Fibered Knot. If a knot is fibered, then a “fan” of surfaces can be defined, each one anchored to the knot
and collectively filling out all of space. All Lorenz knots are fibered. (Figure courtesy of Jos Leys from the
online article, “Lorenz and Modular Flows, a Visual Introduction.”)
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A New Twist in Knot Theory

spearean plays, you have probably run into the motif

of the double identity. Two characters who seem quite
different, like Dr. Jekyll and Mr. Hyde, will turn out to be one
and the same.

This same kind of “plot twist” seems to work pretty well in
mathematics, too. In 2006, Etienne Ghys of the Ecole Normale
Supérieure de Lyon revealed a spectacular case of double iden-
tity in the subject of knot theory. Ghys showed that two differ-
ent kinds of knots, which arise in completely separate branches
of mathematics and seem to have nothing to do with one an-
other, are actually identical. Every modular knot (a curve that
is important in number theory) is topologically equivalent to a
Lorenz knot (a curve that arises in dynamical systems), and vice
versa.

The discovery brings together two fields of mathematics
that have previously had almost nothing in common, and
promises to benefit both of them.

The terminology “modular” refers to a classical and ubig-
uitous structure in mathematics, the modular group. This

WHETHERYOURTASTE RUNS to spy novels or Shake-

group consists of all 2 x 2 matrices, [ Z Z ],whose entries
are all integers and whose determinant (ad — bc) equals 1.
Thus, for instance, the matrix [ g g } is an element of the

modular group. (See “Error-Term Roulette and the Sato-Tate
Conjecture,” on page 19 for another mathematical problem
where the concept of modularity is central.)

This algebraic definition of the modular group hides to some
extent its true significance, which is that it is the symmetry
group of 2-dimensional lattices. You can think of a lattice as an
infinitely large wire mesh or screen. The basic screen material
that youbuy at a hardware store has holes, or unit cells, that are
squares. (See Figure 1a, next page.) However, you can create lat-
tices with other shapes by stretching or shearing the material
uniformly, so that the unit cells are no longer square. They will
become parallelograms, whose sides are two vectors pointing
in different directions (traditionally denoted w; and w>). The
points where the wires intersect form a polka-dot pattern that
extends out to infinity. The pattern is given by all linear combi-
nations of the two “basis vectors,” aw; + bw-, such that both
a and b are integers.

Unlike hardware-store customers, mathematicians consider
two lattices to be the same if they form the same pattern of
intersection points. (The wires, in other words, are irrelevant,
except to the extent that they define where the crossing points
are.) This will happen whenever a lattice has basis vectors w;
and wj that are linear combinations of w; and w; (i.e., w] =

E}ienne Ghys. (Photo courtesy of
Etienne Ghys.)
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Figures la-1c. (a) A hardware-
store lattice and its basis vectors.
(b) A triangular lattice and its ba-
sis vectors. (c) The same lattice
can be generated by two differ-
ent vectors. (Figures courtesy of
Jos Leys from the online article,
“Lorenz and Modular Flows, a
Visual Introduction.”)

aw; + bw; and w), = cw; + dwy, for some integers a, b, c,
and d) and vice versa. These conditions hold precisely when

the matrix [ ? Z is in the modular group. Figures 1b and

1c show two different bases for a hexagonal lattice. The matrix
that transforms one basis into the other would be a member of
the modular group.

Figure 1d. The modular flow gradually deforms the shape of a
lattice, but brings it back after a finite time to the same lattice
with different basis vectors. This figure illustrates the trajectories
of four points in the lattice. Every point in the lattice moves si-
multaneously, and every point arrives at its “destination” in the
lattice at the same time. Only the center point does not move at
all. (Figure courtesy of Jos Leys from the online article, “Lorenz
and Modular Flows, a Visual Introduction.”)

The matrix transformation distorts the underlying geome-
try of the plane, yet maps the lattice to itself. It accomplishes
this transformation in one step. But there is also a way to pro-
duce the same effect gradually, by means of a smooth deforma-
tion. Imagine drawing a family of hyperbolas, with one hyper-
bolalinking w; to w) and another linking w, to w5. (See Figure
1d.) Remarkably, it is possible to extend this modular flow to
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the entire plane, in such a way that all of the polka dots on the
lattice flow along hyperbolas to different polka dots, no polka
dots areleft out, and the direction of motion of every polka dot
at the beginning matches the direction of the new polka dot
that comes to replace it at the end of the flow.

