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Abstract. Asymptotic behavior of viscoelastic Green’s functions near the wavefront

is expressed in terms of a causal function g(t) defined in Hanyga and Seredyńska (2012) in

connection with the Kramers-Kronig dispersion relations. Viscoelastic Green’s functions

exhibit a discontinuity at the wavefront if g(0) < ∞. Estimates of continuous and

discontinuous viscoelastic Green’s functions near the wavefront are obtained.

Notation.

Dnf(t) dn f(t)/dtn

f ∗ g Volterra convolution
∫ t

0
f(s) g(t− s) ds

L(f) = f̃ Laplace transform of f
∫ ∞
0

e−p t f(t) dt
]a, b] the set a < x ≤ b
Rz, Iz real and imaginary part of z
J(t), J ′(t) creep compliance, creep rate

1. Introduction. It is fair to say that seismology and particularly seismic inversion

theory is implicitly based on the assumptions that the medium supports discontinuity

waves. This assumption ensures that seismic signals travel with the wavefront speed

while retaining their shape except for scaling. However many published explicit models

of viscoelastic media such as the fractional Zener models [2, 22, 24, 31] used in, among

others, seismology, as well as the Cole-Davidson and Havriliak-Negami models [10, 17]

used for modelling mechanical response of polymers, all lack this property. All these

models are characterized by asymptotic power law behavior of the attenuation function

(i.e. the logarithmic attenuation per unit propagation distance expressed as a function

of circular frequency) in the high-frequency range, which entails continuity of the vis-

coelastic Green’s function and all its temporal and spatial derivatives at the wavefront.

A viscoelastic pulse in such a medium is preceded by a pedestal, i.e. a flat precursor
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that follows immediately after the wavefront [14, 29] and therefore travels at a slower

effective speed depending on the propagation time. (We ignore here the seismological

and acoustic models in which signals propagate at infinite speeds [3, 20, 28].). A seismic

signal travels with the wavefront if the wavefront of Green’s function supports a dis-

continuity of the stress–velocity field and lags behind the wavefront if Green’s function

exhibits the pedestal effect [14]. Relevance of the pedestal effect for seismic inversion was

demonstrated in [13] and for borehole velocity surveys in [30].

Seismological literature, however, knows two exceptional models which are consistent

with the assumptions made in seismology: the Jeffreys-Lomnitz creep and a creep model

due to Strick and Mainardi. In the Jeffreys-Lomnitz and Strick-Mainardi viscoelastic

media attenuation is bounded in the high-frequency range, and discontinuities are not

immediately smoothed out. The last-mentioned models are considered in some detail

in [12]. The results obtained in this paper apply to both kinds of viscoelastic media.

Besides we establish here a new criterion for existence of discontinuity waves.

In [16] and [10] a theory of attenuation and dispersion in general viscoelastic media

with completely monotone relaxation moduli (or, equivalently, with creep compliances

that are Bernstein functions) was developed. An application of this theory to the study

of the relation between the high-frequency asymptotics of the attenuation function and

the wavefront singularities of Green’s function of an acoustic equation was made in [11].

These results carry over to the viscoelastic equations of motion in one-dimensional space

without any modification. It was shown in [11] that Green’s functions with an unbounded

attenuation function do not exhibit wavefront discontinuities, while those with an atten-

uation function increasing faster than the logarithmic rate in the high-frequency range

exhibit the pedestal effect. If the attenuation function grows at the logarithmic rate in

the high-frequency range, then the regularity of the wavefront gradually increases with

time.

Related results have been obtained in earlier papers. Lokshin [21] proved that vis-

coelastic Green’s functions are infinitely differentiable at the wavefront if J ′(t)/| ln(t)| is
bounded or tends to infinity as t → 0. Desch and Grimmer obtained the same result

if the relaxation kernel has a logarithmic or stronger singularity [6]. The same authors

showed that in the gap between boundedness and logarithmic singularity more complex

regularity patterns are observed, such as stepwise regularization [7,11,18], which we shall

also demonstrate here.

In this paper we shall use a causal function underlying the Kramers-Kronig dispersion

relations [10,16] to study the behavior of viscoelastic Green’s functions near the wavefront

in more detail. In particular we shall derive a well-known criterion for existence of

shock waves in viscoelastic media. This criterion probably also applies to nonlinear

viscoelastic media under some assumptions on the nature of non-linearity [8,26]. The new

approach gives more detailed information about the wavefront asymptotics of Green’s

functions. For example, for discontinuous Green’s functions it provides information about

the magnitude of the wavefront jump discontinuity as well as about the behavior of

Green’s function immediately behind the wavefront.

