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Abstract. We present a fast-slow dynamical systems theory for a Kuramoto type

model with inertia. The fast part of the system consists of N -decoupled pendulum

equations with constant friction and torque as the phase of individual oscillators, whereas

the slow part governs the evolution of order parameters that represent the amplitude and

phase of the centroid of the oscillators. In our new formulation, order parameters serve

as orthogonal observables in the framework of Artstein-Kevrekidis-Slemrod-Titi’s unified

theory of singular perturbation. We show that Kuramoto’s order parameters become

stationary regardless of the coupling strength. This generalizes an earlier result (Ha and

Slemrod (2011)) for Kuramoto oscillators without inertia.

1. Introduction. The purpose of this paper is to extend the study of fast-slow dy-

namical systems theory for synchronization models, which started with [15, 16]. The

Kuramoto model describes the synchronization process for many weakly coupled limit
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cycles produced by a complex Ginzburg-Landau model [19–21]. The Kuramoto oscilla-

tors can be visualized as point rotors on the unit circle S
1 (see survey papers and books

[1, 7, 26, 30, 31]). More precisely, let xj = eiθj , θj ∈ R, be the position of the j-th point

rotor on the circle. Then the Kuramoto model with inertia reads as follows:

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi), t > 0, i = 1, . . . , N, (1.1)

subject to the initial data:

(θi, θ̇i)
∣∣∣
t=0

= (θi0, ωi0), (1.2)

where m,K and Ωi are constant inertia, the uniform positive coupling strength, and the

intrinsic natural frequency of the i-th oscillator drawn from some distribution function

g = g(Ω), respectively. For simplicity, we may assume that Ωi ≥ 0 if necessary by taking

θi → θi + ( min
1≤j≤N

Ωj)t.

The model (1.1) was first introduced by Ermentrout [14] for modeling the slow relax-

ation to the phase-locked states among fireflies, Pteroptyx malaccae (see [9] for rigorous

justification). However the system (1.1) also appears in some mechanical models that

describe an array of superconducting Josephson junctions [3, 11, 25, 37–41]. The second-

order model (1.1) exhibits richer phenomena, such as a discontinuous first-order phase

transition and hysteresis, etc. [1–3, 13, 17, 18, 32, 33], compared with the first-order Ku-

ramoto model.

The self-consistent mean-field approach [19–21] initiated by Kuramoto uses the real

order parameters r and φ to measure the degree of synchronization:

reiφ :=
1

N

N∑
j=1

eiθj , t ≥ 0. (1.3)

Note that the real order parameters r and φ are functions of all phases θi, i = 1, · · · , N,

which are solutions of the system (1.1). Thus, they depend on K,N, and t implicitly,

i.e., r = r(K, t,N), φ = φ(K, t,N). In Kuramoto’s derivation of the critical coupling

strength Kc, he assumed that during the double limiting process,

t → ∞ and N → ∞,

the order parameters r and φ approached constant states, which is not obvious a priori.

In this paper, we discuss a rigorous mathematical underpinning of Kuramoto’s guess

of the constant order parameters r and φ in an asymptotic limit via some Kuramoto

type model (1.1) with inertia using the framework of Artstein-Kevrekidis-Slemrod-Titi’s

unified theory (AKST’s theory) for a singular perturbation. We prove that the slow

motion is just that r and φ are constants, whereas the fast motion is an uncoupled

pendulum motion given constant torque and unit damping.

This paper has four sections after the Introduction. In Section 2, we briefly review

AKST’s theory of singular perturbation. In Section 3, we derive a fast-slow dynamical

systems formulation of a Kuramoto type model with inertia and a small parameter ε > 0.

In Section 4, we study the invariant measure for the fast system. Finally, Section 5 is

devoted to the slow motion of the order parameters in the limit ε → 0 using AKST’s
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theory. In particular, we apply the Young measure approach to determine the evolution

of order parameters and prove that they become stationary as ε → 0.

2. Preliminaries. In this section, we briefly review the essence of AKST’s unified

approach [4, 28] to singular perturbations and averaging using Young measures for the

reader’s convenience. For more on classical singular perturbation and averaging, we refer

to [5, 24, 27, 35].