There is another way of visualizing the modular flow that
emphasizes the special nature of matrices with integer en-
tries. This method involves constructing an abstract “space
of all lattices” (which turns out to be three-dimensional, and
as described below, can be easily drawn by a computer). The
modular flow defines a set of trajectories in this space, in the
same way that water flowing in a stream generates a set of
streamlines. Most of the streamlines do not form closed loops.
However, those that do close up are called modular knots, and
they correspond explicitly to elements of the modular group.
This point of view subtly shifts the emphasis from algebra (the
modular group is interesting because its elements have integer
entries) to geometry (the modular group is interesting because
it produces closed trajectories of the modular flow).

How should we visualize the “space of all lattices”? This
turns out to be a crucial question. One traditional approach
identifies a lattice with the ratio of its two basis vectors,
T = w>/w;. In order for this definition to make sense, the
basis vectors have to be considered as complex numbers (i.e.,
numbers with both a real and imaginary part). The ratio T will
be a complex number x + iy whose imaginary part (y) can be
assumed to be positive. Thus T lies in the upper half of the xy-
plane. In fact, it can be pinned down more precisely than that.
As explained above, any given lattice can have many different
pairs of basis vectors with different ratios T, but it turns out
that there is only one pair of basis vectors whose ratio T lies in
the shaded region of Figure 2 (next page). This “fundamental
region” can therefore be thought of as representing the space
of all lattices, with each lattice corresponding to one point in
the region. For example, the screen you buy in the hardware
store, with square holes, corresponds to the ratio 0 + 1i or the
point (0, 1) in the fundamental region.

However, there is some ambiguity at the edge of the funda-
mental region. The points T on the left-hand boundary corre-
spond to the same lattices as the points T’ on the right-hand
side. This means that the two sides of the fundamental region
should be “glued together” to form a surface that looks like an
infinitely long tube with an oddly shaped cap on one end. This
two-dimensional surface is called the modular surface.

As mentioned above, each lattice is represented by a single
point on the modular surface. As the lattice deforms under the
modular flow, its corresponding point travels along a circular
arc in the upper half-plane. Because of the way the boundaries
of the fundamental domain are glued together, each time the
curve exits one side of the fundamental domain it re-emerges
on the opposite side, and the resultis a trajectory with multiple

How should we
visualize the “space of
alllattices”? This turns
out tobeacrucial
question.
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Figure 2. Any lattice has a basis w, w, whose ratio lies in
the fundamental domain F. Any change of basis corresponds
to a linear fractional transformation (see column labeled “For-
mula”) or to a matrix (see column labeled “Matrix”). The set of
all such transformations is known as the modular group. The
simple transformations X, Y and Z, listed here, generate the rest
of the modular group. Note that the images X(F), Y(F), XY(F), ...,
cover a half-plane. The modular surface is the quotient space of
the half-plane by the modular group. It can be visualized as the
region F with its sides glued together. (The bottom is also folded
in half and glued together.)

pieces, somewhat like the path of a billiard ball (see Figure 3).
(In fact, the modular flow has sometimes been called Artin’s bil-
liards, after the German mathematician Emil Artin who studied
itin the 1920s.) Most billiard trajectories do not close up, but a
few of them do, and these are called closed geodesics. They are
almost, but not quite, the same as modular knots; the differ-
ence is that they lie in a two-dimensional surface, but modular
knots are defined in three-dimensional space.

The “missing” dimension arises because there are really four
dimensions that describe any lattice: two dimensions of shape,
one dimension of orientation, and one of mesh size. The modu-
lar surfaceignores the last two dimensions. In other words, two
lattices correspond to the same point in the modular surface if
they have the same shape but different orientations. For every-
day applications, it makes sense to consider such lattices to be
equivalent. If you wanted a screen window made up of diamond
shapesinstead of square shapes, youwouldn’t take your screen
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back to the store and exchange it; you would simply rotate the
lattice 45 degrees.

__--)--.._

Figure 3. When a lattice is deformed as by the modular flow,
its corresponding basis vectors define a path through the half-
plane illustratedin Figure 2. Each segment of this path (indicated
here by different colors) may be mapped back to the fundamen-
tal region F by a transformation in the modular group.