In [10,16] a causal function g of physical dimension 1/L was introduced in such a way

that the attenuation function A(ω) is equal to the real part of (−iω) g̃(−iω), while the
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dispersion function D(ω) := ω (1/c(ω) − 1/c0) is given by the expression I[iω g̃(−iω)].

c(ω) denotes here the phase speed of a wavefield oscillating with the circular frequency ω.

Existence of the function g is thus linked to the validity of the Kramers-Kronig dispersion

relations.

We shall show here that the function −g(t − |x|/c0) |x| is an asymptotic phase func-

tion near the wavefront of viscoelastic Green’s functions, where c0 := supω c(ω) is the

wavefront speed and it is assumed that c0 < ∞. The theory is based on the assump-

tion that the relaxation modulus is locally integrable and completely monotonic (LICM).

This assumption is equivalent [15, 23] to the assumption that the creep compliance J(t)

is a Bernstein function [27]. This assumption is crucial for the existence of the function

g. The assumption that the wavefront speed c0 is finite is equivalent to the inequality

J0 := J(0) > 0. If limt→0 g(t) < ∞, then Green’s function has a jump discontinuity at

|x| = c0 t.

It will also be shown that under some additional assumptions valid for many explicit

models, viscoelastic Green’s function is bounded by C exp(−g(t − |x|/c0) |x|) for t >

|x|/c0, where C is some constant.

These results provide an estimate of Green’s function near the wavefront and answer

the question whether the medium supports propagation of discontinuities at the wave-

front. The methods developed in this paper and in [10] are applied in [12] to two examples

of viscoelastic media which support discontinuity waves.

2. Mathematical preliminaries. We shall consider the Initial-Value Problem (IVP)

ρ u,tt = ∇ · [G(t) ∗ ∇u,t] + δ(x) δ(t), t ≥ 0, x ∈ R (1)

u(0, x) = 0; u,t(0, x) = 0 (2)

for the particle velocity u in a hereditary viscoelastic medium. Duhamel’s principle holds

for equation (1); hence the above IVP is equivalent to the IVP

ρ u,tt = ∇ · [G(t) ∗ ∇u,t], t ≥ 0, x ∈ R (3)

u(0, x) = 0; u,t(0, x) = δ(x)/ρ. (4)

Since we are going to consider Green’s functions with jump discontinuities, the field

u(t, x) will be considered as the velocity field.

It is assumed that the relaxation modulus G(t) (defined for t > 0) is completely

monotonic; i.e. it has derivatives Dn G of arbitrary order, and these derivatives satisfy

the inequalities

(−1)nDn G(t) ≥ 0 on R for n = 0, 1, 2 . . . .

It is also assumed that G is locally integrable or, equivalently,∫ 1

0

G(s) ds < ∞.

In short, G is LICM. It follows [15] that the creep compliance J(t) (t ≥ 0), related to

the relaxation modulus G(t) by the equation∫ t

0

G(s) J(t− s) ds = t for t ≥ 0, (5)
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is a Bernstein function (BF); i.e. it is non-negative, differentiable and its derivative J ′

is LICM. Conversely, for a given BF J equation (5) has a unique solution G and G is

an LICM function [15]. We also recall that J(t) tends to a finite limit J0 as t → 0,

0 ≤ J0 < ∞ and J0 = 0 if and only if limt→0+ G(t) = ∞.

The solution of the IVP (1–2) is given by the formula

u(t, x) =
1

4πi

∫ i∞+ε

−i∞+ε

κ(p)

2ρ p2
ep t−κ(p) |x| dp (6)

where

κ(p) := ρ1/2 p
[
p J̃(p)

]1/2
(7)

and ε > 0.

In [10, 16] it was shown that κ(p) is a complete Bernstein function [19, 27], i.e.

κ(p) = p2 F̃ (p), (8)

where F is a Bernstein function. Consequently κ has an integral representation of the

form [10]

κ(p) =
p

c0
+ p

∫
]0,∞[

ν(dr)

p+ r
(9)

where ν is a positive Radon measure satisfying the inequality∫
]0,∞[

ν(dr)

1 + r
< ∞ (10)

and c0 is a constant satisfying the inequalities 0 < c0 ≤ ∞, defined by the formula

1/c0 := ρ1/2 lim
p→∞

[
p J̃(p)

]1/2
= [ρ J0]

1/2. (11)

The physical dimension of κ(p) and ν(dr) is 1/L.

If J0 > 0, then the constant c0 is finite and it defines the wavefronts |x| = c0 t such

that u(t, x) = 0 for t > |x|/c0; otherwise c0 = ∞ and the solution u(t, x) does not vanish

anywhere in the space-time. The wavefront speed c0 has the dimension L/T [10]. In this

paper we shall be interested in the case of c0 < ∞.

