≈ .9, then oscillates around the

level of detection θ, and ultimately regresses into a state of undectability where N(t) < θ.

The results shown in Figure 6 demonstrate that host-tumor interactions by themselves

can cause the tumor to regress.

(IV) Tumor dormancy. Figure 7 illustrates how tumor dormancy can result from host-

tumor interactions. Here we use the same three-term expansion for G(t) as in Figure 6,

but with the coefficients changed to c0 = 8.5 and c1 = c2 = 0. In this case tumor volume

becomes detectable at t ≈ 1, but then regresses to a dormant state, where N(t) < θ, at
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Fig. 6. Tumor Regression. N(t) and G(t) are computed
from (4.9) and (4.10) where G(t) has a three-term expansion, and the
eigenvalues are complex. The parameters are (K1, N(0),K2, τ, θ) =(
1, 1, .01, π

2
, 13

)
. For the choice (c0, c1, c2) = (−20,−11, 9) tumor

volume becomes detectable when t ≈ .9, then oscillates around the
level of detection θ, and ultimately regresses into a state of unde-
tectability where N(t) < θ.
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Fig. 7. Tumor dormancy. N(t) and G(t) are computed using the
same same parameter values, and three-term expansion for G(t), as
in Figure 6. For the choice (c0, c1, c2) = (−20,−11, 7) tumor volume
becomes detectable at t ≈ 1, then regresses into a state of dormancy,
where N(t) < θ, at t ≈ 2.1. Subsequently, N(t) < θ and tumor
volume remains in the dormant state until t ≈ 8, where N(t) again
exceeds the detectable level and regrowth occurs.

t ≈ 2.1. Subsequently, N(t) < θ and tumor volume remains in the dormant state until

t ≈ 8, where N(t) again exceeds the detectable level and regrowth occurs.

(V) When τ > τcrit = π
2 how can tumor volume exhibit runaway growth?

When τ increases past the critical value τcrit = π
2 the system becomes unstable since

α0(τ ) changes from negative to positive (Figure 4): if τ > π
2 , and either c0 �= 0 or

d0 �= 0, then the term c0e
α0(τ)t cos(β0(τ )t) + d0e

α0(τ)t sin(β0(τ )t) causes G(t) and N(t)

to undergo oscillations whose amplitudes increase without bound as t → ∞. Thus, a
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Fig. 8. Runaway growth. N(t) and G(t) are computed
from (4.11). Left: Tumor volume N(t) oscillates with amplitudes
that increase sharply as t increases. Right: The amplitudes of the
G(t) oscillations increase relatively slowly since their rate of increase
is determined by α0(1.6) = .084, which is small compared to the rate
of oscillation β0(1.6) = .987

dormant state cannot be maintained if τ > π
2 , and either c0 �= 0 or d0 �= 0. Figure 8

illustrates this phenomenon when τ = 1.6 > π
2 . We solve

dN(t)
dt = K1N(t)G(t), N(0) = N0 > 0,

G(t) = c0 exp (α0(1.6)t) cos (β0(1.6)t) ,
(4.11)

where K1 = 1, τ = 1.6, c0 = −11, α0(1.6) = .084, β0(1.6) = .987. The left panel in

Figure 8 shows thatN(t) oscillates with dramatically increasing amplitudes as t increases.

It is interesting to note that the amplitudes of the G(t) oscillations increase relatively

slowly since α0(1.6) = .084 is small compared to the rate of oscillation β0(1.6) = .987

Similar destabilizations occur as τ increases further and passes through the higher critical

values τj = (4j+1)π
2 , j ≥ 1. This suggests that dormancy becomes increasingly difficult

to achieve at higher τ values.