However, this common-sense reduction throws away some
valuable information about the modular flow. If the orienta-
tion is not ignored, the “space of all lattices” becomes three-
dimensional.! Amazingly, it is simpler to visualize this space
than it is to visualize the modular surface. Using some elegant
formulas from the theory of elliptic curves, Ghys showed that
the space of all lattices is topologically equivalent to an ordi-
nary three-dimensional block of wood, with a wormhole bored
out of it in the shape of a trefoil knot. (See Figure 4, next page.)
Modular knots, therefore, are simply curves in space that avoid
passing through the forbidden zone, the trefoil-shaped worm-
hole in space.

Every matrix in the modular group corresponds to a modu-
lar knot, and simpler matrices tend to correspond to simpler

knots. For instance, Ghys showed that the matrix [ i é

corresponds to the green loop shown in Figure 5a, page 9. This
loop is unknotted, but it does form a nontrivial link with the
forbidden trefoil knot. (That is, it cannot be pulled away from
the forbidden zone without passing through it.) The matrix

[ g z } corresponds to a knot that winds around the forbid-

den zone several times, and is actually a trefoil knot itself. The

matrix [ 3997200840707 2471345320891 } corresponds
9088586606886 5619191248961

to the white knot in Figure 5b, page 9, which is a bit of a mess.

Thus two natural questions arise: What kinds of knots can arise

as modular knots? And how many times do they wind around

I This space should properly be called the space of all unimodular lat-
tices because the area of the unit cells is still ignored (or, equivalently,
assumed to be equal to 1).
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the forbidden zone? Remarkably, Ghys answered both of these
questions. But the answer requires a detour into a completely
different area of mathematics.

Figure4. Ghysrealized that the conventional approach to defin-
ing the modular surface omits information about the orienta-
tion of a lattice. Therefore he defined a modular space, which is
topologically equivalent to the exterior of a trefoil knot, as shown
here. Closed geodesics, like the one in Figure 3, lift to modular
knots, which wind around the trefoil but never intersect it. (Fig-
ure courtesy of Jos Leys from the online article, “Lorenz and Mod-
ular Flows, a Visual Introduction.”)

In 1963, a mathematician and meteorologist named Edward
Lorenz was looking for a simple model of convection in the
atmosphere, and came up with a set of differential equations
that have become iconic in the field of dynamical systems. The
equations are these: % = 10(y — x), % =28x —y —xz, % =
Xy — %z.

The specific meaning of the variables x, y, zis not too impor-
tant. They are three linked variables, each a function of time
(t), which in Lorenz’s model represented the temperature and
amount of convection at time t in a fictitious atmosphere. The
equations describe how the atmosphere evolves over time. Be-
cause there are only three variables, unlike the millions of vari-
ables necessary to describe the real atmosphere, the solutions
canbe plotted easily as trajectories in three-dimensional space.

Lorenz noticed a phenomenon that is now known as de-
terministic chaos or the “butterfly effect.” Even though the
equations are completely deterministic—there is no ran-
domness in this fictitious atmosphere—nevertheless it is
impossible to forecast the weather forever. No matter what
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Figure 5. Two different modular knots and the corresponding el-
ements of the modular group. (Figures courtesy of Jos Leys from
the online article, “Lorenz and Modular Flows, a Visual Introduc-
tion.”)

starting point (x, y, z) you choose, even the slightest deviation
from this initial condition corresponding to a slight experi-
mental error in measuring the temperature or convection) will
eventually lead to completely different weather conditions.
The name “butterfly effect” refers to an often-cited analogy:
the flapping of a butterfly’s wings today in Borneo could lead
to a typhoon next month in Japan.
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A look at the trajectories of the Lorenz equation (Figure 6)
explains why this is so. The trajectories concentrate around
two broad, roughly circular tracks that, ironically, bear some
resemblance to a pair of butterfly wings. You can think of one
loop as predicting dry, cold weather and the other as predicting
rainy, warm weather. Each time the trajectory circles one ring
of the track (one “day”), it returns to the intricately interwoven
regionin the center, where it “decides” which way to go the next
day. After a few dozen circuits, all information about the start-
ing position is effectively lost, and the trajectory might as well
be picking its direction at random.” Thus the full trajectory is,
for all practical purposes, unknowable.