Recall that every LICM function ϕ has the integral representation

ϕ(t) = a+

∫
]0,∞[

e−r t ν(dr) (12)

where ν is a positive Radon measure satisfying the inequality (10) [9]. Define the function

g by the formula

g(t) =

∫
]0,∞[

e−r t ν(dr) (13)

where the Radon measure ν is defined by equation (9). We then have an important

formula

κ(p) = p/c0 + p g̃(p). (14)

By Bernstein’s Theorem and (10) the function g is LICM and limt→∞ g(t) = 0. The

dimension of g(t) is 1/L. The function g(t) assumes a finite value at 0 if ν has a finite

mass. Note that any function κ given by equation (14), where g is an LICM function,
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is a complete Bernstein function. Indeed, equation (8) holds for the Bernstein function

F (t) = 1/c0 +
∫ t

0
g(s) ds.

The Radon measure ν can be calculated using equation (9). If ν(dr) = h(r) dr, then

h(r) =
1

π
I [κ(p)/p]p=r exp(−iπ) (15)

[10, 16] or, using equation (7),

h(r) =
ρ1/2

π
I

{[
p J̃(p)

]1/2}
. (16)

Note that κ(p) = p/c0 + p2 F̃ (p), where F (t) =
∫ t

0
g(s) ds (t ≥ 0). Since g ∈

L1
loc([0,∞[), the function F (t) is continuous on [0,∞[ and F (0) = 0. The function

F (t) can therefore be extended to a continuous causal function Φ(t) on R, and therefore

it is a causal distribution. The distributional derivative φ of Φ is a causal distribu-

tion which coincides with the function g(t) on ]0,∞[. The analytic continuation of κ

to the imaginary axis is the Fourier transform of a causal distribution D2 Ψ(t) where

Ψ(t) := θ(t)/c0 +Φ(t); hence the real part A(ω) := Rκ(−iω) of κ(−iω) (the attenuation

function) and its imaginary part Iκ(−iω) =: −D(ω) (D is the dispersion function) are

related by the Kramers-Kronig dispersion relations [16].

In this paper the function g(t) will be used to obtain asymptotic estimates and bounds

for the solution u(t, x) of the IVP (1)–(2). It will also be seen that u(t, x) has a discon-

tinuity at the wavefront if and only if g(0+) := limt→0+ g(t) is finite. The function g is

bounded at 0 if the attenuation-dispersion measure ν has finite mass; in this case g(0+)

is equal to the total mass of ν. This condition will turn out to be equivalent also to the

inequality J ′(0) < ∞. The amplitude of the discontinuity will be expressed in terms of

g(0+) and also by limt→0+ J ′(t).

The function g(t) will also be applied to derive an upper bound for the solution near

the wavefront when g(0+) = ∞ and the solution u(t, x) is continuous at the wavefront

for t > 0.

3. Asymptotic behavior of Green’s function near the wavefront. In this sec-

tion an asymptotic estimate of Green’s function near the wavefront will be derived.

Theorem 3.1. The function x f(x) on R+ is CM if and only if there is a non-negative

right-continuous non-decreasing real function g vanishing on ]−∞, 0[ such that f = g̃.

Proof. If f = g̃, then

x f(x) = −
∫ ∞

0

∂e−xy

∂y
g(y) dy = g(0+) +

∫ ∞

0

e−xy dg(y).

Define the Radon measure μ by the formula μ(]0, y]) = g(y)− g(0+). The measure μ is

positive; hence the Bernstein Theorem implies that x f(x) is CM.

If x f(x) is CM, then, by the Bernstein Theorem, there is a positive Radon measure

μ on R+ such that

x f(x) = μ({0}) +
∫
]0,∞[

e−xy μ(dy).



684 ANDRZEJ HANYGA

If g(y) = 0 for y < 0, g(0+) = μ({0}) and g(y) = μ(]0, y]) for y > 0, then g(y) ≥ 0, g is

non-decreasing and x f(x) = g(0+) +
∫
]0,∞[

e−xy dg(y) = x
∫ ∞
0

e−xy g(y) dy. �

Lemma 3.2. If (−1)n f (n)(x) ≥ 0 for n = 1, 2, . . ., then

(−1)n
dn

dxn
ef(x) ≥ 0 for n = 0, 1, 2, . . . .

Proof. The thesis is obviously true for n = 0 and for n = 1: d ef(x)/dx = f ′(x) ef(x) ≤
0.

