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Abstract. In kinematic dynamo theory energy bounds provide necessary condi-

tions for dynamo action valid for every velocity field. When expressed by the magnetic

Reynolds number R this number RE may be compared with the critical Reynolds number

Rc = Rc(v) indicating the onset of dynamo action for a given velocity field v. Typically,

there is an (often large) gap between both numbers, which suggests the question: are

there better (energy) bounds or are the most critical velocity fields not yet known (or

are both conjectures false)?

Here we answer this question in a simplified setting, viz. for spherically symmetric

α2-mean-field dynamos, where the single scalar field α takes the role of the velocity

field and where spherical symmetry allows the reliable numerical solution of a non-linear

variational problem. The non-linear problem arises from the simultaneous variation of

magnetic field and α-profile (measured in a suitable norm), which, in fact, yields an

improved energy bound Ropt
E = 4.4717 compared to the best hitherto known bound

RE = 3.0596. This bound is close to the best hitherto known critical Reynolds number

Rc = 4.4934, which belongs to a constant α-profile, and is, moreover, optimal since it

is connected to an α-profile whose critical Reynolds number exceeds Ropt
E by less than

10−4.

1. Introduction. In kinematic dynamo theory there was always interest in identify-

ing the most efficient velocity fields (i.e., velocity fields with critical magnetic Reynolds

numbers as low as possible) given the geometry of the fluid volume, boundary conditions,

and possibly further kinematic restrictions. With the advent of dynamo experiments in

the laboratory this interest even increased since the realization of efficient velocity fields
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can decide on success or failure of the experiment. The search for efficient velocity fields

is, however, laborious and restricted so far in its reach. It started (to our knowledge)

with the optimization of simple model flows in balls with respect to a few parameters

modelling the shape of some profile functions describing the flow [LG96, Hol03]. Sim-

ilar few-parameter-optimizations have been performed in the context of the Karlsruhe

dynamo [Til97], the Riga dynamo [SGG99], and the Madison experiment [KBCWF12].

Only recently the search has been extended to high-dimensional parameter spaces repre-

senting in principle the space of all (divergence-free) velocity fields in a box with periodic

[Wil12] or superconducting/pseudovacuum boundary conditions [CHJ15].

On the other hand, there are a few general lower bounds on critical magnetic Reynolds

numbers which all are based on the energy balance of the induction equation: the energy

transfer from the velocity field to the magnetic field must exceed the Ohmic loss of the

electric current associated to the magnetic field to maintain the dynamo, i.e., formally

the quotient ∫
V

B(∇v)B dv∫
V

η|∇ ×B|2dv
(1.1)

must exceed one. Here, (∇v) denotes the (symmetrized) velocity-gradient-matrix of a

flow field v confined to the fluid volume V , B denotes the magnetic field satisfying some

boundary conditions at ∂V , and η the magnetic diffusivity. When estimating (∇v) by

the space-time-maximum of its maximum eigenvalue and η by its minimum η0 (defining

this way the magnetic Reynolds number R), (1.1) reduces to the variational expression∫
V

|B|2dv∫
V

|∇ ×B|2dv
(1.2)

for B only. Maximizing (1.2) with respect to those magnetic fields that satisfy the

boundary conditions yields the well-known Backus-type bound on R for dynamo action

[Bac58].1

When comparing the critical Reynolds numbers Rc of optimized dynamos with the

corresponding Backus-type lower bound RB, one finds typically that Rc lies still on an

order of magnitude [Hol03] or more [CHJ15] above RB. This triggers the question: can

this large gap be diminished and if so, from which side? Optimizing in a restricted velocity

space always runs the risk of having excluded the most efficient velocity fields, whereas

searching the full velocity space is laborious with results whose reliabity is not easy to

assess. When looking at the other side of the gap, i.e., when looking for better lower

bounds on R, one obvious possibility is not to estimate the velocity field beforehand

but to maximize the quotient (1.1) simultaneously with respect to magnetic field and

velocity field (together with some normalization for the latter field). The Euler-Lagrange

equations associated with this enlarged variational problem are then non-linear and their

correct solution is again hard to assess.

1A similar bound on R, now based on the maximum of v instead of (∇v), and also using the maximum
of (1.2) is usually attributed to Childress (cf. [Pro07]).
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The present study refers, therefore, to a simplified setting, where the above question

can be completely answered. In the α2-mean-field model the single scalar quantity α

takes the role of the velocity field and the relevant quotient analogous to (1.1) now reads∫
B1

α∇×B ·B dv

‖α‖
∫
B1

|∇ ×B|2dv
, (1.3)

where the diffusivity has already been estimated by η0 (and omitted) and where a nor-

malization ‖ · ‖ for α has been introduced. The fluid volume is here the unit ball B1 and

we assume the usual vacuum boundary condition for B, i.e., continuous matching at the

unit sphere S1 to an exterior harmonic vector field vanishing at infinity. No boundary

condition is imposd on α.

The norm ‖·‖ should be chosen such that (i) the expression (1.3) is bounded from above

with respect to all admissible fields B and α, (ii) the resulting Euler-Lagrange equations

are of “standard type” (e.g., of no more than second order), and (iii) comparison is

possible to already existing lower bounds. The first two criteria are met by the standard

3-dimensional H1-norm

‖α‖∼ :=
( 3

4π

∫
B1

(
α2 + |∇α|2

)
dv
)1/2

, (1.4)

whereas the 1-dimensional norm

‖α‖s :=
(∫ 1

0

(
α2 + (∂rα)

2
)
dr
)1/2

, r := |r|, (1.5)

appropriate in the case of spherical symmetry, meets all three criteria.

The most incisive assumption of our investigation is spherical symmetry of the α-field

with the profitable consequence that the Euler-Lagrange equations associated with the

variation of (1.3) boil down to a non-linear eigenvalue problem represented by a finite

system of ordinary differential equations. The numerical solution of this eigenvalue prob-

lem is quite standard and allows the certain determination of the optimum eigenvalue,

which is in general a delicate problem. We do this for both norms and obtain this way

optimized energy bounds Ropt
E and R̃opt

E based on ‖α‖s and ‖α‖∼, respectively. We de-

termine, moreover, the critical Reynolds numbers Ropt
c and R̃opt

c for the corresponding

optimal α-profiles and a comparison yields

Ropt
c −Ropt

E

Ropt
c

< 10−4 ,
R̃opt

c − R̃opt
E

R̃opt
c

� 10−3. (1.6)

So, for both norms the gap between optimized energy bound and (supposedly) most

critical α-profile is (almost) closed. These results may be compared to the gap between

the energy bound R
(m)
E (based on the maximum-norm ‖α‖m and obtained by maximizing

(1.2)) and the lowest critical Reynolds number R
(m)
c (for constant α-profiles) available

so far,

R(m)
c −R

(m)
E = 4.4934− 3.5059, (1.7)
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which is moderate compared to the gap in the full problem mentioned above but large

compared to (1.6). As ‖ · ‖s dominates ‖ · ‖m, R
(m)
E implies an energy bound RE in the

‖ · ‖s-norm and the gap (1.7) becomes in this norm:

Rc −RE = 4.4934− 3.0596.