5. Replication of clinical data. In this section we demonstrate how our generalized

Gompertzian model (1.4) can be used to closely replicate clinical data. For many types

of cancer such as carcinoma of the breast, there is a scarcity of data available that can

be used to describe immune system response of untreated patients to the presence of

a tumor. This is because such tumors can grow quickly and may metastasize so that

the standard treatment is to begin treatment soon after tumor detection on just one

mammogram. However, an important study by Heuser et al. [22] provides an excellent

set of data describing growth of tumors detected on two successive mammograms for 32

untreated patients. Table 1 in [22] gives the date of each mammogram, and sizes (mm2)

of the detected tumors. Subsequently, Speer et al. [41] graphed the data for each of the 32

patients by first estimating the numbers N1 and N2 (the numbers of cells on successive

mammograms) on the measured tumor sizes, then plotting the Ni (i = 1, 2) on a log

scale over time as measured in days from the initial diagnosis. For convenience they

set the time of each patient’s first mammogram to be t1 = 0, and linearly interpolated
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Fig. 9. Replication of two line segment graphs in Chart 5 in [41].
Line segments join two data points (large black dots) for patients
3210 and 4981 taken from Table 1 in [22]. Horizontal axis denotes
time (days), vertical axis denotes tumor volume (number of cancer
cells). See text for details.

between the points, (0, N1) and (t2, N2). Chart 5 in [41] illustrates these line segments

and shows two distinct behaviors: no growth and uninhibited growth. Figure 9 shows

these behaviors for two representative cases, patients 4981 and 3210. We give the details

of these data sets below and how they are replicated by our model.

Patient 4981. The first mammogram, taken 7/15/74 shows a 20× 12 mm2 tumor [22]

containing 2.26 × 109 cells [41] (Figure 9). The second, 380 days later, shows that the

tumor is the same size. This “zero growth” pattern is shared by nine of the data sets.

Five of these contain less than 109 cells, hence they are classified as clinically small (as

opposed to biologically small). These five data sets violate the widely acclaimed “clinical

experience” ([41] p. 4125) that small tumors grow rapidly.

Patient 3210. The first mammogram, taken on 5/25/75 shows a 12×11 mm2 tumor [22]

which contains 8 × 108 cells [41] (Figure 9). The second, 256 days later, shows a 30 ×
14 mm2 tumor containing 4.6×109 cells. The slope of the line segment joining (0, 8×108)

and (256, 4.6× 109), and the relative change of tumor volume, are given by

ΔN

Δt
= 1.5× 107 and

ΔN

N(0)
= 4.75. (5.1)

It follows from (5.1) that this tumor exhibits a 475 percent increase in size, i.e., an

increase of 3.8 billion cells, over 256 days. This classical Gompertzian type uninhibited

growth pattern is shared by over half of the 32 data sets in Table 1 [22] (and Chart 5 [41]).

Modeling goals: (I) we show (Figures 10 and 11) how our Gompertzian model (1.4)

replicates tumor growth behavior shown in Figure 9 for patients 4981 and 3210; (II) For

each patient we establish a baseline of prediction of plausible tumor volume evolution

following the second mammogram.

(I) Replication of tumor data for patient 4981. We assume that the internal

kinetics of the host play an important role in keeping tumor volume the same size when
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the two mammograms were taken. Although there is no data describing the tumor

volume between mammograms, we assume that its size remains essentially constant, with

at most small oscillatory fluctuations in growth or regression. To model these properties,

we assume that when 0 ≤ t ≤ 380, tumor volume is approximated by a periodic solution

with small amplitude fluctuations centered at N0 = 2.26×106 cells. It follows from (2.8)

that the first τ > 0 where periodic solutions exist is τ = π
2K2

, and the corresponding first

eigenvalue is λ0 = K2. It is important to note that τ = π
2K2

is the largest τ value where

all eigenvalues of the G equation in (1.4) have nonpositive real parts, hence solutions of

the N equation remain bounded and the system is “stable”. When τ = π
2K2

the leading

terms in expansion (1.12) give G = c1 cos(K2t)+d1 sin(K2t). The corresponding formula

for tumor volume is N = N0 exp(K1

∫ t

0
G(t′)dt′). That is,

N = N0 exp

(
c1K1

K2
sin(K2t) +

d1K1

K2
(1− cos(K2t))

