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Abstract.We investigate the existence and uniqueness of bounded solutions to a non-

linear integral equation which models the ocean flow in arctic gyres.

1. Introduction. The modelling of ocean flows is constrained by the specific lo-

cation where it occurs, with fundamental differences between equatorial ocean flows,

mid-latitude ocean flows and flows in polar regions (see the discussion in [8], [9], [11],

[12], [13], [16]). Moreover, the major topographical differences between the two poles

makes the behaviour of the ocean flows in polar regions very different (see the discussion

in [5], [10]). The ocean flow in arctic regions plays an important role for the global

climate and studies of its aspects are found throughout the recent scientific literature.

In this paper we will investigate a recent model for arctic gyres – very large ocean flows

with a predominantly horizontal motion, which rotate slowly due mainly to the Cori-

olis effect, which occurs because of the Earth’s rotation around its polar axis (see the

discussion in [4], [11]). For a given continuous vorticity, we establish the existence of

solutions using a fixed point approach. The obtained result does not require a Lipschitz-

type condition (being thus of a wider applicability than the recent result obtained in

[5]). On the other hand, by means of an example we show that mere continuity does not

ensure the uniqueness of solutions. However, we prove that an Osgood-type condition

on the vorticity function guarantees uniqueness. In particular, we are therefore able to

ensure the existence and uniqueness of physically realistic solutions outside the class of

Lipschitz-continuous vorticity functions.

2. Preliminaries. Let us briefly present the model for arctic gyres, discussed in more

detail in the papers [4], [5], [11]. Using the stereographical projection from the South

Pole to the plane of the Equator, the flow of an arctic gyre near the North Pole, which
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presents negliglible azimuthal variations (so that the flow is only dependent on the polar

angle) is modelled by the second-order ordinary differential equation

u′′(t) =
F (u(t))

cosh2(t)
− 2ω sinh(t)

cosh3(t)
, t > t0 , (2.1)

and physically relevant solutions should satisfy the asymptotic conditions

lim
t→∞

{u(t)} = ψ0 and lim
t→∞

{u′(t) cosh(t)} = 0 , (2.2)

for some constant ψ0, which is the value of the stream function u at the North Pole.

The second asymptotic condition in (2.2) expresses the fact that the flow is stagnant

at the North Pole, which is the gyre’s center. In (2.1) the function F is given and

specifies the total vorticity of the flow (spin vorticity, due to the Earth’s rotation, plus

oceanic vorticity), ω > 0 is the nondimensional form of the Coriolis parameter, while

t = − ln cot(θ/2) is the relation between the independent variable and the polar angle

θ ∈ [0, π/2) for the Earth’s spherical coordinate system (with θ = 0 corresponding to the

North Pole). The gyre flow modelled by (2.1)-(2.2) has a vanishing azmiuthal velocity

component, with the polar azimuthal velocity given by cosh(t) u′(t), with the arctic ocean

region corresponding to values t0 ≥ 2.

One can easily show (see [5]) that the problem (2.1)-(2.2) is equivalent to the integral

equation

u(t) = [ψ0 − ω] + ω tanh(t) +

∫ ∞

t

(s− t)
F (u(s))

cosh2(s)
ds , t ≥ t0. (2.3)

Note that if u(t) is a solution to (2.1) satisfying (2.2), then

−u′(t) = − ω

cosh2(t)
+

∫ ∞

t

F (u(s))

cosh2(s)
ds , t ≥ t0.

The integral equation (2.3) is a convenient way to simplify (2.1) and (2.2). In this context,

let us recall the following useful facts, which have been used in [4] and [5], but which we

state and prove here for completion.

Lemma 2.1. The following equality and inequality hold:∫ ∞

t

(s− t)
1

cosh2 s
ds = ln(1 + e−2t), t ∈ R,

∫ ∞

t

(s− t)
1

cosh2 s
ds ≤ 1

cosh t
, t ≥ 0. (2.4)

Proof. First, by direct computations, we have∫ ∞

t

s− t

cosh2(s)
ds =

∫ ∞

t

∫ ∞

s

1

cosh2(τ )
dτ ds

=

∫ ∞

t

[1− tanh(s)] ds

=

∫ ∞

t

2e−2s

1 + e−2s
ds = ln(1 + e−2t) .
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On the other hand, using the fact sinh s ≥ s for all s ≥ 0, we obtain

∫ ∞

t

(s− t)
1

cosh2 s
ds ≤

∫ ∞

t

s

cosh2 s
ds ≤

∫ ∞

t

sinh s

cosh2 s
ds =

1

cosh t
.