The position of Ropt
E = 4.4717 in this gap is clearly at the upper end, which means that

the well-known constant α-profile is already close to the most efficient profile.

2. α2-dynamos, variational problems, and energy bounds. A mean-field dy-

namo with pure α2-mechanism confined to the unit ball B1 with vacuum boundary

condition is described by the following initial-value problem in R
3 ×(0,∞) (cf. [KR80,

p. 171ff]):

∂tB = ∇× (αB)−∇× (η∇×B) , ∇ ·B = 0 in B1 × (0,∞),

∇×B = 0 , ∇ ·B = 0 in B̂1 × (0,∞),

[B] = 0 on S1 × (0,∞),

|B(r, ·)| → 0 for |r| → ∞,

B(· , 0) = B0 , ∇ ·B0 = 0 on B1 × {t = 0}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

The fluid volume is here the unit ball B1 with boundary S1 and exterior (vacuum) region

B̂1. The scalar α-field and the diffusivity η > 0 are prescribed functions on B1 × (0,∞),

which in this section are assumed to be continuous and bounded but are otherwise

unrestricted. We define, in particular,

max
B1×(0,∞)

|α| =: αmax < ∞,

min
B1×(0,∞)

η =: η0 > 0.

⎫⎬⎭ (2.2)

B denotes the magnetic field with initial-value B0 and [B] denoting the jump of B over

S1. The kinematic dynamo problem asks then for those initial-values B0, such that

corresponding solutions B of (2.1) do not decay in time (so-called dynamo solutions).

A necessary condition for dynamo action (i.e., for the existence of dynamo solutions)

can be derived in close analogy to the full induction equation by consideration of the

energy balance of (2.1). Multiplying (2.1)1 by B and intergration over B1 yields

1

2

d

dt

∫
B1

|B|2dv =

∫
B1

∇× (αB) ·B dv −
∫
B1

∇× (η∇×B) ·B dv

=

∫
B1

αB · (∇×B) dv −
∫
B1

η |∇ ×B|2dv

−
∫
S1

η (∇×B)×B · r ds,

(2.3)
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where we used integration by parts in the second line. As in [Bac58] the surface integral

in (2.3) can be related to the time-derivative of the exterior magnetic energy:2

1

2

d

dt

∫
̂B1

|B|2dv =

∫
S1

η (∇×B)×B · r ds. (2.4)

Summing up (2.3) and (2.4) and estimating η by (2.2)2 yields then

1

2

d

dt

∫
R3

|B|2dv =

∫
B1

αB · (∇×B) dv −
∫
B1

η |∇ ×B|2dv

≤
∫
B1

αB · (∇×B) dv − η0

∫
B1

|∇ ×B|2dv

=

(∫
B1

αB · (∇×B) dv

‖α‖
∫
B1

|∇ ×B|2dv
− η0

‖α‖

)
‖α‖
∫
B1

|∇ ×B|2dv.

(2.5)

In the last line we introduced the norm ‖ · ‖ of α to obtain the homogeneous variational

expression (1.3). Fixing now some value η0/‖α‖, inequality (2.5) provides an obvious

necessary condition for energy growth of the magnetic field, namely, that the supremum

of the variational expression with respect to all admissible fields B and α must exceed

this value η0/‖α‖.
Weaker conditions are obtained by partly estimating and partly maximizing expression

(1.3). For example, with the estimate∫
B1

α∇×B ·B dv ≤ αmax

(∫
B1

|∇ ×B|2dv
)1/2(∫

B1

|B|2dv
)1/2

, (2.6)

inequality (2.5) with ‖α‖ = αmax can be further estimated by

1

2

d

dt

∫
R3

|B|2dv ≤
[( ∫

B1

|B|2dv∫
B1

|∇ ×B|2dv

)1/2

− 1

R(m)

]
αmax

∫
B1

|∇ ×B|2dv, (2.7)

where we introduced the magnetic Reynolds number R(m) := αmax/η0 based on the

maximum norm. From (2.7) one reads off a necessary criterion, analogous to that of

Backus or Childress for the induction equation, viz.

R(m) >

[
sup

0�=B∈B

∫
B1

|B|2dv∫
B1

|∇ ×B|2dv

]−1/2

, (2.8)

2Note that Backus considers the case η = const. His manipulations, however, work for space-time-
dependent η as well.
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where B denotes the space of admissible vector fields (see below). When replacing the

variational expression in (2.8) by the larger expression∫
R3

|B|2dv∫
B1

|∇ ×B|2dv
,

one obtains the Backus-type bound R(m) > π (see [Bac58]), whereas an exact calculation

[Pro77] yields the sharper bound

R(m) > γ = 3.5059, (2.9)

where γ is the smallest positive zero of 3j1(γ) + 2γj0(γ) = 0 with j0,1 being spherical

Bessel functions.

Considering once more (2.5), the optimum bound that can be derived from the en-

ergy balance is apparently provided by the solution of the following enlarged variational

problem:

sup
0 �= B ∈ B
0 �= α ∈ H1

∫
B1

αB · (∇×B) dv

‖α‖∼
∫
B1

|∇ ×B|2dv
=:

1

R̃opt
E

, (2.10)

where we have chosen the H1-norm (1.4) to measure the strength of the α field. Ap-

propriate variational classes are then H1, the space of [weakly]3 differentiable functions

α : B1 → R with ∫
B1

(
α2 + |∇α|2

)
dv < ∞ (2.11)

and B, the space of [weakly] differentiable vector fields B : B1 → R
3 that are [weakly]

divergence-free and have finite H1-norm, which (due to the divergence constraint) is

equivalent to ∫
B1

|∇ ×B|2dv < ∞. (2.12)

To implement the non-local boundary condition (2.1)2−4 we recall that such H1-fields B

allow harmonic extensions B̃ : R3 → R
3, i.e., [weakly]

∇ · B̃ = 0 in B1 ∪ B̂1 , ∇× B̃ = 0 in B̂1, (2.13)

which are, moreover, unique if [in the trace-sense] [r · B̃] = 0 on S1 (for more details

see [Kai12]). In the following we identify these H1-fields with their harmonic extensions

and require for elements B̃ ∈ B additionally [in the trace-sense]

[B̃] = 0 on S1. (2.14)

The tilde is henceforth omitted.

In these spaces the variational expression (1.3) turns out to be bounded from above,4

i.e., problem (2.10) makes sense. Standard arguments imply, moreover, the existence of

3Readers not familiar with “weak differentiability”may ignore the specifications given in brackets in
this paragraph without missing the essence of the presentation.

