Donald E. Knuth received a Ph.D. in mathematics from the California Insti-
tute of Technology in 1963, writing a thesis in algebra under the supervision
of Marshall Hall. After serving on the faculty at Cal Tech, he joined the De-
partment of Computer Science at Stanford University in 1968. He has worked
in the analysis of algorithms, combinatorics, programming languages, and the
history of computer science. He also designed the TEX typesetting system.
His monumental work The Art of Computer Programming demonstrates the
significant interaction between mathematics and computer science.

Algorithmic Themes

DONALD E. KNUTH

I like to think of mathematics as a vast musical instrument on which
one can play a great variety of beautiful melodies. Many generations of
mathematicians have provided us with rich tonal resources that offer limitless
possibilities for harmonious combination.

A great performance of mathematics can be as exciting to the audience as it
is to the person controlling the instrument. Whether we are replaying a classic
theme, or improvising a new one, or just fooling around, we experience deep
pleasure when we encounter patterns that fit together just right, or when we
can pull out all the stops in order to unify independent voices and timbres.

This analogy isn’t perfect, because mathematics is the music as well as the
organ for its creation. But a view of mathematics as a multivoiced mechanism
helps me understand the relationship between mathematics and its infant
step-child called computer science. I believe computer science has made
and will continue to make important contributions to mathematics primarily
because it provides an inspiration for new themes and rhythms by which the
delicious modulations of mathematics can be enjoyed and enriched.

Computer science is not the same as mathematics, nor is either fieid a sub-
set of the other. I believe that there is roughly as much difference between a
computer scientist and a mathematician as there is between a mathematician
and a physicist (although the distance from computer science to physics is
greater than the other two distances). People like myself look at mathematics

439

440 DONALD E. KNUTH

as a device for articulating computer science, but there is of course a con-
verse relation: Many mathematicians see computer science as an instrument
for developing mathematics. Both viewpoints are valid, yet I wish to stress
the former, which I believe is more significant for mathematicians. Computer
science is now enriching mathematics — as physics did in previous genera-
tions — by asking new sorts of questions, whose answers shed new light on
mathematical structures. In this way computer science makes fundamental
improvements to the mathematical ensemble. When good music is played, it
influences the builders of musical instruments; my claim is that the cadences
of computer science are having a profound and beneficial influence on the
inner structure of mathematics. (In a similar way, applications of computers
to physics, medicine, psychology, mathematics, art — and, yes, music — are
improving the core of computer science. But that’s another story.)

I must admit that my intuitive impressions about the distinction between
mathematics and computer science are not universally shared. Such opinions
cannot be demonstrated like theorems. But I know that I experience a con-
scious “culture shock” when I switch from a mathematician’s way of thinking
to that of a computer scientist and back again.

For example, I recall that when I was studying the properties of Dedekind
sums [10], I began that work with the mentality I had when I was a graduate
student of mathematics, but then I got stuck. The next day I looked at the
remaining problems with computer science eyes, and I saw how to write an
algorithm and to ask new questions; this led me to another plateau. Once
again I was stuck, since my computer science ideas had now been exhausted.
So I put a mathematical cap on again and was able to move further. Such
alternation continued over a period of weeks, and I could really feel the
transitions.

Another example, perhaps more convincing to someone besides myself, is
based on my experiences with a mathematical novelette called Surreal Num-
bers [8]. When I wrote that little book I was definitely relishing the perspec-
tive of a pure mathematician, with no illusions that the book would be of
the slightest interest to a computer scientist. Subsequent book reviews bore
out this hypothesis: The work was praised in the Bulletin as “an exciting
and stimulating book which ‘turns on’ the reader” [2], and Gian-Carlo Rota
recently wrote (while reviewing another book) that “Surreal numbers are an
invention of the great J. Conway. They may well go down in history as one
of the great inventions of the century” [14]. But the consensus in computer-
science circles is that “The book is a failed experiment” [16].

I would like to think that those book reviews prove my point about the dif-
ference between computer scientists and mathematicians. But the argument
is not conclusive, because there are different kinds of mathematicians too.
For example, I showed the manuscript of Surreal Numbers to George Polya
before it was published; he replied as follows [12]:

ALGORITHMIC THEMES 441

I must confess, I am prejudiced against the case you have cho-
sen for a case study. I simply cannot imagine that mathematically
unsophisticated young people can be interested in this kind of “ab-
stract” topic and even develop creativity on it. I cannot get rid of
my prejudice — to be honest, I cannot even really wish to get rid
of it, it is in my constitution: I can develop interest only in start-
ing from concrete, or “relatively concrete” situations (difficulties,
questions, observations,...).