�

3. Main results. We now prove an existence result for the solution to the integral

equation (2.3) with a nonlinear vorticity function F .

Theorem 3.1. Assume that F : R → R is continuous, and there exists a nondecreasing

continuous function g : [0,∞) → [0,∞) such that

|F (u)| ≤ g(|u|), u ∈ R. (3.1)

Then for every ψ0 ∈ R, there exists some T0 ≥ t0 such that the equation (2.3) has at

least one bounded continuous solution u : [T0,∞) → R satisfying lim
t→∞

u(t) = ψ0.

Proof. Let us choose T0 ≥ t0 large enough such that

g(|ψ0|+ ω + 1)

coshT0
≤ 1.

Define the set

X =
{
u ∈ C([T0,∞),R) : lim

t→∞
u(t) = ψ0

}
.

Then X is a Banach space endowed with the supremum norm ‖u‖ = sup
t≥T0

{|u(t)|}. Set

Ω =
{
u ∈ X : ψ0 − ω − 1 ≤ u(t) ≤ |ψ0|+ ω + 1

}
.

Define the operator F : Ω → X as

[F(u)](t) = [ψ0 − ω] + ω tanh(t) +

∫ ∞

t

(s− t)
F (u(s))

cosh2(s)
ds, t ≥ T0 . (3.2)

Note that the inequality

∣∣∣
∫ ∞

t

(s− t)
F (u(s))

cosh2(s)
ds
∣∣∣ ≤

∫ ∞

t

s |F (u(s))|
cosh2(s)

ds, t ≥ T0 ,

confirms that F : Ω → X. Moreover, for any u ∈ Ω, we have lim
t→∞

[F(u)](t) = ψ0 since

lim
t→∞

∫ ∞

t

s|F (u(s))|
cosh2(s)

ds = 0.

We shall apply the Schauder fixed point theorem (see [17] and some applications for

differential equations in [2], [3], [6]) to prove that there exists a fixed point for the

operator F in the nonempty closed bounded convex set Ω. It is divided into three steps.
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Step 1. We show that F(Ω) ⊂ Ω.

It follows from the condition (3.1), the monotonicity property of g and the inequality

(2.4) that, for each u ∈ Ω and t ≥ T0,

∣∣∣[F(u)](t)− (ψ0 − ω)− ω tanh t
∣∣∣ =

∣∣∣
∫ ∞

t

(s− t)
F (u(s))

cosh2(s)
ds
∣∣∣

≤
∫ ∞

t

(s− t)
|F (u(s))|
cosh2(s)

ds

≤
∫ ∞

t

(s− t)
g(|u(s)|)
cosh2(s)

ds

≤ g(|ψ0|+ ω + 1)

∫ ∞

t

s

cosh2(s)
ds

≤ g(|ψ0|+ ω + 1)
1

coshT0

≤ 1,

in which Lemma 2.1 is used. Therefore, for t ≥ T0,

[F(u)](t) ≤ (ψ0 − ω) + ω tanh t+ 1 ≤ |ψ0|+ ω + 1,

and

[F(u)](t) ≥ (ψ0 − ω) + ω tanh t− 1 ≥ ψ0 − ω − 1.

Thus F : Ω → Ω is well-defined.

Step 2. We show that F(Ω) is relatively compact in X.