We now assume that for a fixed n ≥ 1 the identity dnef(x)/dxn = Pn(x) e
f(x) holds,

where Pn(x) is a polynomial in the derivatives of f with positive coefficients such that

the sum of the orders of all the derivatives in a monomial of Pn is n. The assumption

is certainly true for n = 1. From this assumption it follows that dn+1ef(x)/dxn+1 =

Pn+1(x) e
f(x), where Pn+1(x) := P ′

n(x) + f ′(x)Pn(x). The function Pn+1 is a sum of

products of derivatives of f whose orders sum up to n+ 1 with positive coefficients. We

have thus proved that our assumption is true for all integers n ≥ 1. But the hypothesis

of the lemma implies that (−1)n Pn(x) ≥ 0, which proves the lemma. �

Lemma 3.3. If ϕ : R+ → R is differentiable, non-negative and non-increasing,

limt→0+[t ϕ(t)] → 0 and the Laplace transform ϕ̃(p) of ϕ exists for p > 0, then

exp (−p ϕ̃(p)) /p is the Laplace function of a non-negative non-decreasing function H :

R+ → R.

Proof. We shall first prove that (−1)n dn [p ϕ̃(p)] /dpn ≤ 0 for n = 1, 2, . . . . We begin

with n = 1. Let ε > 0. Then

d

dp

[
p

∫ ∞

ε

ϕ(t) e−pt dt

]
= − d

dp

[∫ ∞

ε

ϕ(t) de−pt

]

=
d

dp

∫ ∞

ε

ϕ′(t) e−pt dt− d

dp

[
ϕ(t) e−pt

]∞
t=ε

= −
∫
ε

t ϕ′(t) e−pt dt+ εϕ(ε).

Hence
d

dp
[p ϕ̃(p)] = −

∫ ∞

0

t ϕ′(t) e−pt dt. (17)

In particular we have also proved that t ϕ′(t) is locally integrable on [0,∞[.

For arbitrary n ≥ 1 we note that

dn

dpn
[p ϕ̃(p)] = − dn−1

dpn−1

∫ ∞

0

t ϕ′(t) e−pt dt = (−1)n
∫ ∞

0

tn ϕ′(t) e−pt dt.

But ϕ′(t) ≤ 0 almost everywhere, hence

(−1)n
dn

dpn
[p ϕ̃(p)] ≤ 0, n = 1, 2, . . . . (18)

Lemma 3.2 implies that

(−1)n
dn

dpn
e−p ϕ̃(p) ≥ 0 for n = 0, 1, 2, . . . .
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Theorem 3.1 now implies that

e−p ϕ̃(p)/p =

∫ ∞

0

e−pt H(t) dt (19)

where the function H is non-negative and non-decreasing. �

Corollary 3.4. If ϕ(0+) = limt→0+ ϕ(t) exists, then

lim
p→∞

e−p ϕ̃(p) = exp

(
− lim

p→∞
[p ϕ̃(p)]

)
= e−ϕ(0+),

and the limit H(0+) exists and equals e−ϕ(0+).

Similarly, if the limit ϕ∞ = limt→∞ ϕ(t) exists, then limt→∞ H(t) = e−ϕ∞ .

Lemma 3.5. If the function ϕ ∈ L1
loc(R+) is non-negative, non-increasing and convex,

and limt→0+ [t ϕ′(t)] = 0, then limp→∞ [p ϕ̃(p)− ϕ(1/p)] = 0.

Proof. The Laplace transform ϕ̃ of ϕ is defined and

p ϕ̃(p)− ϕ(1/p) = p

∫ ∞

0

ϕ(t) e−pt dt− ϕ(1/p)

=

∫ ∞

0

[ϕ(t/p)− ϕ(1/p)] e−t dt = I1 + I2.

We begin with an estimate of I1 =
∫ 1

0
[ϕ(t/p)− ϕ(1/p)] e−t dt. The function ϕ is

non-decreasing and t ≤ 1, the integrand is non-negative, hence I1 ≥ 0. On the other

hand,

I1 ≤
∫ 1

0

[ϕ(t/p)− ϕ(1/p)] dt = p

∫ 1/p

0

ϕ(q) dq − ϕ(1/p) = −p

∫ 1/p

0

q ϕ′(q) dq

= −p

∫ 1/p

0

q ϕ′(q) dq + [p q ϕ(q)]q=1/p
q=0 − ϕ(1/p) = −p

∫ 1/p

0

q ϕ′(q) dq.

By Rolle’s Theorem there is a q1 ∈ [0, 1/p] such that

I1 ≤ −q1 ϕ
′(q1).

If p → ∞, then q1 → 0 and, by assumption, q1 ϕ
′(q1) → 0. Consequently I1 → 0 as

p → ∞.