2.1. Invariant measures and Young measures. In this part, we consider the basic con-

cepts of invariant measures and Young measures, which we apply in later sections. For

a detailed discussion, we refer to [6, 12, 23, 36].

A probability measure μ in the Euclidean space R
N is a σ-additive set function on

the Borel σ-algebra B that consists of RN with values in [0, 1] and μ(RN ) = 1. Thus,

we specify P(RN ) as the set of all probability measures on R
N endowed with weak

convergence of measures [8].

Definition 2.1. Let μ be a probability measure defined on R
N .

(1) The support of μ (denoted by supp(μ)) is the smallest closed set C ⊂ R
N such

that μ(C) = 1.

(2) μ is an invariant measure associated with the dynamical system

dx

dt
= f(x), f : Lipshitz continuous, (2.1)

if and only if the solution X(t, x0) to (2.1) for x0 in a neighborhood of supp(μ)

defined on some fixed interval I around t = 0 satisfies the relation

μ(B) = μ(X(t, B)), ∀ t ∈ I and B ∈ B.

Next, we consider the definitions of Young measures and the convergence of a sequence

of Young measures.

Definition 2.2 ([6, 8, 12, 34]). (1) ν is a Young measure if and only if ν : [a, b] →
P(RN ) is a measurable map.

(2) Let (νj) be a sequence of Young measures defined on the same interval [a, b]. The

sequence (νj) converges to the limit Young measure ν∞ if and only if

∫ b

a

∫
RN

h(λ, t)νj(t)(dλ)dt →
∫ b

a

∫
RN

h(λ, t)ν∞(t)(dλ)dt,

for every continuous real-valued function h = h(λ, t).

Remark 2.1. 1. The Young measure was introduced by L. C. Young [42, 43] in a

study of the calculus of variations with no minimizers in a classical sense, and then it

was popularized by L. Tartar in a study of scalar hyperbolic conservation law [34].

2. The real-valued function x = x(·) in the interval [a, b] can be viewed naturally as a

Young measure, the value of which is a simply Dirac measure supported by the singleton

{x(t)}. Thus, when we refer to the convergence of a sequence of functions in the sense of

Young measures, we mean convergence in the sense of Definition 2.2 for the corresponding

Dirac measure-valued functions. Thus, when we have a sequence of continuous functions

uniformly bounded in j, {xj(t)}, t ∈ [a, b], its associated sequence of Young measures
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is νj(t) = δ(λ − xj(t)). If we select a separable test function h(λ, t) = a(λ)b(t), then

convergence of xj(·) to the Young measure μ∞ in the sense of Young measures means

∫ b

a

b(t)a(xj(t))dt →
∫ b

a

b(t)
(∫

RN

a(λ)ν∞(t)(dλ)
)
dt.

Therefore, the weak-∗ limit in L∞([a, b]) of the sequence of functions a(xj(·)) is repre-

sented by the value ∫
RN

a(λ)ν∞(t)(dλ).

Next, we recall a fundamental theorem of Young measures from [6, 34].

Theorem 2.1. Let (Un) be a sequence of functions uniformly bounded in L∞([0, 1];RN ).

For any continuous function V : RN → R, there exists a family of probability measures

(ν(t)) and a subsequence Unj such that

V (Unj )
∗−⇀

∫
RN

V (λ)ν(t)(dλ) in L∞([0, 1]).

2.2. The AKST approach for singular perturbation. In this part, we briefly review the

approach presented in [4, 28]. The detailed theory can be found in the aforementioned

references.

We consider a fast-slow dynamical system as follows:

dUε

dt
=

F (Uε)

ε
+G(Uε), Uε ∈ R

N , t > 0,

Uε(0) = Uin,
(2.2)

where F,G : RN → R
N are continuous functions denoting the fast and slow parts of the

system (2.2), respectively, while ε is a small parameter.

The AKST’s unified approach deals with a limiting process based on the dynamics

of Uε, when the small parameter approaches zero under some structural assumptions.

Given suitable assumptions, the limit dynamics of the system (2.2) can be depicted as

the evolution of the invariant measure of the fast part drifted by the slow part. The

evolution of the invariant measure for the fast part can be characterized by the slow

dynamics of the generalized moments of the invariant measure.