Perhaps Polya was constitutionally a computer scientist?

If I had to put my finger on the greatest difference between mathemati-
cians and computer scientists, I would say that mathematicians have a strong
preference for uniform rules, coupled with a strong dislike for case-by-case
analysis; computer scientists, by contrast, are comfortable and fluent with
highly non-uniform structures (like the different operations performed by
real computers, or like the various steps in long and complex algorithms).
This tolerance of nonuniformity is the computer scientists’ strength as well
as their weakness; it’s a strength because they can bring order into situations
where no clean mathematical models exist, but it’s a weakness because they
don’t look hard enough for uniformity when a uniform law is actually present.
The distinction between uniform laws — which are a mathematician’s staple
food — and non-uniform algorithms and data structures — which are bread
and butter to a computer scientist — has been described beautifully by G. S.
Tseytin [15], who tells about an evolution in his own thinking.

There are other differences between our fields and our mentalities; for ex-
ample, a computer scientist is less concerned with infinite and continuous
objects, and more concerned with finite (indeed small) and discrete ones.
A computer scientist is concerned about efficient constructions, etc. But
such things are more or less corollaries of the main uniform/nonuniform
dichotomy.

My purpose in this essay is, however, not to dwell on perceived differ-
ences between mathematics and computer science, but rather to say vive la
différence, and to emphasize mathematics. Indeed, much of my own work
tries to have a foot planted firmly in each camp.

What is it that I do? I like to call it “analysis of algorithms” [5, 6]. The
general idea is very simple: Given an algorithm, I try to understand its quan-
titative behavior. I ask how much time the algorithm will take to perform its
task, given a probability distribution of its inputs.

I remember vividly how I first became interested in this topic. The year
was 1962, and I was a graduate student in mathematics; however, I was
spending the summer earning some money by writing a computer program
(a FORTRAN compiler). As I worked on that program I came to the part
where an interesting algorithm called “hashing” was appropriate, and I had

442 DONALD E. KNUTH

recently heard a rumor that two of Feller’s students at Princeton had tried
unsuccessfully to analyze the speed of hashing. Programming was hard work,
so I took break one weekend and tried to solve this reportedly unsolvable
problem. With a stroke of luck, I found the answer (see [7, pp. 529-530] and
[9]); somehow my experience in programming the method had helped in the
analysis. The nice thing was that the answer involved an interesting type of
mathematical function I hadn’t seen before:
l_*_ﬁ_{_n(n—z1)_l_n(n—l)§n—2)+
m m m

(Later I would find this and similar functions arising in connection with many
other algorithms.)

Well, it was fun to analyze the performance of hashing, and I soon realized
that a lot more algorithms were out there waiting to be studied. I had heard
about a comparatively new subject called “queuing theory”; gosh, I thought,
if an entire subdiscipline can be devoted to the study of one small class of
algorithms, surely there is much interesting work to be done in the study of
all classes of algorithms. There was clearly more than a lifetime’s worth of
things to be done, and I decided that I wanted to spend a major part of my
own life doing them. Not only was the mathematics good, the results were
appreciated by programmers, so there was a double payoff.

Analysis of algorithms has been the central focus of my work ever since.
After more than 25 years, I still find no shortage of interesting problems to
work on. And the main point is that these problems almost invariably have a
clean mathematical structure, appealing in its own right. Some applications
of mathematics are no doubt boring, but the problems suggested by important
algorithms have consistently turned out to be exciting. Indeed, overstimula-
tion has been the real drawback; I need to find ways to stop thinking about
analysis of algorithms, in order to do various other things that human beings
ought to do.

Time and again I experience “the incredible effectiveness of mathematics™:
Looking at a new computer method (such as an algorithm for information
retrieval called Patricia), I'll find that its running time depends on quantities
that mathematicians have been studying for hundreds of years (such as the
gamma function, hyperbolic cosine, and zeta function in the case of Patricia
[7, exercise 6.3-34]).

One of the most venerable algorithms of all is Euclid’s procedure for calcu-
lating greatest common divisors. I tried unsuccessfully to analyze it in 1963,
so I asked several of my teachers for help. The problem is this: Let 7, be
the number of steps taken by Euclid’s algorithm to determine that m and
n are relatively prime, averaged over the ¢(n) nonnegative integers m that
are less than n and prime to n. If we assume that the fraction m/n behaves
like a random real number, Lévy’s theory of continued fractions suggests that

ALGORITHMIC THEMES 443

1, will be asymptotically 121n2/z? times Inn. My empirical calculations in
1963 confirmed this and showed, in fact, that

Ty ~ 121;ﬂlnn + 1.47.
/A

In the first (1969) edition of [4] I discussed this conjecture and wrote:

We have only given plausible grounds for believing that the re-
lated quantity 7, is asymptotically (121n2/#2)In n, and the theory
does not suggest any formula for the empirically determined con-
stant 1.47. The heuristic reasoning, and the overwhelming empir-
ical evidence..., mean that for all practical purposes the analysis
of Euclid’s algorithm is complete. From an aesthetic standpoint,
however, there is still a gaping hole left.