Figure 6. The Lorenz attractor (yellow). One particular trajec-
tory is shown in blue. It is a closed orbit of the Lorenz differential
equations, or a Lorenz knot. (Figure courtesy of Jos Leys from
the online article, “Lorenz and Modular Flows, a Visual Introduc-
tion.”)

However, suppose we aren’t being practical. Suppose we can
prescribe the initial position with unrealistic, infinite precision.

2Incidcntally, Lorenz chose the coefficient 28, in the equation for
dy/dt, to postpone the onset of chaos as long as possible. A trajec-
tory starting near the origin (0, 0, 0) will loop around one track of the
Lorenz attractor 24 times before it finally switches to the other side.
If the coefficient 28 was made either larger or smaller, the number
of consecutive “sunny days” at the beginning of the trajectory would
decrease.
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Canwe find a trajectory of the Lorenz equations thatis the epit-
ome of predictability—a closed loop? If so, the weather on day
1 would be repeated exactly on day 7, on day 13, and so on.
Order, not chaos, would reign in the world.

This was the question that Bob Williams (now retired from
the University of Texas) began askingin thelate 1970s, together
with Joan Birman of Columbia University. Over a thirty-year pe-
riod, it has gradually become clear that closed trajectories do
exist and that they form a variety of nontrivial knots. It is natu-
ral to call them Lorenz knots. For example, the trajectory shown
in Figure 7a is topologically equivalent to a trefoil knot.

Even though perfectly periodic weather conditions can
never be realized in practice, nevertheless they “give you a
feeling of how tangled up this flow is,” Birman says. It is amaz-
ing to discover that the simple pair of butterfly wings seen
in Figure 6 actually contains infinitely many different Lorenz
knots, all seamlessly interwoven without ever intersecting one
another. (See Figure 7b.) However, there are also many knots
that do not showup as trajectories of the Lorenz equations. For
example, the second-simplest nontrivial knot, the figure-eight
knot (Figure 7c) is not a Lorenz knot. (The simplest nontrivial
knot, the trefoil knot, is a Lorenz knot because we have seen it
in Figure 7a.)

In a paper written in 1982, Birman and Williams derived a
host of criteria that a knot must satisfy in order to be a Lorenz
knot. For example, they are fibered knots—an extremely un-
usual property that means that it is possible to fill out the
rest of space with surfaces whose boundaries all lie on the
knot. The figure on page 3, “The Fibered Knot,” illustrates
this difficult-to-visualize property. Using Birman and Williams’
criteria, Ghys has showed that only eight of the 250 knots with
ten or fewer “overpasses” or “underpasses” are Lorenz knots.
In other words, even though infinitely many different Lorenz
knots exist, they are rather uncommon in the universe of all
knots.

Lorenz knots are extremely difficult to draw because the
very nature of chaos conspires against any computer render-
ing program. Even the slightest roundoff error makes the knot
fail to close up, and eventually it turns into a chaotic tangle.
Thus, without theoretical results to back them up, we would
not know that computer-generated pictures like Figure 7a
represent actual closed trajectories.

Birman and Williams originally proved their theorems about
Lorenz knots under one assumption. Earlier, Williams had con-
structed a figure-eight-shaped surface, a geometric template,
which (he believed) encoded all the dynamics of a Lorenz knot.
In essence, he argued that the butterfly wings of Figure 6 are
real (see also Figure 8, p. 12), and not just a trick of the eye.
Although he and Clark Robinson of Northwestern University
produced strong numerical evidence to support this belief, a
proof remained elusive. In fact, this problem appeared on a list
ofleading “problems for the 215! century” compiled by Stephen
Smale in 1998.

As it turned out, Smale (and Birman and Williams) did not
have long to wait. In 2002, Warwick Tucker of Uppsala Univer-
sity proved the conjecture by using interval arithmetic, a hybrid

(c)

Figure 7. (a) This Lorenz knot is
topologically equivalent to a tre-
foil knot. (b) Different Lorenz knots
interlace with each other in a phe-
nomenally complex way, never
intersecting one another. (c) Not
all topological knots are Lorenz
knots. For example, no orbit of the
Lorenz equations is topologically
equivalent to a figure-eight knot,
shown here. (Figures courtesy of
Jos Leys from the online article,
“Lorenz and Modular Flows, a
Visual Introduction.”)
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technique that combines computer calculations with rigorous
proofs that the results are robust under roundoff error.