Let V : R
N → R be a bounded and continuous function, which is called (macro-

scopic) measurement or observer. For a given probability measure μ ∈ P(RN ), we set a

generalized moment of μ as V̂ (μ):

V̂ (μ) := 〈μ, V 〉 =
∫
RN

V (λ)μ(dλ).

Then, V̂ is a bounded linear functional defined on P(RN ), and we refer to V̂ as an

observable. Next, we define some classes of observables that are orthogonal with respect

to the vector field generated by the fast part of (2.2).

Definition 2.3 (Orthogonal observable). Let (V, V̂ ) be the measurement and observ-

able pair. The observable V̂ (μ) is called an orthogonal observable for the fast part of (2.2)
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if and only if the measurement V is the first integral of the fast system (2.3):

dU

ds
= F (U), s :=

t

ε
; (2.3)

i.e., V (U(s)) is constant along the solution U = U(s) of (2.3). In particular, if the

measurement V is differentiable, this is equivalent to the following orthogonal relation:

∇UV · F (U) ≡ 0 along the solution U = U(s) to (2.3).

Here v · w is the standard Euclidean inner product of two vectors v, w ∈ R
N .

2.2.1. The framework of AKST’s theory. We assume the following assumptions that

guarantee the existence of the limit Young measure and the evolution of orthogonal

observables.

• (F1) (Uniform boundedness of the overall system)

There exists a compact set H ⊂ R
N and a nontrivial interval I such that for

any 0 < ε 
 1,

Uε(t) ∈ H, t ∈ I,

where Uε is the solution of the overall system (2.2).

• (F2) (Existence of a positively invariant set for the fast system)

There exists a compact set K ⊂ H that is positively invariant with respect to

the fast part of (2.2).

• (F3) (Unique solvability) For any initial data U0 ∈ K, the overall system (2.2)

and the fast system (2.3) are uniquely solvable.

For definiteness, we set the nontrivial interval I as the unit closed interval [0, 1]. Under

the above assumptions, we can have evolution of orthogonal observables in the following

theorem.

Theorem 2.2 ([4]). Suppose that the assumptions (F1)− (F3) hold, and let Uεj (·) be
the sequence of solutions for (2.2) defined on [0, 1], which converges to the Young measure

ν0 in the sense of Young measures (see Theorem 2.1). Then we have

(1) For any orthogonal observable V̂ (·) of the system (2.2), the measurement

V (Uεj (t)) weak-* converges to V̂ (ν0(t)):

V̂ (ν0(t)) =

∫
K

V (λ)ν0(t)(dλ).

(2) The weak-* limit V̂ (ν0(t)) satisfies

V̂ (ν0(t)) = V (Uin) +

∫ t

0

∫
K

∇V (λ) ·G(λ)ν0(τ )(dλ)dτ. (2.4)

Proof. The detailed proof of the theorem can be found in [4], but for the reader’s

convenience, we briefly sketch the proof below. Let V : RN → R be a differentiable

orthogonal observable in the fast-slow system (2.2). Along the solution to (2.2), we have

dV (Uε(τ ))

dτ
= ∇UV (Uε) · dU

ε

dτ

=
1

ε
∇UV (Uε) · F (Uε) +∇UV (Uε) ·G(Uε)

= ∇UV (Uε) ·G(Uε).
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We now integrate the above relation from 0 to t, which yields

V (Uε(t))− V (Uin) =

∫ t

0

∇UV (Uε(τ )) ·G(Uε(τ ))dτ. (2.5)

Note that since the solution U (0) of the fast system will be the dominant part of the

overall solution Uε for small ε, we can write the ansatz for Uε as

Uε(t) = U (0)
( t

ε

)
+O(ε)

and substitute it into the integral relation (2.5) to obtain

V (U (0)
( t

ε

)
)− V (Uin) =

∫ t

0

∇UV (U (0)
(τ

ε

)
) ·G(U (0)

(τ

ε

)
)dτ +O(ε). (2.6)

According to (F2), the sequence U (0)
(

t
ε

)
∈ K is the compact subset of RN uniformly in

t ∈ [0, 1]. Thus, this sequence is compact in a weak-* topology due to the Banach-Alaoglu

theorem; i.e., there exists a subsequence U (0)
(

t
εj

)
that weak-* converges to some limit

function Ū ∈ L∞([0, 1]), i.e.,

U (0)
( t

εj

)
∗−⇀ Ū as j → ∞.