Differentiating two sides of (3.2) with respect to t we obtain

[F(u)]′(t) =
ω

cosh2(t)
−
∫ ∞

t

F (u(s))

cosh2(s)
ds, t ≥ t0. (3.3)

Now by the condition (3.1) and equation (3.3), for all t ≥ T0, we obtain

∣∣∣[F(u)]′(t)
∣∣∣ ≤

∣∣∣ ω

cosh2 t

∣∣∣+
∣∣∣
∫ ∞

t

F (u(s))

cosh2(s)
ds
∣∣∣

≤ ω

cosh2 T0

+

∫ ∞

t

|F (u(s))|
cosh2(s)

ds

≤ ω

cosh2 T0

+

∫ ∞

t

g(|u(s)|)
cosh2(s)

ds

≤ ω

cosh2 T0

+ g(|ψ0|+ ω + 1)

∫ ∞

t

1

cosh2(s)
ds

≤ ω

cosh2 T0

+ g(|ψ0|+ ω + 1)[1− tanh t]

≤ ω

cosh2 T0

+ coshT0,
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which implies that for all u ∈ Ω,∣∣∣[F(u)]′(t)
∣∣∣ ≤ M, t ≥ T0,

with

M =
ω

cosh2 T0

+ coshT0.

Let {un} be an arbitrary sequence in Ω. Then∣∣∣[F(un)]
′(t)

∣∣∣ ≤ M, t ≥ T0, n ≥ 1.

By using the mean value theorem, we obtain∣∣∣[F(un)](t1)− [F(un)](t2)
∣∣∣ ≤ M |t1 − t2|, t1, t2 ≥ T0, n ≥ 1,

which shows that {[F(un)]} is equicontinuous in X.

On the other hand, it is easy to verify that {[F(un)]} is uniformly bounded in X. In

fact, for t ≥ T0,∣∣∣[F(un)](t)
∣∣∣ ≤ |ψ0|+ ω|1− tanh(t)|+

∫ ∞

t

(s− t)
∣∣∣F (un(s))

cosh2(s)
ds
∣∣∣

≤ |ψ0|+ ω + g(|ψ0|+ ω + 1)

∫ ∞

t

s− t

cosh2(s)
ds

≤ |ψ0|+ ω + 1.

Moreover, since

lim
t→∞

[
ψ0 − ω + ω tanh(t) +

∫ ∞

t

(s− t)
F (un(s))

cosh2(s)
ds
]
= ψ0,

we obtain∣∣∣[F(un)](t)− ψ0

∣∣∣ ≤
∣∣∣ω[1− tanh t]

∣∣∣+
∣∣∣
∫ ∞

t

(s− t)
F (un(s))

cosh2(s)
ds
∣∣∣

≤
∣∣∣ω[1− tanh t]

∣∣∣+ g(|ψ0|+ ω + 1)

∫ ∞

t

s

cosh2(s)
ds,

which implies that for every ε > 0, there exists tε > t0 such that∣∣∣[F(un)](t)− ψ0

∣∣∣ ≤ ε, t ≥ tε, n ≥ 1.

This shows that {[F(un)]} is equi-convergent in X.

Now by applying the Arzela-Ascoli theorem [17], we obtain that {[F(un)]} is relatively

compact in X.

Step 3. We show that F : Ω → Ω is continuous.

Given a fixed ε > 0, there exists some T∗ ≥ T0 such that

g(|ψ0|+ ω + 1)
1

coshT∗
<

ε

3
.

Since F : [ψ0 − ω − 1, |ψ0|+ ω + 1] → R is uniformly continuous, there exists a constant

δ > 0 such that if u, v ∈ [ψ0 − ω − 1, |ψ0|+ ω + 1] with |u− v| < δ, then

|F (u)− F (v)| < coshT0

3
ε.
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Therefore, for all u1, u2 ∈ Ω with ‖u1−u2‖ < δ, by direct computations we can obtain

∣∣∣[F(u1)](t)− [F(u2)](t)
∣∣∣ =

∣∣∣
∫ ∞

t

(s− t)
F (u1(s))− F (u2(s))

cosh2 s
ds
∣∣∣

≤
∫ ∞

t

(s− t)

∣∣∣F (u1(s))− F (u2(s))
∣∣∣

cosh2 s
ds

≤
∫ T∗

T0

(s− T0)

∣∣∣F (u1(s))− F (u2(s))
∣∣∣

cosh2 s
ds

+

∫ ∞

T∗

(s− T∗)

∣∣∣F (u1(s))− F (u2(s))
∣∣∣

cosh2 s
ds = I1 + I2.