Even though the actual trajectories of the Lorenz flow do not
lie on the template, Tucker’s work guarantees that they can be
mashed down onto the template without altering the topologi-
cal type of the knot. In other words, none of the strands of the
knot pass through each other or land on top of one another as
a result of the mashing process. Thus, the topology of Lorenz
knots canbe studied simply by drawing curves on the template,
which is amuch easier job than solving Lorenz’s equations.

Once the knots have been pressed onto the template, the
shape of the knot is determined by the series of choices the
trajectory makes as it passes through the central region. Each
time it chooses toveer either left or right. The trefoil knotin Fig-
ure 7a would correspond to the string of decisions “right, left,
right, left, right,” or simply the string of letters RLRLR. (Dif-
ferent ways of reducing the three-dimensional dynamics to a
one-dimensional “return map” had been noted by other mathe-
maticians too, including John Guckenheimer of Cornell Univer-
sity.)

Figure 8. (left) Orbits of the Lorenz equations can be classified by flattening them down onto a tem-
plate, a sort of paper-and-scissors model of the Lorenz attractor. (right) A related set of equations,
Ghrist’s dynamical system, has a template that looks like the Lorenz template with an extra half-twist to
one of the lobes. Amazingly, this slight modification is enough to guarantee that every knot appears as
a closed orbit. (Figures courtesy of Jos Leys from the online article, “Lorenz and Modular Flows, a Visual
Introduction.”)
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Theidea of templates has led to other surprising discoveries
in dynamical systems. In a 1995 doctoral dissertation, Robert
Ghrist, who is now at the University of Illinois, showed that
some dynamical systems allow a much richer set of closed
trajectories—in fact, they contain every closed knot. Not just
every known knot, but every knot that will ever be discovered!
Ghrist points out that his example can be made quite concrete.
“Suppose I take a loop of wire,” he says, “and bend it in the
shape of a figure-eight knot [Figure 7c].Irun an electric current
through it, and look at the induced magnetic field. Assuming it
doesn’t have any singularities, it will have closed field lines of
all knot types.” Once again, the proof involved the construction
of a geometric template, which turned out to be very similar Bob Williams. (Photo courtesy of
to the butterfly-shaped Lorenz template, except that one of the R. F. Williams.)
lobes is given an extra twist. (See Figure 8.)

Although Ghrist’s result surprised Birman and Williams,
who had conjectured that a “universal template” containing all
knots was impossible, it confirmed the idea that some flows are
more chaotic than others, and that studying closed trajectories
is a good way of telling them apart. “With the wisdom of hind-
sight, the existence of a small number of knots in a flow is like
the onset of chaos,” Birman says. Lorenz’s equations seem to
define a relatively mild form of chaos, while Ghrist’s equations
seem to represent a full-blown case.

When Ghys started thinking about modular knots, he

ironically made the opposite guess to Birman and Williams.
He thought that the class of modular knots was probably
universal—in other words, that every knot can be found some-
where in the modular flow. “The first time I thought of these
questions, I wanted to understand modular knots, and I had
no idea they were connected with the Lorenz equations,” Ghys
says. But then he made a remarkable discovery. There is a
copy of the Lorenz template hidden within the modular flow!
He originally made a schematic drawing that shows the tem-
plate looking very much like a pair of spectacles straddling
the trefoil-shaped “forbidden zone.” Later, with the help of
graphic artist Jos Leys of Belgium, he produced beautiful an-
imations that show how any modular knot can be deformed
onto the template. (See Figure 9, next page.) “A proof for me is
not always fully formalized,” he says. “I had it all clear in my
head. I was sure it was true, I knew why it was true, and I was
beginning to write it down. But for me, putting it in a picture
was a confirmation that it was more true thanI thought.”

Whether by formal argument or a “proof by picture,” the
conclusion immediately follows that all modular knots are
Lorenz knots. “A lot of people look at Etienne’s result and see
it as aresult about how complicated the modular flow is, or the
number theory,”says Ghrist. “I take a contrarian view. Etienne’s
work is showing that there is a certain parsimony in modular
flow. Working under the constraints of complicated dynamics,
it’'s got the simplest representation possible. Likewise, with
the Lorenz equations being one of the first dynamical systems
investigated,it’s not surprising that they also have the simplest
kind of chaotic dynamics.”
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Figure 9. The Lorenz template can be deformed in such a way
that it straddles the “forbidden” trefoil from Figure 4. This insight
is a key part of the proof that any Lorenz knot is a modular knot,
andviceversa. (Figure courtesy of Jos Leys from the online article,
“Lorenz and Modular Flows, a Visual Introduction.”)