In view of Theorem 2.1, we set the limit Young measure associated with the limit

L∞([0, 1])-function Ū by ν0. On the other hand, the sequence V
(
U (0)

(
t
εj

))
is also

uniformly bounded, so it is also weak-* compact. Thus up to some subsequence (still

labelled as εj), we have

V (U (0)
( t

εj

)
)

∗−⇀ V̄ . (2.7)

Therefore, it follows from Theorem 2.1 that this weak-* limit V̄ can be represented by

the action of the limit Young measure ν0 on the measurement V :

V̄ =

∫
K

V (λ)ν0(dλ). (2.8)

Similarly, we have

∇UV (U (0)
( τ

εj

)
) ·G(U (0)

( τ

εj

)
)

∗−⇀
∫
K

∇UV (λ) ·G(λ)ν0(τ )(dλ) as j → ∞. (2.9)

We now combine (2.6)–(2.9) to get the desired result. �
Remark 2.2. It may be asked why we did not differentiate the above integral relation

(2.4) to obtain an ordinary differential equation for V̂ (ν0(t)). First, we note that even

if we could differentiate the integral relation, it would not yield an ordinary differential

equation in the classical sense; i.e., since the Young measure μ0(t) is determined by the

generating sequence
{
U (0)

(
·
ε

)}
, which depends on the initial data Uin, the right hand

side depends on the initial data. Second, the issue of differentiability has been covered

in Theorem 6.5 of [4] . The sufficient conditions given there are that the Young measure

μ0 is uniquely determined by the initial data U0 and, furthermore, that it is Lipschitz

continuous as a function of the data U0. In our system, the continuity of the measure μ0

as a function of the data is not expected, so fortunately it will not be needed.
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3. Derivation of fast-slow dynamics. In this section, we present a fast-slow refor-

mulation for the system (2.2) in the double limiting process N → ∞ and t → ∞. This is

done by an artificial truncation procedure which admittedly may eliminate some of the

subtle features of the Kuramoto system. Specifically, as we show below, we truncate the

system at N oscillators and then set ε = 1
N as a small parameter. We then rescale time

t as τ
ε and study the dynamics of this system with the number of oscillators N fixed.

Hence, instead of using 1
ε , we are using a fixed finite number of oscillators, and tails of

the Kuramoto oscillator sequence are neglected.

Consider the following system of second-order ODEs:

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

aj sin(θj − θi), i = 1, · · · , N, t > 0, (3.1)

where aj ∈ {0, 1} is the interaction weight indicating the impact of the j-th oscillator.

The second-order system (3.1) can be rewritten as the first-order system:

θ̇i = ωi, i = 1, · · · , N, t > 0, (θi, ωi) ∈ R
2,

ω̇i =
1

m

(
− ωi +Ωi +

K

N

N∑
j=1

aj sin(θj − θi)
)
.

Next, we introduce the weighted Kuramoto order parameter (r, φ) ∈ R+ × R:

reiφ :=
1

N

N∑
j=1

aje
iθj . (3.2)

Note that r is always bounded, i.e., 0 ≤ r ≤ 1. We next divide (3.2) by eiθi to get the

equation

rei(φ−θi) =
1

N

N∑
j=1

aje
i(θj−θi),

and we compare the real and imaginary parts of the above relation to find

r cos(φ− θi) =
1

N

N∑
j=1

aj cos(θj − θi),

r sin(φ− θi) =
1

N

N∑
j=1

aj sin(θj − θi).

We differentiate equation (3.2) with respect to t to get

ṙeiφ + ireiφφ̇ =
i

N

N∑
j=1

aje
iθj θ̇j .

We divide the resulting equation by eiφ to find

ṙ + irφ̇ = − 1

N

N∑
j=1

aj sin(θj − φ)θ̇j +
i

N

N∑
j=1

aj cos(θj − φ)θ̇j . (3.3)
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We now take the real and imaginary parts of (3.3) to obtain

ṙ = − 1

N

N∑
j=1

aj sin(θj − φ)θ̇j ,

φ̇ =
1

rN

N∑
j=1

aj cos(θj − φ)θ̇j .