4A proof is based on Sobolev-type embedding results (see, e.g., [Ada75]). An explicit bound is given
elsewhere.
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a maximizing couple (B, α), which satisfies [weakly] the corresponding Euler-Lagrange

equations.5

To derive these equations we reformulate (2.10) as a constrained problem, i.e., we in-

troduce Lagrange parameters μ and ν associated with (2.11) and (2.12), respectively, and

Lagrange fields ρ and σ, associated with (2.13) and perform variations of the extended

functional

F [B, α,σ, ρ, μ, ν] :=

∫
B1

αB · ∇ ×B dv

−
∫
B1∪̂B1

ρ∇ ·B dv −
∫

̂B1

σ · ∇ ×B dv

−μ

{∫
B1

|∇ ×B|2dv − 1

}
− ν

{∫
B1

(
α2 + |∇α|2

)
dv − 4π

3

} (2.15)

with respect to all its variables B through ν (cf. [CH53]):

δF =

∫
B1

{
δαB · ∇ ×B+ α δB · ∇ ×B+ αB · ∇ × δB

−δρ∇ ·B− ρ∇ · δB− δμ
[
|∇ ×B|2 − 3

4π

]
− 2μ∇×B · ∇ × δB

−δν
[(
α2 + |∇α|2

)
− 1
]
− 2ν (α δα+∇α · ∇δα)

}
dv

−
∫

̂B1

{
δρ∇ ·B+ ρ∇ · δB+ δσ · ∇ ×B+ σ · ∇ × δB

}
dv.

After integration by parts the necessary condition δF = 0 for critical points of F
yields the following Euler-Lagrange equations for B, α, σ and ρ in B1 and B̂1, together

with jump relations over S1 and normalizations for B and α:

μ∇×∇×B = α∇×B+
1

2
∇α×B+

1

2
∇ρ , ∇ ·B = 0 in B1,

2ν(−Δα+ α) = B · ∇ ×B in B1,

∇×B = 0 , ∇ ·B = 0 in B̂1,

∇× σ = ∇ρ in B̂1,

r · ∇α = 0 on S1,

[ρ] = 0 on S1,

σ+ × r = (2μ∇×B− αB)− × r, on S1,∫
B1

|∇ ×B|2dv = 1 ,

∫
B1

(
α2 + |∇α|2

)
dv =

4π

3
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

5In fact, using arguments similar to those in [KU09] weak solutions of the Euler-Lagrange system
(2.20) can be shown to possess enough regularity, so that (2.20) is pointwise satisfied. Without going
into more detail we focus henceforth on such “classical” solutions of (2.20).
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The superscripts + and − in (2.16)7 denote the exterior and the interior side of S1,

respectively. Note that (2.16)4 and (2.16)7 with given right-hand sides constitute a well-

posed exterior boundary-value problem for σ, provided that σ → 0 for r → ∞ and that

the integrability condition

(
r · (2.16)4

)+
= r · ∇ × σ+ = ∇ · (σ+ × r) = ∇ · (2.16)7 on S1 (2.17)

is satisfied. Using the radial component of (2.16)1, equation (2.17) amounts to

(r · ∇ρ)+ = r ·
(
2μ∇×∇×B−∇× (αB)

)−
= r · (α∇×B+∇ρ

)−
= (r · ∇ρ)− on S1.

(2.18)

In the last step we made use of r · ∇ × B = 0 on S1, which follows from (2.14) and

(2.16)3. On the other hand taking the divergence of (2.16)1 and (2.16)4 yields

Δ ρ = −∇α · ∇ ×B in B1,

Δ ρ = 0 in B̂1.

}
(2.19)

Taking into account (2.18) and (2.19), σ may thus be eliminated from (2.16). Concerning

asymptotic behaviour it is well known that |B| = O(r−3), r → ∞ for monopole-free

exterior harmonic vector fields; for exterior harmonic functions ρ we have generally ρ =

ρ0r
−1 +O(r−2) for r → ∞. However, (2.18) and (2.19) imply

0 =

∫
S1

α∇×B · r ds =
∫
B1

∇α · ∇ ×B dv = −
∫
B1

Δ ρ dv

= −
∫
S1

r · ∇ρ ds = −
∫
SR

r/r · ∇ρ ds = 4πρ0 −
∫
SR

O(r−3) ds,

with R denoting an arbitrary radius > 1. The limit R → ∞ implies then ρ0 = 0 and

hence ρ = O(r−2) for r → ∞.

Finally, multiplying (2.16)1 by B and (2.16)2 by α, integrating over B1 and integrating

by parts reveals by (2.16)8 that

∫
B1

α∇×B ·B dv = μ = 2ν
4π

3
.

Comparing with (2.10) thus yields the result

R̃opt
E = inf

{
μ−1 : μ eigenvalue of system (2.20)

}
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with

μ∇×∇×B = α∇×B+
1

2
∇α×B+

1

2
∇ρ , ∇ ·B = 0 in B1,

μ(−Δα+ α) =
4π

3
B · ∇ ×B in B1,

−Δ ρ = ∇α · ∇ ×B in B1,

∇×B = 0 , ∇ ·B = 0 in B̂1,

Δ ρ = 0 in B̂1,

[B] = 0 on S1,

r · ∇α = 0 on S1,

[ρ] = 0 , [r · ∇ρ] = 0 on S1,

|B| = O(r−3) , |ρ| = O(r−2) for r → ∞,∫
B1

(
α2 + |∇α|2

)
dv =

4π

3
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

Note that contrary to the standard eigenvalue problem associated to (2.1) with station-

ary coefficients, eigenvalues of (2.20) are always real in accordance with their variational

interpretation. Special cases of system (2.20) are related to the case of prescribed α-

field: (2.20)2 and (2.20)7 are then removed and the remaining equations constitute a

linear eigenvalue problem, or to the case of constant α: the auxiliary field ρ becomes

trivial in this case and (2.20) boils down to the stationary case of the dynamo problem

(2.1) with constant diffusivity μ.

3. Spherical symmetry. Spherical symmetry of the α-field greatly simplifies the

solution of problem (2.10) in that it allows one to replace the non-linear system (2.20)

of partial differential equations by a non-linear system of ordinary differential equations

(in the radial variable r = |r|). The starting point is a (by spherical symmetry) re-

duced version of the variational expression (1.3). For this purpose we make use of the

poloidal/toroidal decomposition for the magnetic field in the form

B = −ΛT −∇× ΛS, (3.1)

where the poloidal scalar S and the toroidal one T are uniquely determined by

r ·B = −LS, Λ ·B = −LT, (3.2)

provided that S and T have vanishing mean-value over every sphere Sr, i.e.,

〈S〉r = 0 , 〈T 〉r = 0 , 〈. . .〉r :=
1

4πr2

∫
Sr

. . . ds (3.3)

and if B is sufficiently regular. Λ denotes the non-radial-derivative operator r ×∇ and

L := Λ · Λ is the Laplace-Beltrami-operator on S1; −L is a positive symmetric operator

with the spherical harmonics Ynm as eigenfunctions:

−LYnm = n(n+ 1)Ynm; (3.4)
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moreover, L is relatd to the Laplacian Δ by

Δ =
1

r
∂2
r r +

1

r2
L, (3.5)

where ∂r denotes the radial derivative r/r · ∇.