)
. (5.2)

We claim that τ = 190, and that boundary conditions N(0) = N(380) = 2.26× 109 hold

when N0 and K2 are given by

N0 = 2.26 × 109 and K2 =
π

380
. (5.3)

It follows from (5.3) that τ = π
2K2

= 190. Substituting (5.3) into (5.2) gives

N = 2.26× 109 exp

(
380c1K1

π
sin

( π

380
t
)
+

380d1K1

π

(
1− cos

( π

380
t
)))

. (5.4)

It follows from (5.4) that the requirement N(0) = N(380) implies that d1 = 0. Finally,

to insure small amplitude oscillations centered at N0 = 2.26 × 109, we set c1K1 = π
7600 ,

and (5.4) becomes

N = 2.26× 109 exp

(
1

20
sin

(
πt

380

))
, 0 ≤ t ≤ 380. (5.5)

Figure 10 gives the graph (dark circles in right panel) of (5.5): left and right panels show

that (5.5) closely replicates tumor growth data for patient 4981.

(II) Predictions of tumor volume after the second mammogram. We show how

our model (1.4) can be used to give a baseline of tumor volume evolution over the six

month period following the second mammogram. We focus on three diverse possibilities:

(A) the tumor exhibits uninhibited growth, (B) the tumor remains the same size, (C)

the tumor regresses.

Case A. We assume that the host loses its ability to control tumor size, that unin-

hibited growth is initiated at t = 380 (days), and that this growth rate is the same rate

derived in (5.1) for tumor growth data for patient 3210. Thus, over a 6 month period our

data based prediction suggests that tumor volume could increase in size by 2.7 billion

cells. Thus, we set

N(560) = 2.26× 109 +
(
1.5× 107

)
∗ 180 = 4.96× 109 (cells), (5.6)

and the boundary conditions for N(t) are

N(380) = 2.26× 109 and N(560) = 4.96× 109. (5.7)
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Fig. 10. Patient 4981. Left: Line segment joining data
points (black dots). Vertical axis is tumor volume, horizontal axis is
time since first mammogram. Right: Approximation to data (black
circles) when 0 ≤ t ≤ 380 and predictions (dashed curves A, B, C)
of tumor volume during the six months following the second mam-

mogram. See text for details.

Next, we determine an appropriate range of τ. Because we assume that rapid growth

is initiated at t = 380, it is reasonable to assume that τ increases past the critical value
π

2K2
= 190 into the regime where α0(τ ), the real part of the leading eigenvalue, becomes

positive. At such τ values the system destabilizes and rapid growth is possible. Thus,

we assume a moderate increase of τ from 190 to 195 days at t = 380. In addition,

it is natural to expect the onset of uninhibited growth at t = 380 to exhibit classical

Gompertzian growth properties. For this the appropriate leading term in expansion (4.1)

is G(t) = d1 exp(α0(195)t) sin(β0(195)t), where α0(195) and β0(195) are the real and

imaginary parts of the leading eigenvalue λ0 = α0(195) + iβ0(195). The corresponding

tumor volume formula is

N(t) = 2.26× 109 exp

(
d1K1

∫ t

380

exp(α0(195)t
′) sin(β0(195)t

′)dt′
)
, (5.8)

where 380 ≤ t ≤ 560. We need to determine values for α0(195), β0(195) and the product

d1K1. In Theorem 3.1 we proved that the eigenvalue λ0 = α0(τ )+ iβ0(τ ) is a C1 function

of τ, and that α0(τ ) and β0(τ ) are determined by solving ODE system (3.15) with intial

conditions
(
α0

(
π

2K2

)
, β0

(
π

2K2

))
= (0,K2), where K2 = π

380 . Thus, we solve (3.15) with

(α0 (190) , β0 (190)) =
(
0, π

380

)
, and obtain

α0(195) = .001 and β0(195) = .0082. (5.9)

We substitute (5.9) into (5.8) and find that boundary conditions (5.7) hold when we set

d1K1 = −.0045 The resultant form of N(t) (dashed curve A in Figure 10, right panel)

exhibits the classical Gompertzian growth characteristics predicted above.