Thus, we obtain a coupled system for (θi, ωi, r, φ):

θ̇i = ωi, i = 1, · · · , N, t > 0,

ω̇i =
1

m

(
− ωi +Ωi −Kr sin(θi − φ)

)
,

and

ṙ = − 1

N

N∑
j=1

aj sin(θj − φ)ωj ,

φ̇ =
1

rN

N∑
j=1

aj cos(θj − φ)ωj .

We want to study the long-time dynamics and mean-field limit simultaneously, so we

introduce the stretched time variable t = τ
ε where 0 ≤ τ ≤ 1. Thus, the system becomes

dθi
dτ

=
ωi

ε
, i = 1, · · · , N, τ > 0,

ωi

dτ
=

1

mε

(
− ωi + Ωi −Kr sin(θi − φ)

)
,

dr

dτ
= − 1

εN

N∑
j=1

aj sin(θj − φ)ωj ,

dφ

dτ
=

1

rεN

N∑
j=1

aj cos(θj − φ)ωj .

We then perform the following steps. We set

εN = 1,

so that in principle as ε → 0, we will get an infinite set of equations. However to prevent

this event and maintain our system as finite dimensional, we set a truncation on aj :

aj =

{
1, j ≤ M,

0, j > M.
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Thus, we have a coupled fast-slow system:

dθi
dτ

=
ωi

ε
, i = 1, · · · ,M, τ > 0,

dωi

dτ
=

1

mε

(
− ωi +Ωi −Kr sin(θi − φ)

)
,

dr

dτ
= −

M∑
j=1

sin(θj − φ)ωj ,

dφ

dτ
=

1

r

M∑
j=1

cos(θj − φ)ωj .

(3.4)

Note that the system (3.4) is the sum of the fast (3.5) and slow (3.6) parts respectively.

For i ∈ {1, · · · ,M},
dθi
dt

= ωi,
dωi

dt
=

1

m

(
− ωi +Ωi −Kr sin(θi − φ)

)
, t > 0,

dr

dt
= 0,

dφ

dt
= 0,

(3.5)

and

dθi
dτ

= 0,
dωi

dτ
= 0, τ > 0,

dr

dτ
= −

M∑
j=1

sin(θj − φ)ωj ,
dφ

dτ
=

1

r

M∑
j=1

cos(θj − φ)ωj .
(3.6)

Since θj only enters the right hand side of (3.5)–(3.6) via sine and cosine functions,

without loss of generality we may restrict θj to the interval [−π, π] and identify all

θi mod 2π as the same θi.

4. Invariant measure for the fast system. In this section, we study the invariant

measure of the fast system, which has a support in the ω-limit set of the fast system.

Consider an autonomous two-dimensional system in R
2:

dx

dt
= y, t > 0,

dy

dt
=

1

m

(
− y +Ω−Kr0 sin(x− φ0)

)
,

(4.1)

subject to initial data:

(x, y)(0) = (x0, y0), (4.2)

where r0 ∈ (0, 1], φ0 ∈ R and Ω ≥ 0 are constants.

Note that the system (4.1) is periodic in x and (θi, ωi) for the fast system (3.5) satisfies

(4.1) with Ω = Ωi for i = 1, · · · ,M, while the equilibrium solutions to (4.1) should satisfy

the relation

y = 0, Ω = Kr0 sin(x− φ0). (4.3)

This means that if the system (4.1) has equilibrium solutions, then they are the equi-

librium solutions to the system (4.1) without inertia, i.e., m = 0. Thus, the presence of
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inertia does not affect the structure of the equilibrium solutions, although it is known

in [9] that inertia can modulate the relaxation speed toward the phase-locked states

depending on the relative size of m and K.

Our fast system (4.1) is analogous to the equation for a damped pendulum with an

applied constant torque (in our case Ω
m ), and the qualitative behavior of its solution has

already been addressed in previous studies (e.g. [22, 31]). In particular, Levi et al. [22]

made an extensive classification of the dynamic behavior of solutions depending on the

relative sizes of Ω and Kr0. Below, we list the results of Levi et al., which have been

slightly modified in our setting without proofs.