Standard manipulations then yield∫
S1

∇×B ·B ds =

∫
S1

∇× (ΛT +∇× ΛS) · (ΛT +∇× ΛS) ds

=

∫
S1

[
∇× ΛT · ∇ × ΛS +∇× (∇× ΛS) · ΛT

]
ds

=

∫
S1

[
LT LS + Λ ∂r(rT ) · Λ ∂r(rS) + LT ΔS r2

] 1
r2

ds

(3.6)

and ∫
S1

|∇ ×B|2ds =

∫
S1

|∇ × (ΛT +∇× ΛS|2 ds

=

∫
S1

[
|∇ × ΛT |2 + |∇ × (∇× ΛS)|2

]
ds

=

∫
S1

[
(LT )2 + |Λ ∂r(rT )|2 + |ΛΔS|2 r2

] 1
r2

ds,

(3.7)

where ds denotes the area element on S1. Next, we expand the variables rT and rS into

spherical harmonics according to6

rT (r) =
∑
n,m

T̃nm(r)Ynm(r/r) , rS(r) =
∑
n,m

S̃nm(r)Ynm(r/r) (3.8)

with |m| ≤ n, n ∈ N. Inserting (3.8), the expressions (3.6) and (3.7) take by (3.4) and

(3.5) the form∫
S1

∇×B ·B ds =
∑
n,m

n(n+ 1)
[
2
n(n+ 1)

r2
T̃nmS̃nm + T̃ ′

nmS̃′
nm − T̃nmS̃′′

nm

] 1
r2

(3.9)

and∫
S1

|∇ ×B|2ds =
∑
n,m

n(n+ 1)
[n(n+ 1)

r2
T̃ 2
nm + (T̃ ′

nm)2 +
(
S̃′′
nm − n(n+ 1)

r2
S̃nm

)2] 1
r2

,

(3.10)

where prime means the derivative d
dr . Abbreviating the brackets in (3.9) and (3.10) by

Nn[T̃nm, S̃nm] and Dn[T̃nm, S̃nm], respectively, the variational expression (1.3) now takes

the form ∑
n,m

n(n+ 1)

∫ 1

0

αNn[T̃nm, S̃nm]dr

∑
n,m

n(n+ 1) ‖α‖
∫ 1

0

Dn[T̃nm, S̃nm]dr

. (3.11)

As to the supremum of (3.11) note that by proper choice of the relative sign of T̃nm

and S̃nm, every term in the numerator of (3.11) can be made non-negative. Moreover,

6By taking suitable linear combinations the Ynm can be assumed to be real.
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in view of Lemma 1 in Appendix A, we can select a single mode with maximal ratio,

which at most increases (3.11). To determine the supremum of (3.11) it is thus sufficient

to consider the single-mode problem

sup
n∈N

sup
0 �= ˜Tn ∈ H1

0

0 �= ˜Sn ∈ H2
n

0 �= αn ∈ H1

∫ 1

0

αn Nn[T̃n, S̃n]dr

‖αn‖s
∫ 1

0

Dn[T̃n, S̃n]dr

=:
1

Ropt
E

, (3.12)

where we have omitted the (now dummy) index m at T̃n and S̃n, and have added the

index n at α (to indicate this dependence). Appropriate variational classes corresponding

to B in problem (2.10) are H1
0 , the space of [weakly] differentiable functions T̃n with finite

H1-norm and with zero boundary conditions at r = 0 and r = 1 and H2
n, the space of

twice [weakly] differentiable functions S̃n with finite H2-norm and with zero condition of

S̃n and S̃′
n at r = 0 and the vacuum matching condition S̃′

n + n S̃n = 0 at r = 1. As to

αn we consider the ‖ · ‖s-norm (1.5) first. An appropriate variational class is then H1,

the space of [weakly] differentiable functions α on (0, 1) with ‖αn‖s < ∞. The rough

estimate

α(x) =

∫ 1

0

(
α(x)− α(y)

)
dy +

∫ 1

0

α(y) dy =

∫ 1

0

∫ x

y

α′(z) dz dy +

∫ 1

0

α(y) dy

≤
∫ 1

0

|α′(z)| dz +
∫ 1

0

α(y) dy ≤
(∫ 1

0

(
α′(z)

)2
dz

)1/2

+

(∫ 1

0

(
α(y)
)2
dy

)1/2

≤
√
2

(∫ 1

0

[(
α(y)
)2

+
(
α′(y)

)2]
dy

)1/2

for all x ∈ (0, 1)

demonstrates the dominance of the ‖ · ‖s-norm over the maximum norm:

αmax ≤ C ‖α‖s (3.13)

with C =
√
2. The optimal (i.e., minimal) constant in (3.13) is itself a solution of a

variational problem (see Lemma 2 in Appendix B) and reads

Copt =
(e+ 1/e

e− 1/e

)1/2
= 1.1459. (3.14)

The bounds (2.8) and (3.13) imply by (3.9), (3.10), and (2.6) the boundedness from above

of the variational expression (3.11) and hence the well-posedness of problem (3.12).

To derive the Euler-Lagrange equations associated to (3.12) we introduce analogously

to section 2 an extended functional, viz.

Fs[T̃n, S̃n, αn, μn, νn] :=

∫ 1

0

αn Nn[T̃n, S̃n]dr

−μ

{∫ 1

0

Dn[T̃n, S̃n]dr − 1

}
− ν

{∫ 1

0

(
α2
n + α′

n
2)
dr − 1

}
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and perform variations with respect to T̃n through νn. δFs = 0 yields then after inte-

gration by parts (using the bounday conditions implemented into the variational classes

H1
0 and H2

n):

μn DnT̃n = αn DnS̃n +
1

2
α′
n S̃

′
n in (0, 1),

μn D
2
nS̃n = −αn DnT̃n − 3

2
α′
n T̃

′
n − 1

2
α′′
nT̃n in (0, 1),

2νn(α
′′
n − αn) = −2

n(n+ 1)

r2
T̃nS̃n − T̃ ′

nS̃
′
n + T̃nS̃

′′
n in (0, 1),

μn

(
(DnS̃n)

′ + nDnS̃n

)
+ αn T̃

′
n = 0 at r = 1,

α′
n = 0 at r = 0 and 1,∫ 1

0

Dn[T̃n, S̃n]dr = 1 , ‖αn‖s = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

Here, Dn denotes the operator d2

dr2 −
n(n+1)

r2 . A calculation analogous to that in section

2 reveals that ∫ 1

0

αn Nn[T̃n, S̃n]dr = μn = 2νn

and comparison with (3.12) yields the result

1

Ropt
E

= sup
n∈N

sup {μn : μn eigenvalue of system (3.17)} (3.16)

with

μn DnT̃n = αn DnS̃n +
1

2
α′
n S̃

′
n in (0, 1),

μn D
2
nS̃n = −Dn(αn T̃n) +

1

2
(α′

nT̃n)
′ in (0, 1),

μn(α
′′
n − αn) = T̃n DnS̃n − n(n+ 1)

r2
T̃nS̃n − T̃ ′

nS̃
′
n in (0, 1),

T̃n = 0 , S̃n = S̃′
n = 0 , α′

n = 0 at r = 0,

T̃n = 0 , S̃′
n + n S̃n = 0 , α′

n = 0 at r = 1,

μn

(
(DnS̃n)