We now turn to I2 :=
∫ ∞
1

[ϕ(t/p)− ϕ(1/p)] dt. For t > 1 we have 0 ≤ ϕ(1/p) −
ϕ(t/p) =

∫ t/p

1/p
|ϕ′(q)| dq. Convexity of ϕ implies that |ϕ′(q)| is non-increasing, hence

0 ≤ ϕ(1/p)− ϕ(t/p) ≤ (t/p) |ϕ′(1/p)|. Hence

0 ≤ −I2 ≤ 1

p
|ϕ′(1/p)|

∫ ∞

1

t e−t dt.

On account of our assumptions the first factor on the right-hand side tends to 0 as

p → ∞. Hence I2 → 0 as p → ∞, which proves the thesis. �

Lemma 3.6. Let 0 < λ ≤ 1. If ϕ is non-negative, differentiable, non-increasing and

convex and tϕ′(t) → 0 for t → 0, then 0 ≤ ϕ(λ/p)− ϕ(1/p) → 0 as p → ∞.
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Proof.

0 ≤ ϕ(λ/p)− ϕ(1/p) =

∫ 1/p

λ/p

|ϕ′(q)| dq ≤ 1− λ

p
|ϕ′(λ/p)|

≤ 1

p
|ϕ′(λ/p)| = 1

λ

λ

p
|ϕ′(λ/p)| → 0

in view of the last hypothesis. �
We are now ready to investigate the asymptotic behavior of the function H(t, r) at

t = 0.

Theorem 3.7.

H(t, r) ∼t→0 e−g(t) r, t > 0. (20)

Proof. The Laplace transform of H(t, r) is exp(−p ϕ̃(p))/p, where ϕ(t) = g(t) r. We

now consider the limit at t → 0 of the ratio

R := exp (−(p/λ) ϕ̃(p/λ)) / exp (−p ϕ̃(p)) ,

where λ > 0 is arbitrary. Lemma 3.6 implies that the limit of R at p = ∞ will not change

if we divide it by e−ϕ(λ/p)+ϕ(1/p). Hence

lim
p→∞

R = lim
p→∞

exp (−p/λ ϕ̃(p/λ) + ϕ(λ/p))× lim
p→∞

exp (p ϕ̃(p)− ϕ(1/p)) .

Lemma 3.5 implies that both limits on the right-hand side are equal to 1, hence

limp→∞ R = 1 for all λ > 0. Consequently the function l(p) := exp (−p ϕ̃(p)) is slowly

varying at infinity.

But H̃(p, r) = l(p)/p and by the Karamata Tauberian theorem (Appendix) H(t, r) ∼0

l(1/t) ≡ e−ϕ̃(1/t)/t. By Lemma 3.5 H(t, r) ∼0 e−ϕ(t) ≡ e−g(t) r. �
It remains to link the estimates of H(t, r) to Green’s function.

Theorem 3.8. Let

f(t) =

∫ t

0

g(s) ds.

Then

u(t, x) =
1

2ρ
[H(t− |x|/c0) + f(t) ∗H(t− |x|/c0)] (21)

and

u(t, x) =
1

2ρ
H(t− |x|/c0) [1 + O[t− |x|/c0]. (22)

Proof. The function f is well-defined because g ∈ L1
loc([0,∞[) and f(t) ≥ 0, f(0) = 0.

It follows from equations (6) and (14) that

ũ(p, x) =
κ(p)

2ρ p2
e−p |x|/c0 e−p g̃(p) |x|.

But κ(p) ∼∞ p/c0 and
κ(p)

p2
− 1

p c0
=

g̃(p)

p
.

This proves equation (21).
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The function H(·, r) is non-decreasing, hence

f(t) ∗H(t− r/c0) =

∫ t−r/c0

0

f(s)H(t− s− r/c0) ds ≤ H(t− r/c0)

∫ t−r/c0

0

f(s) ds.

The integral on the right-hand side is O[(t− r/c0)]. This ends the proof. �
For |t−r/c0| ≤ C1 the second term in the brackets is bounded from above by a number

C2; hence |u(t, x)| ≤ C H(t− |x|/c0) for some constant C > 0. The last equation can be

used to determine upper bounds on Green’s function near the wavefront.

The function g(t− r/c0) r is a local phase of Green’s function near its wavefront.

4. Upper bound for Green’s function near a wavefront in media with un-

bounded g(t). We recall that Green’s functions of media with unbounded g(t) do not

have discontinuities.

Lemma 4.1. If the function ϕ(t) is non-increasing and differentiable, limt→0[t ϕ(t)] = 0,

ϕ(t) ≥ A for some real constant A, and the function −t ϕ′(t) is non-increasing, then the

inverse Laplace transform of exp(−p ϕ̃(p))/p is bounded from above by exp(−ϕ(t)).