The converse—that all Lorenz knots are modular—also
holds true, once it is shown that the modular group allows
all possible sequences of “left turns” and “right turns” within
the template. In fact, Ghys found a direct connection between
the sequence of turns and a previously known function in
number theory. Ghys calls it the “Rademacher function,”
although he comments that so many mathematicians have
discovered and rediscovered it that he is not sure whether to
name it after “Arnold, Atiyah, Brooks, Dedekind, Dupont, Euler,
Guichardet, Hirzebruch, Kashiwara, Leray, Lion, Maslov, Meyer,
Rademacher, Souriau, Vergne, [or] Wigner”! The Rademacher

. . . a b |.
function assigns to each matrix [ c d ] in the modular

group an integer. The classical, and not very intuitive way, of
defining this integer goes as follows: First you sum two nested
infinite series of complex numbers that are not integers. After
computing the sums (called g> and g3), next you compute
(g2)% — 27(g3)? (the “Weierstrass discriminant”), and take its
24" root (the “Dedekind eta function”). Finally, you take the
complex logarithm of this function. It is well known that com-
plex logarithms have an ambiguity that is an integer multiple
of 2mi. When you traverse the closed geodesic defined by
(g Z ] and come back to the starting point, the logarithm
of the Dedekind eta function will not necessarily come back to
its original value. It will change by 27ri times an integer—and

that integer is the Rademacher function of [ (g Z ] .

14
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A variety of other ways to compute this function were
known, but none of them can be said to be really easy. Ghys’
work gives it a new topological interpretation that does not
require such an elaborate definition and that makes its mean-
ing completely clear. As explained above, the idea is to use
modular knots in three-space instead of closed geodesics in
the modular surface. Every matrix in the modular group de-
fines a modular knot. From Ghys’s work, it follows that you
can press this knot down onto the Lorenz template. Then the
Rademacher function is simply the number of left turns minus
the number of right turns! It’s hard to imagine a more elegant
or a more concrete description.

Ghys’s result opens up new possibilities both for number
theory and for dynamical systems. One reason mathematicians
care so much about two-dimensional lattices is that they are
the next step up from one-dimensional lattices. In one dimen-
sion, up to scaling, there is only one lattice: the set of integers,
{...,—2,-1,0,1, 2,...}. The discipline of number theory (prop-
erties of the integers) is an exploration of its properties.

In fact, there is a precise analogy between number theory
and the modular surface, which has yet to be fully understood.
One of the most important functions in number theory is the
Riemann zeta function C(s), which relates the distribution of
prime numbers to the distribution of a mysterious set of non-
integers, the points s, where C(s,) = 0. These points s, are
known as zeroes of the zeta function.

The most famous open problem in number theory, the Rie-
mann Hypothesis (see What’s Happening in the Mathematical
Sciences, Volumes 4 and 5), asks for a proof that the numbers
sy all lie on a single line in the complex plane. This kind of tight
control over their distribution would imply a host of “best pos-
sible” results about the distribution of prime numbers.

One of the many pieces of evidence in favor of the Riemann
Hypothesis is a very similar theorem for two-dimensional lat-
tices, called the Selberg trace formula, that was proved in 1956
by Atle Selberg (a Norwegian mathematician who died recently,
in 2007). It involves a Selberg zeta function, whose zeroes can
be described as the energy levels of waves on the modular sur-
face, and whose formula looks eerily similar to the formula for
the Riemann zeta function. And what plays the role of prime
numbers in that formula? The answer is: the lengths of closed
geodesics in the modular surface. To make a long story short,
the Selberg trace formula says that these lengths are dual to en-
ergy levels of waves on the modular surface, in exactly the same
way that prime numbers are thought to be dual to zeroes of the
Riemann zeta function. In fact, this analogy has led some math-
ematicians and physicists to suggest that the Riemann zeroes
may also turn out to be energy levels of some yet undiscovered
quantum-mechanical oscillator.