′ + nDnS̃n

)
+ αn T̃ ′

n = 0 at r = 1,∫ 1

0

(
α2
n + (α′

n)
2
)
dr = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

As in the non-symmetric case solutions of system (3.17) are more regular than indicated

by the variational classes, which, however, needs some effort to be demonstrated. As
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to the behaviour at the origin there is a short-cut: with the assumption of a smooth

magnetic field, i.e., smooth fields S(r) and T (r), the representation7

S(r) =
1

r
S̃n(r)Ynm(r/r) =

[ 1

rn+1
S̃n(r)

][
rn Ynm(r/r)

]
(3.18)

implies for the first bracket on the right-hand side of (3.18) the Taylor expansion

1

rn+1
S̃n(r) =

I∑
i=0

ci r
2i + o(r2I), (3.19)

where I depends on the order of differentiability of S(r). This can best be realized in

Cartesian coordinates r = (x, y, z); the second bracket in (3.18) is then a homogeneous

(infinitely differentiable) polynomial of degree n and r is given by (x2+y2+z2)1/2, which

is not differentiable at the origin. We note yet the following consequence of (3.19):

DnS̃n

∣∣
r=0

= 0. (3.20)

In order to reduce the order of system (3.17) and to allow a comparison with the

non-symmetric problem (2.20) we introduce the auxiliary field ρ̃n by the equation

Dnρ̃n =
n(n+ 1)

r
α′
n T̃n in (0, 1) (3.21)

and the boundary conditions

ρ̃n = 0 at r = 0 , ρ̃′n + n ρ̃n = 0 at r = 1. (3.22)

Note that (3.21) with the given right-hand side together with (3.22) determine ρ̃n
uniquely. Differentiating equation (3.21) one obtains

1

2n(n+ 1)
Dn(rρ̃

′
n − ρ̃n) =

1

2
(α′ T̃n)

′,

which allows to reformulate equation (3.17)2 as

Dn

[
μn DnS̃n + αn T̃n − 1

2n(n+ 1)
(rρ̃′n − ρ̃n)

]
= 0. (3.23)

By (3.17)4−6, (3.19), (3.22), and Dnρ̃n|r=1 = 0, which follows from (3.21), one can verify

the boundary conditions (3.22) for the bracket in (3.23); therefore, the operator Dn in

7The same applies to T (r) and ρ(r) (see below).
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front of the bracket may be removed with the result

μn DnS̃n = −αn T̃n +
1

2n(n+ 1)
(rρ̃′n − ρ̃n). (3.24)

Using (3.24) in (3.17)1,3 we obtain, finally, the equivalent formulation of problem

(3.17):

μ2
n DnT̃n = −α2

n T̃n +
1

2
μn α

′
n S̃

′
n +

1

2n(n+ 1)
αn (rρ̃

′
n − ρ̃n) in (0, 1),

μn DnS̃n = −αn T̃n +
1

2n(n+ 1)
(rρ̃′n − ρ̃n) in (0, 1),

Dnρ̃n =
n(n+ 1)

r
α′
n T̃n in (0, 1),

μ2
n(α

′′
n − αn) = −μn

(n(n+ 1)

r2
T̃nS̃n + T̃ ′

nS̃
′
n

)
−αn T̃ 2

n +
1

2n(n+ 1)
T̃n (rρ̃

′
n − ρ̃n)

in (0, 1),

T̃n = 0 , S̃n = 0 , ρ̃n = 0 , α′
n = 0 at r = 0,

T̃n = 0 , S̃′
n + n S̃n = 0 , ρ̃′n + n ρ̃n = 0 , α′

n = 0 at r = 1,∫ 1

0

(
α2
n + (α′

n)
2
)
dr = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.25)

Note that, formally, system (3.25) can be obtained from system (2.20) (after poloidal/

toroidal decomposition) by the single-mode ansatz

r T (r) = T̃n(r)Ynm(r/r) , r S(r) = S̃n(r)Ynm(r/r) ,

rρ(r) = −ρ̃n(r)Ynm(r/r)

and projecting on Ynm(r/r) (with the exception of (2.20)2, where the spherical mean

(3.3) has to be taken). The vacuum part of (2.20) can then be solved and eliminated,

replacing thereby the matching conditions at S1 by the boundary conditions (3.25)6.

(3.25)5 arise from the regularity conditions (3.19), and (3.25)7 refers to the ‖ · ‖s-norm
(instead of the ‖ · ‖∼-norm).

For the numerical implememtation in a domain that contains the origin yet another

reformulation is useful. According to (3.19) the variables

Tn := T̃n/(μn r
n+1) , Sn := S̃n/(μn r

n+1) ,

ρn := ρ̃n/(μ
2
n r

n+1) , αn := αn/μn

(3.26)
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are stripped off their zeros at the origin. They are governed by the equations

T
′′
n = −2

n+ 1

r
T

′
n − α2

n Tn +
1

2
α′
n (S

′
n +

n+ 1

r
Sn)

+
1

2n(n+ 1)
αn (rρ

′
n + nρn),

S
′′
n = −2

n+ 1

r
S
′
n − αn Tn +

1

2n(n+ 1)
(rρ′n + nρn),

ρ′′n = −2
n+ 1

r
ρn +

n(n+ 1)

r
α′
n Tn,

α′′
n = αn − r2n+2

[n(n+ 1)

r2
TnSn + T

′
nS

′
n +

n+ 1

r
(T

′
nSn + TnS

′
n)

+αn T
2

n − 1

2n(n+ 1)
Tn (rρ

′
n + nρn)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.27)

on the interval (0, 1) subject to the boundary conditions

T
′
n = 0 , S

′
n = 0 , ρ′n = 0 , α′

n = 0 at r = 0, (3.28)

which arise from (3.19) (and which are numerically convenient) and

Tn = 0 , S
′
n + (2n+ 1)Sn = 0 , ρ′n + (2n+ 1) ρn = 0 , α′

n = 0 at r = 1. (3.29)

The eigenvalues μn are then determined by

μn = ‖αn‖−1
s =

(∫ 1

0

(
α2
n + (α′

n)
2
)
dr

)−1/2

. (3.30)

For its numerical treatment, the system of four second order differential equations

(3.27) is written as a system of eight first order differential equations. The general

strategy is then to implement a shooting method which imposes at r = 0 the four

conditions (3.28) and searches four additional conditions on Tn, Sn, ρn and αn at r = 0

so that an integration yields a solution which fulfills the requirements (3.29) at r = 1. The

differential equations are integrated with the standard Runge-Kutta-Fehlberg method of

fifth order. However, the integration cannot start from exactly r = 0 because of the

singularity there and has instead to start a small distance Δr away from the origin. The

search for the four unknown starting values which will lead to a solution satisfying the

boundary conditions at r = 1 is done with a Newton method in which the Jacobian is

determined numerically from finite differences. This search finds a distinct root for every

eigenvalue of (3.27) and the numerical problem is to find the smallest of these. Due to

the non-linearity of the equations, there is no general method which guarantees finding

the smallest eigenvalue. Depending on the initial guess for the four unknowns from which
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Newton’s method is started, it converges to one or the other root. However, a systematic

scan of starting points for Newton’s method reveals that every root has a broad attractor

and that it is very unlikely that the smallest root was missed. The tolerances on the

function values and search points in Newton’s method together with Δr determine the

accuracy of the numerical solution. All these numbers were set to 10−8.