Proof. Let f(t) denote the inverse Laplace transform of exp (−p ϕ̃(p)). Then

exp (−p ϕ̃(p)) /p is the Laplace transform of F (t) :=
∫ t

0
f(s) ds. The limit limt→∞ F (t)

=
∫ ∞
0

f(s) ds is finite:

lim
t→∞

F (t) = lim
p→0

e−pϕ̃(p) = exp

(
− lim

p→0
[pϕ̃(p)]

)
= exp

(
− lim

t→∞
ϕ(t)

)
≤ e−A < ∞. (23)

We now note the identity

t f(t) = −
∫ t

0

s ϕ(s) f(t− s) ds. (24)

Indeed, the Laplace transform of the left-hand side is∫ ∞

0

t f(t) e−p t dt = −df̃(p)

dp
=

[
p
dϕ̃(p)

dp
+ ϕ̃(p)

]
f̃(p), (25)

while the Laplace transform of the right-hand side is

−(t ϕ′(t))∼ f̃(p) = −
{
[(t ϕ(t))′]

∼ − ϕ̃(p)
}
f̃(p) = f̃(p) [p dϕ̃(p)/dp+ ϕ(p)] ;

hence the two are equal. Equation (24) follows from the uniqueness theorems for the

Laplace transform.

The assumption that −t ϕ′(t) is non-increasing implies that t f(t) ≥ −t ϕ(t)
∫ t

0
f(s) ds,

hence

−ϕ′(t) ≤ d

dt
ln(F (t)).

Integration of this inequality over [t,∞[ yields the inequality ϕ(t) ≤ − ln(F (t)) on account

of equation (23), hence F (t) ≤ e−ϕ(t). �
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Theorem 4.2. Let the function g defined by equation (13) be such that −t g′(t) is non-

increasing. For t− |x|/c0 < ε there is a constant C such that

u(t, x) ≤ C exp(−g(t− |x|/c0) |x|). (26)

Proof. The function g defined by equation (13) is LICM; hence it is non-increasing

and −t g′(t) ≥ 0. It therefore has a limit at 0 which is either finite or ∞.

By Theorem 3.8 for 0 ≤ t− |x|/c0 ≤ C1, where C1 is some constant,

u(t, x) ≤ C H(t− |x|/c0, |x|)
where H(t, r) is the inverse Laplace transform of exp (−p g̃(p) r) /p. By Lemma 4.1

H(t− r/c0, r) ≤ exp(−r g(t− r/c0)). �
Examples.

(1) If κ(p) − p/c0 ≡ p g̃(p) = a pα, where 0 < α < 1 and a > 0, then g(t) = a t−α/

Γ(1 − α) is LICM and the function −t g′(t) is non-increasing. Hence equation (26)

holds. Consequently u(p, x) ≤ C exp (−a (t− |x|/c0)−α).

(2) g(t) := b ln(1/(a t) +A), where a, b > 0 have the dimensions 1/T and 1/L, A ≥ 1, is

LICM because

ln(1/(a t) +A) = ln(A) +

∫ ∞

0

1− e−r

r
e−r t/(aA) dr (27)

and the second term is the Laplace transform of a positive function satisfying equa-

tion (10). The identity (27) can be checked by differentiating both sides with respect

to t and working out the resulting integral on the right-hand side. Consequently

κ(p) = p/c0 + p g̃(p), where c0 > 0, is a complete Bernstein function. The function

−tg′(t) is non-increasing. Hence equation (26) holds and

H(t, r) ≤ (1/(a t) +A)−b r.

Note that the wavefront singularity decreases stepwise by the formula H(t − r/c0)

∼t→(r/c0)+ C1 (t− r/c0)
r b.

(3) The LICM functions (t+1)−1 and e−t do not satisfy the hypotheses of Theorem 4.2.

Remark 4.3. If κ(p) − p/c0 is regularly varying with index α ∈]0, 1[ at infinity, i.e.

κ(p)− p/c0 ≡ p g̃(p) ∼∞ pα l(p), where the function l is slowly varying at infinity, then

by the Karamata Tauberian theorem (Appendix) g(t) ∼0 l(1/t) t−α/Γ(1− α). g is non-

increasing, but the hypothesis that −t g′(t) is non-increasing need not be satisfied. The

function g(t) = B ln(1/(at)+A) t−α/Γ(1−α) is however LICM (because it is a product

of two CM functions) and satisfies the conditions of Theorem 4.2. Consequently

|u(t, x)| ≤ [1/[a (t− |x|/c0)] + A]−B |x| (t−|x|/c0)−α

.

5. Relations between the function g and the creep rate function. We shall

show that the value of g(0+) or the singularity of the function g at 0 are to some extent

determined by the value of the creep rate function at 0 or its singularity at 0. We shall

thus relate the wavefront jump discontinuity or regularity of Green’s function at the

wavefront to the asymptotics of creep rate at t = 0.