In any event, closed geodesics on the modular surface
are clearly very relevant to number theory. And Ghys’ result
suggests that there is much more information to be obtained
by going up a dimension and looking at modular knots. The
Rademacher function is only the tip of the iceberg. It repre-
sents the simplest topological invariant of a modular knot,
namely the “linking number,” which describes how many times
it wraps around the forbidden trefoil. Knot theory offers many

The Rademacher
functionis only the tip
of theiceberg. It
represents the simplest
topological invariant of
amodular knot, namely
the “linking number,”
which describes how
many times it wraps
around the forbidden
trefoil.
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Ghys’ theoremalso
implies that modular
knots, because they are
Lorenz knots, have the
same properties that
Lorenz knots do. For
instance, modular knots
are fibered—afact that
was not previously
known.

more possible invariants for a modular knot. Could some of
these also have analogues in number theory?

“I must say I have thought about many aspects of these
closed geodesics, but it had never crossed my mind to ask
what knots are produced,” says Peter Sarnak, a number the-
orist at Princeton University. “By asking the question and by
giving such nice answers, Ghys has opened a new direction of
investigation which will be explored much further with good
effect.”

Ghys’ theorem also implies that modular knots, because
they are Lorenz knots, have the same properties that Lorenz
knots do. For instance, modular knots are fibered—a fact that
was not previously known. Ghys is currently looking for amore
direct proof of this fact.

The double identity of modular and Lorenz knots also raises
new questions for dynamical systems. For starters, modular
knots are vastly easier to generate than Lorenz knots because
the trajectories are parametrized by explicit functions. These
trajectories are not literally solutions of the Lorenz flow, and
yet somehow they capture an important part, perhaps all, of
its dynamical properties. How faithfully does the modular flow
really reflect the Lorenz flow? Tali Pinsky of Technion in Israel
recently showed that there is a trefoil knot in space that forms
a “forbidden zone” for the Lorenz flow, analogous to the for-
bidden zone for the modular flow. More generally, what kinds
of dynamical systems have templates, and when is a template
for a solution just as good as the solution itself? How can you
tell whether a template is relatively restrictive, like Lorenz’s, or
allows for lots of different behaviors, like Ghrist’s?

Ghys’ theorem has already inspired Birman to take a fresh
look at Lorenz knots. With Ilya Kofman of the College of Staten
Island, she has recently come up with a complete topological
description of them. It was already known that all torus knots—
in other words, curves that can be drawn on the surface of a
torus—are Lorenz knots. (For example, a trefoil knot can be
drawn as a curve that goes around the torus three times in the
“short” direction while going twice around in the “long” direc-
tion.) However, the converse is not true—many Lorenz knots
are not torus knots.

Birman and Kofman have shown that Lorenz knots are nev-
erthelessrelated to torus knots by a simple twisting procedure.
Theidea of twisting is to take several consecutive strands of the
knot—any number you want—and pull them tight so that they
lie parallel to each other. Cut all of the parallel pieces at the top
and bottom, to get a skein. Now give the whole skein a twist by
arational multiple of 360°, so that the bottom ends once again
lie directly below the top ends. Then sew them back up to the
main knot exactly where they were cut off in the first step.
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Any Lorenz knot, Birman and Kofman showed, can be ob-
tained from a torus knot by repeated application of this twist-
ing procedure.’

In fact, topologists were already aware that twisted torus
knots have some special properties. In 1999, topologists
Patrick Callahan, John Dean, and Jeff Weeks proved that their
Jones polynomials (a knot invariant discovered in the 1980s
by Vaughan Jones) are unusually simple. Another important
topological invariant of knots, discovered by William Thurston
in the 1970s, is the hyperbolic volume of their complement.
Callahan, Dean and Weeks showed that twisted torus knots
tend to have unusually small volumes. Their results, together
with the work of Ghys and Birman, suggest that twisted torus
knots arise naturally in problems outside topology because
they are the simplest, most fundamental non-torus knots.

“What 'm most pleased about is that Ghys’ work is remind-
ing a new generation of mathematicians of what Joan Birman
and Bob Williams did back in the 1980s,” Ghrist says. “That was
incredibly beautiful and visionary work that they did. I'm de-
lighted to see someone of Ghys’ stature and talent coming in,
revisiting those ideas and finding new things.”

Joan Birman. (Photo courtesy of Joan S. Birman.)

3There is one mild technical condition, which is that the twists all have
to be in the same direction.
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