Finally, the eigenfunction is evaluated at 104 equidistant points. The function αn,

whose derivatives are zero both at r = 0 and r = 1, is then represented as a natural

cubic spline through these points. This spline interpolation is used to evaluate the

integral (3.30) and to compute Ropt
E below.

Note that the transformation of system (3.25) into (3.27), although redundant from

an analytical point of view, vastly improves the accuracy of the numerical solution. The

reason for this is that the regularity condition (3.19) implies that higher derivatives of

the variables in (3.25) are zero at r = 0. Since (3.25) is a second order system, only the

variables and their first derivatives at r = 0 can be imposed in a numerical procedure.

Higher derivatives which ought to be zero acquire a finite value in the numerical approxi-

mation and mix unwanted contributions into the solution. In system (3.27) this problem

obviously no longer occurs.

Fig. 1 shows 1/μmax
n plotted against n for n = 1, . . . , 12. Even though the monotonous

dependence is obvious in Fig. 1, we were not able to prove it for all n ∈ N. Instead we
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Fig. 1. 1/μmax
n as a function of n.
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Fig. 2. Optimal profiles αopt (continuous line) and α̃opt (dashed line).

derive in Appendix A the estimate

μmax
n ≤ max

{
μmax
1 ,

Copt√
n(n+ 1)− 3/2

}
, n ∈ N (3.31)

with Copt given in (3.14). For n ≥ 5 the right-hand side of (3.31) is dominated by μmax
1 ;

we thus obtain for (3.16) (accurately to four decimals):

1

Ropt
E

= sup
n∈N

μmax
n = μmax

1 = (4.4717)−1. (3.32)

The corresponding optimal profile αopt shown in Fig. 2 is close to the constant profile

α = 1.

The computation of the critical Reynolds number Ropt
c for αopt is a standard problem

of (mean-field) dynamo theory that can be solved with great accuracy. Since Ropt
c is a real

eigenvalue of a linear set of equations, it is enough to vary the Reynolds number along

the real axis and to verify by a shooting method whether the boundary value problem

has a solution for the chosen Reynolds number. The smallest Reynolds number with this

property is the required Ropt
c . We obtain

Ropt
c = 4.4718, (3.33)
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which exceeds Ropt
E by less than 10−4 when normalized to Ropt

c . For comparison we have

also computed

R(α=1)
c = 4.4934, (3.34)

which was (to our knowledge) the lowest hitherto known critical Reynolds number

(cf. [KR80, p. 177]) and have, furthermore, translated the Proctor-bound (2.9) by means

of (3.13), (3.14) from the max-norm to the ‖ · ‖s-norm to obtain the necessary dynamo

criterion:

R ≥ C−1
optR

(m) > 3.0596. (3.35)

These results may be contrasted with those of the alternative norm (1.4). The only

difference in the governing system (3.27) - (3.30) concerns (3.27)4, which reads now

α′′
n = − 2

3r3
α′
n +

1

3r2
αn − 1

3
r2n
[n(n+ 1)

r2
TnSn + T

′
nS

′
n

+
n+ 1

r
(T

′
nSn + TnS

′
n) + αn T

2

n − 1

2n(n+ 1)
Tn (rρ

′
n + nρn)

]
and (3.30), which determines the eigenvalues μ̃n:

μ̃n =

(
3

∫ 1

0

(
α2
n + (α′

n)
2
)
r2dr

)−1/2

.

The numbers corresponding to (3.32) and (3.33) (accurately to three decimals) read

R̃opt
E = (μ̃max

1 )−1 = 4.349 (3.36)

and

R̃opt
c = 4.353, (3.37)

which makes a (normalized) difference of about 10−3. These numbers can again be

compared to8

R̃(α=1)
c = 4.493, (3.38)

but not to the Backus/Proctor-bound, since these bounds cannot be tranlated into the

‖ · ‖∼-norm (see Appendix B).

The optimal profile α̃opt is shown in Fig. 2.

4. Conclusions and outlook. We determined in this paper improved energy bounds

for the onset of dynamo action in the framework of spherically symmetric α2-dynamos

by solution of a variational problem that considered both magnetic field and α-profile.

For the α-profile we made use of the two different H1-type norms (1.5) and (1.4) and

computed numerically corresponding optimized energy bounds Ropt
E and R̃opt

E as largest

eigenvalues of certain non-linear systems of ordinary differential equations. These num-

bers have been compared with the critical Reynolds numbers Ropt
c and R̃opt

c of the optimal

8Note that ‖ · ‖∼ and ‖ · ‖s have been normalized such that ‖1‖∼ = ‖1‖s = ‖1‖m = 1.
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profiles, with R
(α=1)
c of the constant profile, and with previous energy bounds, if avail-

able. In particular, we found Ropt
E and R̃opt

E almost optimal (see (1.6)), although the

difference in the ‖ · ‖∼-norm is beyond numerical inaccuracy (see (3.36) and (3.37)),

which speaks against strict coincidence of R̃opt
E and R̃opt

c .

Numerical values and optimal profile shapes (see Fig. 2) depend on the chosen norm;

they can be more or less close to already known efficient profiles (here the constant profile;

see (3.33), (3.34), (3.37) and (3.38)). Comparison with previous bounds is only possible

if the corresponding norm is weaker than the norm used for optimization. This is the

case for the well-known max-norm bound and ‖ · ‖s; Ropt
E provides in fact a considerable

improvement of the Proctor-bound (3.35). In this respect optimization directly in the

max-norm would have been desirable, but to implement the max-norm in a variational

approach seemed too difficult to us.

When the restriction to spherical symmetry is abandoned, an improved energy bound

is according to (2.10) given by the largest eigenvalue of the system (2.20) of partial

differential equations. A spherically symmetric α-profile is no longer optimal as can be

seen from equation (2.20)2, where the right-hand side is not spherically symmetric, and

the reliable determination of the largest eigenvalue is a formidable task. An improvement

compared to the Proctor-bound can be expected, since the latter is based on an estimate

that is strict except for force-free magnetic fields. On the other hand, the improved

bound will be strictly below the spherically symmetric optimal bound R̃opt
E (see (3.36))9,

since the spherically symmetric optimal solution can be used as a test function in (2.10)

with value (3.36), which, however, is now no longer optimal.