If g(0+) < ∞, then Corollary 3.4 implies that limt→0+ H(t, r) = limp→∞ e−p g̃(p) r =

exp(−g(0+) r). Consequently limt→(r/c0)+H(t − r/c0, r) = exp(−g(0+) r) and
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limt→(r/c0)− H(t − r/c0, r) = 0. Thus the wavefront carries a discontinuity of Green’s

function. The wavefront discontinuity can be expressed in terms of J ′(0+).

Theorem 5.1. If J ′ has a finite limit at 0, then the function g also has a finite limit at

0 and

g(0+) = ρ c0 J
′(0+)/2. (28)

Furthermore

g(t) ≤ ρ c0 J
′(t)/2. (29)

Proof. Since κ(p) = p/c0+p g̃(p) and κ(p) = ρ1/2p
[
p J̃(p)

]1/2
= ρ1/2p

[
J0 + J̃ ′(p)

]1/2
,

using the formula c0 = 1/(ρ J0)
1/2,

2

c0
p g̃(p) + p [g̃(p)]

2
= ρ p J̃ ′(p). (30)

Since J ′(0+) = limp→∞

[
p J̃ ′(p)

]
is finite and p [g̃(p)]

2 ≥ 0, the function p g̃(p) is bounded

from above. It follows from the proof of Lemma 3.3 that this function is non-decreasing;

hence it tends to a limit A as p → ∞. Hence the second term on the left-hand side of

equation (30) tends asymptotically to A2/p for large p, and therefore it tends to zero

as p tends to infinity. Consequently A = ρ c0 J
′(0)/2, which proves the first part of the

thesis.

For the second part, we note that g̃(p) is the Laplace transform of a non-negative

function; hence Theorem 3.1 implies that p g̃(p) is a CM function. The second term on

the left-hand side of equation (30) is the product of three CM functions (p−1 and twice

p G̃(p)); hence it is CM. Equation (28) implies that

ρ c0
2

p J̃ ′(p)− p g̃(p) ≡
∫ ∞

0

d

dt

[ρ c0
2

J ′(t)− g(t)
]
e−p t dt.

By Bernstein’s theorem (Appendix) the above expression is the Laplace transform of a

positive Radon measure μ. By the uniqueness of the Laplace transform,

μ(dt) =
d

dt

[ρ c0
2

J ′(t)− g(t)
]
dt,

and therefore
d

dt

[ρ c0
2

J ′(t)− g(t)
]
dt ≥ 0.

The last inequality and equation (28) imply inequality (29). �
Equation (28) can also be expressed in the form

g(0+) = J ′(0+)/(2J0 c0). (31)

It follows from equation (5) that J0 G0 = 1 and J ′(0+)G0 + G′(0+) J0 = 0, where

G0 = limt→0 G(t) < ∞ in view of our assumption that J0 > 0. The above identities

imply a third expression for g(0+):

g(0+) = −G′(0+)/(2 ρ c 3
0 ), (32)

which is consistent with Chu’s amplitude equation for a shock wave [5]. Under our

assumptions g(0+) = J ′(0+) = ∞ if and only if G′(0+) = −∞. The latter inequality

was given as a criterion for non-existence of shocks by Prüss in [25].
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Equation (29) implies that the singularity of g at 0 is not stronger than the singularity

of the creep rate J ′.

Equations (21), (20) and (31) imply that the jump discontinuity at the wavefront is

given by the expression (2ρ)−1 exp(−J ′(0+) r/(2J0 c0)), which is a well-known result [4].

6. Conclusions. The causal function g(t) introduced in [10, 16] in the context of

Kramers-Kronig relations has now been used to study the wavefront asymptotics of

Green’s functions. The function g is majorized by the creep rate function J ′ multiplied

by the factor ρ c0/2, and its value at 0 can be expressed in terms of J ′(0). Consequently

discontinuities are expected at the wavefront if and only if J ′(0) < ∞. Use of g allows

for more detailed estimates than would be possible with constitutive parameters only.

Non-linearity can generate shock waves in elastic media through gradient catastrophe.

Our analysis of wavefront singularities suggests that this process might be impeded by an

unbounded viscoelastic attenuation. So far little has been done to clarify the competition

between non-linearity and various kinds of viscoelastic dissipation.

Appendix A. Recapitulation of necessary mathematical concepts. An infin-

itely differentiable function g : ]0,∞[→ R is completely monotonic (CM) if (−1)nDng(t) ≥
0 for t > 0 and n ∈ Z+ ∪ {0}. By the Leibniz formula the product f(t) g(t) of two CM

functions f and g is CM.