Note that

I1 ≤ coshT0

3
ε

∫ T∗

T0

s− T0

cosh2 s
ds ≤ coshT0

3
ε

1

coshT0
=

ε

3
,

I2 ≤
∫ ∞

T∗

s

cosh2 s

{
|F (u1(s))|+ |F (u2(s))|

}
ds

≤
∫ ∞

T∗

s

cosh2 s

{
g(|u1(s)|) + g(|u2(s)|)

}
ds

≤ 2g(|ψ0|+ ω + 1)

∫ ∞

T∗

s

cosh2 s

≤ 2g(|ψ0|+ ω + 1)
1

coshT∗
<

2ε

3
.

Therefore, ∥∥∥[F(u1)]− [F(u2)]
∥∥∥ ≤ ε.

Hence F : Ω → Ω is a continuous operator.

We therefore showed that all assumptions of the Schauder fixed point theorem are

satisfied. Therefore, there exists u ∈ Ω such that [F(u)] = u, which corresponds to a

bounded solution of (2.3) on [T0,∞). �

Theorem 3.2. Assume that assumptions in Theorem 3.1 are satisfied. Suppose further

that F satisfies the Osgood condition:

|F (u)− F (v)| ≤ G(|u− v|),

where G is continuous and nondecreasing, G(0) = 0, G(r) > 0 for r > 0 and

lim
ε↓0

∫ 1

ε

1

G(r)
dr = ∞.

Then for every ψ0 ∈ R, the equation (2.3) has a unique bounded continuous solution

u : [T0,∞) → R satisfying lim
t→∞

u(t) = ψ0, where T0 is the same as in Theorem 3.1.
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Proof. It follows from Theorem 3.1 that equation (2.3) has at least one bounded

continuous solution u : [T0,∞) → R satisfying lim
t→∞

u(t) = ψ0. Now suppose that u1(t)

and u2(t) are two bounded solutions of (2.3) with

lim
t→∞

u1(t) = lim
t→∞

u2(t) = ψ0. (3.4)

We shall prove that u1(t) = u2(t) for t ≥ T0. It follows from (2.3) and condition (3.1)

that

|u1(t)− u2(t)| =
∣∣∣
∫ ∞

t

(s− t)
F (u1(s))− F (u2(s))

cosh2 s
ds
∣∣∣

≤
∫ ∞

t

(s− t)

∣∣∣F (u1(s))− F (u2(s))
∣∣∣

cosh2 s
ds

≤
∫ ∞

t

(s− t)
1

cosh2 s
G
(
|u1(s)− u2(s)|

)
ds

≤
∫ ∞

t

s

cosh2 s
G
(
|u1(s)− u2(s)|

)
ds.

Let φ(t) = |u1(t)− u2(t)|. Then φ(t) ≥ 0 for all t ≥ T0 and

φ(t) ≤
∫ ∞

t

s

cosh2 s
G
(
φ(s)

)
ds.

We only need to show that φ(t) ≡ 0 for all t ≥ T0. On the contrary, suppose that

Φ(t) = max
s≥t

φ(s) > 0.

Then φ(t) ≤ Φ(t) and it follows from (3.4) that

lim
t→∞

Φ(t) = lim
t→∞

φ(t) = 0,

which implies that for each t ≥ T0, there exists a t∗ ≥ t such that Φ(t) = φ(t∗). Therefore,

Φ(t) = φ(t∗) ≤
∫ ∞

t∗

s

cosh2 s
G
(
φ(s)

)
ds ≤

∫ ∞

t

s

cosh2 s
G
(
φ(s)

)
ds.

Set

Ψ(t) =

∫ ∞

t

s

cosh2 s
G
(
φ(s)

)
ds.

Then φ(t) ≤ Ψ(t) and lim
t→∞

Ψ(t) = 0. Moreover,

Ψ′(t) = − t

cosh2 t
G(φ(t)) ≥ − t

cosh2 t
G(Ψ(t)).