Of course, it would be more interesting and more useful to derive improved energy

bounds for the induction equation. Optimizing in the full velocity space requires sup-

posedly a similar effort as the full-scale search for the most efficient velocity field. The

variational ansatz, however, allows (other than the determination of critical Reynolds

numbers) the combination of partial optimizations with estimations to obtain rigorous

results. So, there is hope to obtain in this “cheap” way some improvement, whose extent,

however, remains to be seen.

Appendix A. We deal in this appendix with two inequalities that are useful in

section 3: we present an elementary one without proof (Lemma 1) and give the proof of

inequality (3.31).

Lemma 1. Let N ∈ N and an ≥ 0, bn > 0 for 1 ≤ n ≤ N . Then

N∑
n=1

an

N∑
n=1

bn

≤ max
1≤n≤N

an
bn

(A1)

and equality holds if and only if an = bn for all n.

9Note that here only the ‖ · ‖∼-norm makes sense.
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Note that inequality (A1) remains valid in the limit N → ∞.

In order to prove (3.31) we recall that

μmax
n = sup

0 �= ˜Tn ∈ H1
0

0 �= ˜Sn ∈ H2
n

0 �= αn ∈ H1

∫ 1

0

αn Nn[T̃n, S̃n]dr

‖αn‖s
∫ 1

0

Dn[T̃n, S̃n]dr

(A2)

with

Nn[T̃n, S̃n] = 2
n(n+ 1)

r2
T̃nS̃n + T̃ ′

nS̃
′
n − T̃nS̃

′′
n ,

Dn[T̃n, S̃n] =
n(n+ 1)

r2
T̃ 2
n + (T̃ ′

n)
2 +
(
S̃′′
n − n(n+ 1)

r2
S̃n

)2
.

We start with a reformulation of the denominator in (A2). Let Ŝn with Ŝn

∣∣
(1,∞)

:=

S̃n(1) r
−n be the harmonic extension of S̃n onto (0,∞). We have then by integration by

parts

0 =

∫ R

1

(
Ŝ′′
n − n(n+ 1)

r2
Ŝn

)2
dr

=

∫ R

1

[
(Ŝ′′

n)
2 − 2

n(n+ 1)

r2
ŜnŜ

′′
n +
(n(n+ 1)

r2

)2
Ŝ2
n

]
dr

=

∫ R

1

[
(Ŝ′′

n)
2 + 2

n(n+ 1)

r2
(Ŝ′

n)
2 +

n(n+ 1)

r4
(
n(n+ 1)− 6

)
Ŝ2
n

]
dr

−2
n(n+ 1)

r2
Ŝn(Ŝ

′
n + Ŝn/r)

∣∣∣R
1

and analogously∫ 1

0

(
Ŝ′′
n − n(n+ 1)

r2
Ŝn

)2
dr

=

∫ 1

0

[
(Ŝ′′

n)
2 + 2

n(n+ 1)

r2
(Ŝ′

n)
2 +

n(n+ 1)

r4
(
n(n+ 1)− 6

)
Ŝ2
n

]
dr

−2
n(n+ 1)

r2
Ŝn(Ŝ

′
n + Ŝn/r)

∣∣∣1
0
.

Thus, in the limit R → ∞:∫ 1

0

(
S̃′′
n − n(n+ 1)

r2
S̃n

)2
dr =

∫ 1

0

(
Ŝ′′
n − n(n+ 1)

r2
Ŝn

)2
dr

=

∫ ∞

0

[
(Ŝ′′

n)
2 + 2

n(n+ 1)

r2
(Ŝ′

n)
2 +

n(n+ 1)

r4
(
n(n+ 1)− 6

)
Ŝ2
n

]
dr

=:

∫ ∞

0

D̂n[Ŝn]dr.



OPTIMAL ENERGY BOUNDS 457

With D̃n[T̃n] :=
n(n+1)

r2 T̃ 2
n + (T̃ ′

n)
2, (A2) now can equivalently be formulated as

μmax
n = sup

0 �= ˜Tn ∈ H1
0

0 �= ̂Sn ∈ H2
∞

0 �= αn ∈ H1

∫ 1

0

αn Nn[T̃n, Ŝn]dr

‖αn‖s
{∫ 1

0

D̃n[T̃n]dr +

∫ ∞

0

D̂n[Ŝn]dr

} , (A3)

where H2
∞ denotes the space of twice [weakly] differentiable functions Ŝn on (0,∞)

with finite H2-norm and with zero boundary conditions of Ŝn and Ŝ′
n at r = 0. Note

that elements of H2
∞ need not be harmonic in (1,∞) and need no longer satisfy the

(n-dependent) boundary condition at r = 1; both properties are consequences of the

Euler-Lagrange equations associated to (A3), which proves the equivalence of problems

(A2) and (A3).

Next we decompose the numerator and denominator in (A3) according to

∫ 1

0

αn Nn[T̃n, Ŝn]dr =

∫ 1

0

αn

(
2
n(n+ 1)

r2
T̃nŜn + T̃ ′

nŜ
′
n − T̃nŜ

′′
n

)
dr

=

∫ 1

0

αn

( 4

r2
T̃nŜn + T̃ ′

nŜ
′
n − T̃nŜ

′′
n

)
dr +

∫ 1

0

αn 2
n(n+ 1)− 2

r2
T̃nŜn dr

=

∫ 1

0

αn N1[T̃n, Ŝn]dr +
(
n(n+ 1)− 2

) ∫ 1

0

αn
2

r2
T̃nŜn dr

and

∫ 1

0

D̃n[T̃n]dr +

∫ ∞

0

D̂n[Ŝn]dr =

∫ 1

0

(n(n+ 1)

r2
T̃ 2
n + (T̃ ′

n)
2
)
dr

+

∫ ∞

0

[
(Ŝ′′

n)
2 + 2

n(n+ 1)

r2
(Ŝ′

n)
2 +

n(n+ 1)

r4
(
n(n+ 1)− 6

)
Ŝ2
n

]
dr

=

∫ 1

0

( 2

r2
T̃ 2
n + (T̃ ′

n)
2
)
dr +

∫ ∞

0

[
(Ŝ′′

n)
2 +

4

r2
(Ŝ′

n)
2 − 8

r4
Ŝ2
n

]
dr

+

∫ 1

0

n(n+ 1)− 2

r2
T̃ 2
n dr

+

∫ ∞

0

[
2
n(n+ 1)− 2

r2
(Ŝ′

n)
2 +

n(n+ 1)− 2

r4
(
n(n+ 1)− 4

)
Ŝ2
n

]
dr

=

∫ 1

0

D̃1[T̃n]dr +

∫ ∞

0

D̂1[Ŝn]dr

+
(
n(n+ 1)− 2

){∫ 1

0

1

r2
T̃ 2
n dr +

∫ ∞

0

( 2

r2
(Ŝ′

n)
2 +

n(n+ 1)− 4

r4
Ŝ2
n

)
dr

}
.
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By (A1), (3.13) and abbreviating the braces in the last line by Bn[T̃n, Ŝn] we can then

estimate

μmax
n = sup

˜Tn,̂Sn,αn

∫ 1

0

αn Nn[T̃n, Ŝn]dr

‖αn‖s
{∫ 1

0

D̃n[T̃n]dr +

∫ ∞

0

D̂n[Ŝn]dr

}

≤ sup
˜Tn,̂Sn,αn

max

{ ∫ 1

0

αn N1[T̃n, Ŝn]dr

‖αn‖s
{∫ 1

0

D̃1[T̃n]dr +

∫ ∞

0

D̂1[Ŝn]dr

} ,

∫ 1

0

αn
2

r2
T̃nŜn dr

‖αn‖s Bn[T̃n, Ŝn]