The CM function g can have a singularity at 0, but it is integrable on any finite

interval not including 0. The function g is therefore locally integrable if and only if∫ 1

0
g(t) dt < ∞. In view of non-negativity, monotonicity and continuity g always has a

limit g∞ ≥ 0 at ∞.

Bernstein’s Theorem [27] asserts that g is a completely monotonic function if and

only if g is the Laplace transform of a positive Radon measure (essentially a locally finite

measure) ν such that

g(t) =

∫
[0,∞[

e−r tν(dr).

g has a finite limit at 0 if ν has finite mass and then limt→0 g(t) = g(0+) = ν([0,∞[). g

is locally integrable if and only if ν satisfies the inequality (10) [9].

A non-negative function f on ]0,∞[ is called a Bernstein function if it is differentiable

and its derivative is completely monotonic. Monotonicity and continuity of f imply that

it has a finite non-negative limit at 0.

A function h on ]0,∞[ is said to be a complete Bernstein function if it has the form

h(p) = p2 F̃ (p), where F is a Bernstein function. The function h is a complete Bernstein

function if and only if it has the integral representation

h(p) = a+ b p+ p

∫
]0,∞[

ν(dr)

p+ r

where a and b are non-negative constants and ν is a positive Radon measure satisfying

inequality (10) [27].

A measurable real function f on [0,∞[ is said to be regularly varying with index γ ∈ R

at a = 0 or ∞ if limt→a f(λ t)/f(t) = λγ for λ > 0 [1]. The function f is said to be slowly
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varying at a if it is regularly varying with index 0 at a. A general function f regularly

varying with index γ at a has the form f(t) = tα l(t), where l(t) is slowly varying at a.

We recall the Karamata Tauberian theorem ([1], a corollary of Theorems 1.7.1 and

1.7.2):

Theorem A.1. If f ∈ L1
loc([0,∞[) is non-negative and monotone for t > T , where T

is a positive number, α ≥ 0 and the function l(t) is slowly varying at infinity, then

f(t) ∼∞ tα−1 l(t) is equivalent to f̃(p) ∼0 p−α l(1/p).

References

[1] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics
and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR898871 (88i:26004)

[2] M. Caputo and F. Mainardi, New dissipation model based on memory mechanism, Pure Applied
Geophysics 91 (1976), 134–147. MR2382783

[3] J. M. Carcione, F. Cavallini, F. Mainardi, and A. Hanyga, Time-domain seismic modeling of
constant-Q wave propagation using fractional derivatives, Pure Appl. Geophys. 159 (2002), 1714–
1736.

[4] R. M. Christensen, Theory of viscoelasticity: An introduction, Academic Press, New York, 1971.
[5] Boa-Teh Chu, Stress waves in isotropic linear viscoelastic materials. I, J. Mécanique 1 (1962),
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plications, de Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2010.
MR2598208 (2011d:60060)

[28] Peter Straka, Mark M. Meerschaert, Robert J. McGough, and Yuzhen Zhou, Fractional wave equa-
tions with attenuation, Fract. Calc. Appl. Anal. 16 (2013), no. 1, 262–272, DOI 10.2478/s13540-
013-0016-9. MR3016653

[29] E. Strick, A predicted pedestal effect for a pulse propagating in constant Q solids, Geophysics 35
(1970), 387–403.

[30] E. Strick, An explanation of observed time discrepancies between continuous and conventional well
velocity surveys, Geophysics 36 (1971), 285–295.

[31] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real
materials, J. Appl. Mechanics 51 (1983), 294–298.

http://www.ams.org/mathscinet-getitem?mr=676810
http://www.ams.org/mathscinet-getitem?mr=676810
http://www.ams.org/mathscinet-getitem?mr=2676137
http://www.ams.org/mathscinet-getitem?mr=2676137
http://www.ams.org/mathscinet-getitem?mr=0368558
http://www.ams.org/mathscinet-getitem?mr=0368558
http://www.ams.org/mathscinet-getitem?mr=3016640
http://www.ams.org/mathscinet-getitem?mr=0919509
http://www.ams.org/mathscinet-getitem?mr=0919738
http://www.ams.org/mathscinet-getitem?mr=0919738
http://www.ams.org/mathscinet-getitem?mr=2598208
http://www.ams.org/mathscinet-getitem?mr=2598208
http://www.ams.org/mathscinet-getitem?mr=3016653

	Notation
	1. Introduction
	2. Mathematical preliminaries
	3. Asymptotic behavior of Green’s function near the wavefront
	4. Upper bound for Green’s function near a wavefront in media with unbounded 𝑔(𝑡)
	5. Relations between the function 𝑔 and the creep rate function
	6. Conclusions
	Appendix A. Recapitulation of necessary mathematical concepts
	References