Case B. We assume that internal kinetics of the host continue to keep tumor volume

at a constant level when 380 ≤ t ≤ 560. To model this setting we assume that there is
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Fig. 11. Patient 3210. Left: Line segment joining data
points (black dots). Right: Approximation to data (dashed curve
segment) when 0 ≤ t ≤ 380 and predictions (dashed curves A, B, C)
of tumor volume during the six months following the second mam-
mogram. See text for details.

no change in τ, i.e., τ = 190, and that formula (5.5) continues to model tumor volume

when 380 ≤ t ≤ 560 (dashed curve B in Figure 10, right panel).

Case C. We assume that internal kinetics of the host cause tumor volume to regress

when 380 ≤ t ≤ 560. To model this setting we assume that there is no change in τ, i.e.

τ = 190, and that c1K1 = .0075 in (5.5). The resultant form of N(t) is indicated by

dashed curve C in Figure 10 (right panel).

(I) Replication of tumor data for patient 3210. The boundary conditions for tumor

volume (Figure 11, left) are

N(0) = 8× 108 and N(256) = 4.6× 109. (5.10)

Due to its rapid growth, we assume that the tumor exhibits classic Gompertzian growth

characteristics when 0≤t≤256. Thus, we set τ=0 and follow Speer et al. ([41], p. 4125) to

obtain the classical Gompertzian approximationN(t) = 8×108 exp
(

A
K2

(1−exp(−K2t))
)
.

We find that conditions (5.10) hold whenK2 = .01 and A = .018958. Thus (see Figure 11,

right),

N(t) = 8× 108 exp (1.8958(1− exp(−.01t))) , 0 ≤ t ≤ 256. (5.11)

A comparsion of the left and right panels of Figure 11 shows that (5.11) closely replicates

tumor growth data for patient 3210 when 0 ≤ t ≤ 380.

(II) Predictions of tumor volume after the second mammogram. Again, we

focus on three possibilities: (A) the tumor exhibits uninhibted growth, (B) the tumor

remains the same size, (C) the tumor regresses.

Case A. When 256 ≤ t ≤ 436 we assume that the tumor continues to exhibit classical

Gompertzian uninhibited growth, and that N(t) is again given by (5.11) (dashed curve

A in Figure 11, right).
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Case B. We assume that the tumor ceases to grow and behaves like tumor growth

for patient 4981, remaining at a constant level over the 180 day interval 256 ≤ t ≤ 436.

Guided by our analysis of N(t) for patient 4981, we set τ = 190 and K2 = π
180 , and

follow the derivation of (5.5) to obtain

N(t) = 4.6× 109exp

(
c1K1

∫ t

256

cos
( π

380
t′
)
dt′

)
, 256 ≤ t ≤ 480. (5.12)

As above, we set c1K1 = π
7600 in (5.12). The resulting tumor volume formula is repre-

sented by dashed curve B in Figure 11 (right).

Case C. Here, we assume that the tumor regresses when 256 ≤ t ≤ 436. Again,

we are guided by our analysis of tumor growth for patient 4981, and set c1K1 = 15π
7600

in (5.12). The resulting tumor volume formula is represented by dashed curve C in

Figure 11 (right).

Future modeling and clinical studies. It is important to develop techniques to

predict which percentage of tumors evolve according to (A), (B), (C) described above

for patients 4981 and 3210. For this, we need more extensive data provided by large

prospective multi-year trials. One class of tumors which falls within the framework of

our generalized Gompertzian model, and for which such a long-term trial is planned, is

that involving small tumors diagnosed as DCIS (ductal carcinoma in situ). This trial,

called the Low Risk Ductal Carcinoma in Situ (LORIS) Trial, will monitor the evolution

of DCIS tumors in 932 patients for five years, with lifelong follow up also planned. It is

hoped that the results of this study, and others, will provide sufficient new data to allow

our model to be modified to provide accurate predictions of long-term evolution of such

tumors.