4.1. Subcritical regime (Kr0 > Ω). In these regimes, x satisfies the same trigonometric

equation as that of the Kuramoto model without inertia. Thus it follows from [10] that

the explicit formula can be given as follows:

t
√
(Kr0)2 − Ω2 = log

∣∣∣Ω tan x(t)−φ0

2 −Kr0 −
√
(Kr0)2 − Ω2

Ω tan x(t)−φ0

2 −Kr0 +
√
(Kr0)2 − Ω2

∣∣∣
− log

∣∣∣Ω tan x0−φ0

2 −Kr0 −
√
(Kr0)2 − Ω2

Ω tan x0−φ0

2 −Kr0 +
√
(Kr0)2 − Ω2

∣∣∣.
However, the above explicit formula is not useful for finding the invariant measure for

the fast system. The equilibria can be found explicitly as follows: for n = 0,±1,±2, · · · ,

(xe
1n, y

e
1n) = (φ0 + sin−1

( Ω

Kr0

)
+ 2nπ, 0) (stable node),

(xe
2n, y

e
2n) = (φ0 + π − sin−1

( Ω

Kr0

)
+ 2nπ, 0) (unstable saddle).

The large-time behavior of the general solution can be seen in the following proposition.

Proposition 4.1 ([22]). Suppose that the Ω and K satisfy

0 ≤ Ω

Kr0
< 1.

Then there exists a positive number σ∗ = σ∗
(

Ω
Kr0

)
> 0 such that

(1) For 0 < 1
Kr0

< σ∗, there exists an exponentially stable running periodic orbit.

(2) For 1
Kr0

> σ∗, every orbit tends to one of the equilibria.

(3) For 1
Kr0

= σ∗, the state space is split into two regions; i.e., all orbits in the upper

region tend to the boundary between the two regions, whereas all orbits in the

lower region tend to one of the equilibria.

Remark 4.1. For case (3), the boundary separating two regions is the stable manifold

connecting neighboring saddle points, i.e., the running periodic orbit. Proposition 4.1

implies that the ω-limit sets consist of equilibria or running periodic orbits.

4.2. Critical regime (Kr0 = Ω). In this regime, x also satisfies the same trigonometric

equation as that of the Kuramoto model without inertia. Thus it follows from [10] that

we can get the explicit formula

t =
2

Ω tan x0−φ0

2 −Kr0
− 2

Ω tan x(t)−φ0

2 −Kr0
.
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Again, the above explicit formula is not very useful for finding the invariant measure for

the fast system. For the critical coupling case, two equilibria xe
1 and xe

2 in subcritical

case coalesce and become

(xe
3n, y

e
3n) = (φ0 + 2 tan−1

(Kr0
Ω

)
+ nπ, 0), n = 0,±1, · · · .

The large-time behavior of the general solution can be summarized as follows.

Proposition 4.2 ([22]). Suppose that the Ω and K satisfy

Ω

Kr0
= 1.

Then there exists a positive number σ∗ = σ∗
(

Ω
Kr0

)
> 0 such that

(1) For 0 < 1
Kr0

< σ∗, there exist an exponentially stable running periodic orbit and

orbits that approach the running periodic orbit or equilibria.

(2) For 1
Kr0

> σ∗, every orbit tends to one of the equilibria.

(3) For 1
Kr0

= σ∗, the state space is split into two regions; i.e., all orbits in the upper

region tend to the boundary between the two regions, whereas all orbits in the

lower region tend to one of the equilibria. The phase boundary consists of an

orbit connecting two neighboring equilibria (continued 2π-periodically).

4.3. Supercritical regime (Kr0 < Ω). First, note that in the supercritical case we have

no equilibrium points. If the orbits of (4.1) were bounded, we could apply the standard

Poincaré-Bendixson Theorem, but unfortunately this is not the case. Hence we recall

some results of Levi et al. [22] on the existence of running periodic orbits. The existence

of a running periodic orbit and its global stability can be summarized in the following

proposition. For this, we introduce two positive numbers L± as follows:

L+ := 2(Ω +Kr0), L− :=
Ω−Kr0

2
.

Proposition 4.3 ([22]). Suppose that Ω and K satisfy the relation

Ω > Kr0.

Then there exists a unique running periodic orbit P to the system (4.1)–(4.2) in the strip

R× [L−, L+], and it is globally asymptotically stable in the sense that all orbits will be

drawn to P as t → ∞.