}

≤ max

{
sup

˜T1,̂S1,α1

∫ 1

0

α1 N1[T̃1, Ŝ1]dr

‖α1‖s
{∫ 1

0

D̃1[T̃1]dr +

∫ ∞

0

D̂1[Ŝ1]dr

} ,

sup
˜Tn,̂Sn,αn

(αn)max

∫ 1

0

2

r2
|T̃nŜn| dr

‖αn‖s Bn[T̃n, Ŝn]

}

≤ max

{
μmax
1 , Copt sup

˜Tn,̂Sn

∫ 1

0

2

r2
|T̃nŜn| dr

Bn[T̃n, Ŝn]

}
.

Finally, by the inequality ∫ ∞

0

Ŝ2 dr

r4
≤ 4

5

∫ ∞

0

(Ŝ′)2
dr

r2
,

which follows by the substitution Ŝ = rS from Hardy’s inequality∫ ∞

0

S2 dr

r2
≤ 4

∫ ∞

0

(S′)2dr

(see [HLP88, p. 175]), we can estimate Bn[T̃n, Ŝn] by

Bn[T̃n, Ŝn] ≥
∫ 1

0

1

r2
T̃ 2
n dr +

∫ ∞

0

( 5

2r4
Ŝ2
n +

n(n+ 1)− 4

r4
Ŝ2
n

)
dr

≥
∫ 1

0

1

r2
T̃ 2
n dr +

(
n(n+ 1)− 3

2

)∫ ∞

0

1

r4
Ŝ2
n dr,

and
∫ 1
0

2
r2 |T̃nŜn| dr by Cauchy-Schwartz:∫ 1

0

2

r2
|T̃nŜn| dr ≤

∫ 1

0

2
|T̃n|
r

|Ŝn|
r2

dr

≤
(
n(n+ 1)− 3

2

)−1/2
{∫ 1

0

1

r2
T̃ 2
n dr +

(
n(n+ 1)− 3

2

)∫ ∞

0

1

r4
Ŝ2
n dr

}
.
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Therefore,

Copt

∫ 1

0

2

r2
|T̃nŜn| dr

Bn[T̃n, Ŝn]
≤ Copt√

n(n+ 1)− 3/2
,

which proves (3.31).

Appendix B. We determine in this appendix the optimal constant (3.14) in the

estimate αmax ≤ C ‖α‖s (Lemma 2) and give a counterexample to the estimate αmax ≤
C ‖α‖∼.

Lemma 2. For every f ∈ H1((0, 1)) the inequality

max
[0,1]

|f | ≤ Copt

(∫ 1

0

(
f2 + (f ′)2

)
dx

)1/2

(B1)

holds with

Copt =
(e+ 1/e

e− 1/e

)1/2
.

Copt is the minimal constant in (B1); it is attained by the function fmin(x) =

coshx/ cosh 1, which is unique up to a sign and up to a reflection at x = 1/2.

Proof. Observe that the right-hand side in (B1) is the standard norm in H1((0, 1)),

which implies by Sobolev’s embedding theorems that f ∈H1((0, 1)) is (Hölder-)continuous

in [0, 1]; the left-hand side in (B1) is thus well defined and boundary-values exist in the

classical sense. Copt is then given by

1

Copt
= inf

0�=f∈H1((0,1))

(∫ 1

0

(
f2 + (f ′)2

)
dx
)1/2

max
[0,1]

|f | . (B2)

As the variational expression in (B2) is invariant under the transformations f → −f

and f(x) → f(1− x), it is sufficient to consider functions f ∈ H1((0, 1)) with

max
[0,1]

f = 1 and f(0) ≤ f(1). (B3)

To determine the infimum it is, furthermore, sufficient to assume f ≥ 0 in (0, 1), since

otherwise the function max(f, 0) has this property, is admissible and at most decreases

the variational expression in (B2). Finally, it can be assumed that the maximum is

attained at the boundary, which in view of (B3) means that f(1) = 1; this assumption

is justified since any function with f(x0) = 1, x0 /∈ {0, 1} can be replaced by

f̃ :=

{
max(f(x+ x0) + f(0)− f(1) , 0) for 0 ≤ x ≤ 1− x0,

f(x− 1 + x0) for 1− x0 < x ≤ 1,

which is admissible, i.e., f̃ is non-negative, satisfies (B3) and f̃ ∈ H1((0, 1)), and has,

additionally, the property f̃(1) = 1 and does not increase the variational expression in

(B2). Problem (B2) is thus equivalent to the variational problem

1

Copt
= inf

{f∈H1((0,1)): f(1)=1}

(∫ 1

0

(
f2 + (f ′)2

)
dx
)1/2

, (B4)
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which is of standard type. In particular, there exists a unique minimizer fmin :=

coshx/ cosh 1 of problem (B4), which is the unique solution of the Euler-Lagrange equa-

tions

f ′′ − f = 0 in (0, 1) , f ′(0) = 0 , f(1) = 1 ,

associated to (B4). Inserting fmin into (B4) we find

1

Copt
=
(e− 1/e

e+ 1/e

)1/2
,

which is the asserted optimal constant. �
In contrast to (B1) there is no constant C > 0, such that

max
[0,1]

|f | ≤ C

(∫ 1

0

(
f2 + (f ′)2

)
x2 dx

)1/2

holds for all weakly differentiable functions f : (0, 1) → R. This is evident from the

sequence of functions (fn)n∈N with

fn :=

⎧⎪⎨⎪⎩
1 for 0 ≤ x ≤ 1

n
,

1

nx
for

1

n
< x ≤ 1,

for which one finds max[0,1] |fn| = 1 for all n ∈ N but∫ 1

0

(
f2
n + (f ′

n)
2
)
x2 dx =

1

n

(
1− 2

3n2

)
,

which vanishes for n → ∞. This is in accordance with well-known results about the em-

bedding of the space of (Hölder-)continuous functions into H1: it works in one dimension

but not in three (see [Ada75, p. 97]).
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