Therefore,

Ψ′(t)

G(Ψ(t))
≥ − t

cosh2 t
.

Integrating the above from t∗ to ∞, we obtain∫ ∞

t∗

Ψ′(t)

G(Ψ(t))
dt ≥ −

∫ ∞

t∗

t

cosh2 t
dt ≥ − 1

cosh t∗
,
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which is equivalent to ∫ r∗

0

1

G(r)
dr ≤ 1

cosh t∗
, (3.5)

where

r∗ = Ψ(t∗) =

∫ ∞

t∗

s

cosh2 s
G
(
φ(s)

)
ds ∈ (0,∞).

Now (3.5) contradicts the Osgood condition. This contradiction shows that Φ(t) ≡ 0,

and hence φ(t) ≡ 0 for all t ≥ t0. �
Remark 3.3. As a special case of Theorem 3.2, the equation (2.3) has a unique

bounded continuous solution if F satisfies a local Lipschtiz condition. We thus recover

the existence results proved in [4] for linear vorticity functions F and in [5] under the

more restrictive hypothesis of a global Lipschitz condition on the nonlinear function F .

For examples of non-Lipschitz functions F which satisfy an Osgood-type condition we

refer to the discussion in [1] and [7].

Finally in this section, we construct an example having at least two nontrivial bounded

solutions, in which the nonlinearity F is continuous but does not satisfy the Osgood

condition.

Example 3.4. Consider again the differential equation (2.1) with the asymptotic

conditions (2.2). It is easy to see that the function

u+(t) =
1

cosh3(t)
, t ≥ 1 , (3.6)

satisfies (2.2) since

u′
+(t) = −3 sinh(t)

cosh4(t)
, t ≥ 1 .

Note that

u′′
+(t) =

−3

cosh3(t)
+

12 sinh2(t)

cosh5(t)
.

Since

tanh2(t) = 1− 1

cosh2(t)
= 1− [u+(t)]

2/3 ,

we obtain that

u′′
+(t) +

2ω sinh(t)

cosh3(t)
=

−3

cosh3(t)
+

12 sinh2(t)

cosh5(t)
+

2ω sinh(t)

cosh3(t)

=
1

cosh2(t)

{ −3

cosh(t)
+

12 sinh2(t)

cosh3(t)
+

2ω sinh(t)

cosh(t)

}

=
1

cosh2(t)

{
− 3 [u+(t)]

1/3 + 12
(
1− [u+(t)]

2/3
)
[u+(t)]

1/3

+2ω
√

1− [u+(t)]2/3
}
.

Consequently, u+(t) is a solution to (2.1)-(2.2) if F satisfies

F (u) = 9u1/3 − 12u+ 2ω
√
1− u2/3 , 0 ≤ u ≤ 1.
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Note that if F is given as above, then

F (0) = 2ω , F (1) = −3.

Similarly we can verify that the function

u−(t) = − 1

cosh3(t)
, t ≥ 1 , (3.7)

is a solution of (2.1)-(2.2) if F satisfies

F (u) = 9u1/3 − 12u+ 2ω
√
1− u2/3 , −1 ≤ u ≤ 0,

and in this case

F (0) = 2ω , F (−1) = 3 .

The above analysis shows that if the function F : R → R is given by

F (u) =

⎧⎨
⎩

−3 , u ≥ 1 ,

9u1/3 − 12u+ 2ω
√
1− u2/3 , −1 ≤ u < 1 ,

3 , u < −1 ,

(3.8)

then u+(t) and u−(t) given by (3.6) and (3.7), respectively, are two distinct solutions to

(2.1)-(2.2). Obviously, F given by (3.8) is continuous, but does not satisfy the Osgood

condition. �
Remark 3.5. We can ensure that T0 = t0 in Theorem 3.1 and in Theorem 3.2 by

a simple continuation argument for the differential equation (2.1), provided that its

solutions do not blow up in finite time. This is the case, for example, if the function

F (u) has a linear growth at infinity. Indeed, in this case the fact that blow-up does not

occur for linear equations ensures T0 = t0, by means of the comparison method (see the

discussion in [14] or, alternatively, the considerations in [15]).
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