Remark 4.2. As an immediate corollary of Proposition 4.3, for any point z0 =

(x0, y0) ∈ R
2,

ω(z0) = P,

and the invariant measure for the fast system (4.1) is supported on the inverse image of

a periodic orbit:

ν(dλ) =
1

T
dx−1(dλ),

where T is the period of the periodic orbit and x−1 denotes the inverse of x. For the

zero inertia case m = 0, the period T is explicitly computable.
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5. Limit dynamics of order parameters. In this section, we study the evolution

of the order parameters as an application of AKST’s theory to the fast-slow system (3.4).

Recall that the limit measure ν0 in Theorems 2.1 and 2.2 is an invariant measure of the

fast system which was characterized in the previous section.

First, we define

U := (θ, ω, r, φ) ∈ R
2M+2, F (U) := (ω, f(ω), 0, 0),

G(U) :=
(
0, · · · , 0, 0, · · · , 0,−

M∑
j=1

sin(θj − φ)ωj ,
1

r

M∑
j=1

cos(θj − φ)ωj

)
,

where f(ω) = (f1(ω), · · · , fM (ω)) is defined by

fi(ω) :=
1

m

(
− ωi +Ωi −Kr sin(θi − φ)

)
.

The system (3.4) can be written in a compact form:

dUε

dτ
=

F (Uε)

ε
+G(Uε). (5.1)

Recall that the assumption of (F2) in Section 2.2 requires that the unique solution of

dU (0)

dt
= F (U (0)), U (0)(0) = Uin, t :=

τ

ε
(5.2)

lies in a compact subset of R2M+2. In fact, it follows from Lemma 4.2 that

U (0) ∈ K.

The theory assumes (F1) − (F3), and the overall system (5.1) has unique solutions on

some finite interval, say 0 ≤ τ ≤ 1. This is certainly true for the initial data in H(δ):

H(δ) := {(θ, ω, r, φ) : θ ∈ R
M , ω ∈ R

M , 0 < δ ≤ r, φ ∈ R}.

The next step is to identify an orthogonal measurement V (U) for which

∇V (U) · F (U) = 0,

which is equivalent to

M∑
i=1

[∂V (U)

∂θi
ωi +

1

m

∂V (U)

∂ωi

(
− ωi +Ωi −Kr sin(θi − φ)

)]
= 0.

It is easy to see that V (U) = Ṽ (r, φ) will suffice as an orthogonal measurement. In

particular, we can select V from the projection map of the (2M + 1)-th component

or (2M + 2)-th component as our two measurements, which of course yield orthogonal

observables, i.e.,

V (U) = r, φ.

By Theorem 2.1, the solution of (5.1) with initial data (θ, ω, r, φ) ∈ H(δ), defined on

0 ≤ τ ≤ 1, will have a convergent subsequence Uεj (·) that converges to a Young measure

ν0(·) on [0, 1] in the sense of Young measures. The value of the limit Young measure is
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an invariant measure of the fast system (5.2). The oscillators of the fast system (5.2) are

decoupled, so the invariant measure ν0(τ ) is a product measure:

ν0(τ )(dλ) = ν1(τ )(dλ1, dλM+1)⊗ · · · ⊗ νM (τ )(dλM , dλ2M )

⊗ ν2M+1(τ )(dλ2M+1)⊗ ν2M+2(τ )(dλM+2),
(5.3)

where λ = (λ1, · · · , λ2M+2) and each νi(τ )(dλi, dλM+i), 1 ≤ i ≤ M , is itself an invariant

probability measure for the i-th oscillator equation of (3.4). Since dr
dτ = 0 and dφ

dτ = 0 in

the fast system,

ν2M+1(τ ) = δ(λ2M+1 − r(τ )), ν2M+2(τ ) = δ(λ2M+2 − φ(τ )).