6. Conclusions. In this paper we examined the dynamic behavior of the generalized

Gompertz system
dN(t)
dt = K1N(t)G(t),

dG(t)
dt = −K2G(t− τ ),

(6.1)

of delay-differential equations which model host-tumor interactions. The dependent vari-

ables are tumor volume (N), and an inhibitory variable (G) which represents the response

of the host to the tumor. Our main modeling advance is to assume that there is a delay,

τ ≥ 0, in response of the host to the presence of the tumor. A long standing belief is

that Gompertzian kinetics cannot exhibit such complicated behavior as tumor dormancy

or regression [3, 41]. Indeed, Retsky et al. [38] warn us “against the attempt to imag-

ine that tumors conform to simple rules.” We agree with this principle. However, we

have demonstrated that the simple, yet general Gompertzian system (6.1) can produce

tumor growth scenarios which are arbitrarily complex or “irregular”, and which mirror

many realistic settings in the study of host-tumor interactions inherent in the evolution

of tumors. We have shown that solutions of (6.1) exhibit a rich diversity of behavior,

including tumor persistence, tumor regression, tumor dormancy and tumor regrowth.

The first step in our approach is to develop an ODE technique to prove the existence
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and qualitative properties of infinitely many branches of solutions of the eigenvalue equa-

tion (1.6) associated with the G(t) delay ODE (Theorem 3.1). We showed that for each

τ > 0 there are infinitely many eigenvalues, and that these generate a solution of the

G(t) delay equation of the form

G(t) = C1e
r1(τ)t + C2e

r2(τ)t

+
∑

j∈I1
cj exp (αj(τ )t) cos (βj(τ )t) +

∑
k∈I2

dk exp (αk(τ )t) sin (βk(τ )t) ,
(6.2)

where er1(τ)t, er2(τ)t, exp (αj(τ )t) cos (βj(τ )t) and exp (αk(τ )t) sin (βk(τ )t) are eigenfunc-

tions.

Theorem 3.1 gives the first complete analysis of the G(t) delay ODE. Using the results

of Theorem 3.1, we analyzed the full system and showed the following:

(i) When τ > 0 is small, the host system responds, but the response is insufficient to

effectively suppress tumor growth, and classical Gompertzian growth occurs.

(ii) When τ is too large, i.e., τ > π
2K2

, instabilities in the system can cause runaway

growth of tumor volume (Figure 8). Thus, when τ > π
2K2

, it is unlikely that an effective

response of the host can be evoked.

(iii) When τ is in an intermediate “optimal immunological response range”, i.e., τ ∈
(τ∗, τcrit] =

(
1

eK2
, π
2K2

]
, the response of the host may be sufficiently strong to cause

tumor regression or dormancy. It is natural to expect that such an optimal response

range will vary from individual to individual.

(iv) In Section 5 we demonstrated the utility of our model for replicating clinical data

by showing that it accurately replicates tumor growth on successive mammograms for

32 breast cancer patients.

Extensions for future research. A fundamental difference between our approach and

that of Norton and Simon [33–35] is that the Norton-Simon studies examine the effects

of external input and do not address internal effects due to host-tumor interactions.

A natural extension is to combine our techniques with the Norton-Simon approach by

including external input in our generalized Gompertz model. This combined approach

will allow us to investigate growth inhibiting effects of both external treatment and

internal host-immune response. Thus, a first step is to extend system (6.1) to

dN(t)
dt = K1N(t)G(t)(1− L(t)), dG(t)

dt = −K2G(t− τ ), (6.3)

where, as in [33–35], the term L(t) denotes external therapy. These combined approaches

may facilitate broader understanding of the complex tumor-host interactions present in

the biology of cancer and may lead to new possibilities for the further development of

the sequencing of cancer treatments and interventions.
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