Furthermore, by Theorem 2.2, we can use the orthogonal observables associated with

any measurement V that satisfy the integral equation

V̂ (ν0(τ )) = V (Uin) +

∫ τ

0

∫
R2M+2

∇V (λ) ·G(λ)ν0(s)(dλ)ds. (5.4)

For the choices V (U) = r, V (U) = φ, (5.4) yields the evolution of r and φ:

r(τ ) = r(0)

−
M∑
j=1

∫ τ

0

∫
R2M

sin(λj − φ(s))λM+j ν1(s)(dλ1, dλM+1)⊗ · · ·

⊗ νM (s)(dλM , dλ2M )ds,

φ(τ ) = φ(0)

+

M∑
j=1

∫ τ

0

∫
R2M

1

r(s)
cos(λj − φ(s))λM+j ν1(s)(dλ1, dλM+1)⊗ · · ·

⊗ νM (s)(dλM , dλ2M )ds.

Next, we substitute (5.3) into the equations above to obtain

r(τ ) = r(0)−
M∑
j=1

∫ τ

0

∫
R2

sin(λj − φ(s))λM+j νj(s)(dλj , dλM+j)ds,

φ(τ ) = φ(0) +

M∑
j=1

∫ τ

0

∫
R2

1

r(s)
cos(λj − φ(s))λM+j νj(s)(dλj , dλM+j)ds.

(5.5)

The system (5.5) produces what is usually known as an amplitude equation for r, al-

though it is actually the coupled system (5.5) that determines r.

• Supercritical regime (|Ωi| > Kr): In this case, there are no equilibrium solutions

to the system (1.1). Note that the solution θ̇(t) has only one sign after some time; i.e.,

there exists T ∗ such that either θ̇(t) ≥ 0 or θ̇(t) ≤ 0 for t ≥ T ∗ based on the argument

in (Step 2) of the proof of Lemma 4.2. We conclude with the slow evolution for r and φ

in the case of |Ωi| > Kr. In this case, the invariant measure is supported on the inverse

image of the periodic orbit:

νi(dλi, dλM+i) =
1

Ti
dθ−1

i (λi), where θ−1
i denotes the inverse of θi.
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Unlike the case with zero inertia, however, we have no explicit representation for the

period Ti. However, the explicit representation of Ti is not needed for the following

estimate:

I :=

∫
R2

sin(λi − φ)λM+iνi(s)(dλi, dλM+i)

=
1

Ti

∫
R

sin(λi − φ)λ̇i dθ
−1
i (λi), by λ̇i = λM+i

=
1

Ti

∫ Ti

0

sin(θi(si)− φ)θ̇i(si)dsi, by si := θ−1
i (λi)

=
1

Ti

∫ Ti

0

( d

dsi
cos(θi(si)− φ)

)
dsi

= 0, by the periodicity of θi.

(5.6)

Similarly, we have

J :=

∫
R2

cos(λi − φ)λM+iνi(s)(dλi, dλM+i) = 0.

• Subcritical and critical regimes (|Ωi| ≤ Kr): It follows from the results in Section 4

that the support of an invariant measure for the fast system is the union of the equilibria

and the running periodic orbit. The contribution of I and J with invariant measure, the

support of which is the running periodic orbit, will be zero based on the same calculation

as the supercritical case. However, we note that the invariant measure situated on the

stable equilibria has the form

νi(s)(dλi, dλM+i) = δ(λi − θein(s))⊗ δ(λM+i).

Thus if we insert the above ansatz into I and J and use the fact that∫
R

λM+iδ(λM+i)(dλM+i) = 0,

then we have

I = 0, J = 0.

Therefore, for any cases we have

r(s) = r(0), φ(s) = φ(0), 0 ≤ s ≤ 1.

Theorem 5.1. The limiting dynamics for the Kuramoto system (3.4) as ε → 0 is given

as follows:

r(τ ) = const, φ(τ ) = const, 0 ≤ τ ≤ 1.

Remark 5.1. 1. The results of Theorem 5.1 can be interpreted as follows. Since

t = τ
ε , if τ is bounded, then as ε → 0+, t → ∞. Theorem 5.1 shows that if we look at

our original unscaled system for the t-interval [0, 1
ε ] and map the graph of r(t), ϕ(t) onto

the fixed scaled τ -interval [0, 1], the graphs of r and φ will be constant. Specifically, the

order parameters r and φ are indeed constant as a function of τ in the limit as ε → 0.

2. The complete synchronization problem of Kuramoto oscillators with inertia was

studied in [9, 13], while the slow-fast dynamical systems theory for the flocking and

synchronization models without inertia were investigated in [15, 16].
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