Research by Heilbronn [3] and Dixon [1] soon established the constant
121n2/x2, and Porter [13] proved that

Ty = 127:?21nn + C +0(n~V6%e),

John Wrench and I subsequently determined that Porter’s constant C =
1.4670780794... has the closed form

6In2

C= p

(3In2 + 4y — 24720’ (2) - 2) — %

Therefore I could happily say in the second edition of [4] that “conjecture
(48) is fully proved.”

A more surprising development occurred when A. C. Yao and I decided to
analyze the primitive version of Euclid’s algorithm that is based on subtrac-
tion instead of division. Consider the average sum g, of all partial quotients
of the regular continued fractions for m/n, where 1 < m < n; this is the
average running time of the subtractive algorithm for gcd. If we assume that
rational fractions behave like almost all real numbers, a theorem of Khint-
chine states that the sum of the first k partial quotients will be approximately
klog, k. And since k = O(logn), we expect g, = O(lognloglogn). However,
Yao and I proved that

o = 2 (Inn)? + O(log n(loglog).

Therefore rational numbers tend to have larger partial quotients than their
real counterparts—even though Heilbronn showed that the kth quotient of
a rational number m/n approaches the corresponding distribution of a real
number, for all fixed k as n — oo. This is the most striking case I know where
the analogy between discrete and continuous values leads to an incorrect
estimate.

444 DONALD E. KNUTH

Different kinds of algorithms lead to different corners of mathematics. In
fact, I think that by now my colleagues and I have used results from every
branch of mathematics (judging by the MR categories), except one. The
lone exception is the topic on which I wrote my Ph.D. dissertation: finite
projective planes. But I still have hopes of applying even that to computer
science some day.

Here’s a curious identity that illustrates some of the diversity that can
arise when algorithms are analyzed: Let ||x|| denote the distance from x to
the nearest integer. Then

+ glI8x(1% + Gl4x(1? + 12x112 + x> + 20512 + 451 + 8lIF N2 + - = |x].

The sum is doubly infinite, converging at the left because ||x|| < 1, and con-
verging at the right because | x/2|| is ultimately equal to |x/2*|. The identity
holds for all real x; I stumbled across it when working on an algorithm based
on Brownian motion [11].

Analysis of algorithms is only one small aspect of the interaction between
mathematics and computer science. I have chosen to mention a few au-
tobiographical examples only because I understand them better than I can
understand some of the deeper things. I could have touched instead on some
of the recent advances in algebra and number theory that have occurred as
new algorithms for algebraic operations and factorization have been found.
Or I could have highlighted the exciting field of discrete and computatlonal
geometry that is now opening up. And so on.

My point is rather that a great deal of interesting work remains to be done,
even after a person has invented an algorithm to solve some mathematical
problem. We can ask, “How good is the algorithm?” and this question will
often lead to a host of relevant issues. Indeed, there will be enough good stuff
to keep subsequent generations of mathematicians happy for another century
at least.

REFERENCES

1. John D. Dixon, “The number of steps in the Euclidean algorithm,” J. Number
Theory 2 (1970), 414-422.

2. Aviezri S. Fraenkel, Review of On Numbers and Games by J. H. Conway and
Surreal Numbers by D. E. Knuth, Bull. Amer. Math. Soc. 84 (1978), 1328-1336.

3. Hans A. Heilbronn, “On the average length of a class of finite continued frac-
tions,” Abhandlungen aus Zahlentheorie und Analysis = Number Theory and Analysis,
ed. by Paul Turan, Plenum, 1968/1969, 87-96.

4. Donald E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms (Addison-Wesley, Reading, Mass., 1969).

5. Donald E. Knuth, “The analysis of algorithms,” Actes du Congres International
des Mathématiciens 1970, 3 (Gauthier-Villars, Paris, 1971), 269-274.

ALGORITHMIC THEMES 445

6. Donald E. Knuth, “Mathematical analysis of algorithms,” Proceedings of IFIP
Congress 1971, 1 (Amsterdam: North-Holland, 1972), 19-27.

7. Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching (Addison-Wesley, Reading, Mass., 1973).

8. Donald E. Knuth, Surreal Numbers, Addison-Wesley, Reading, Mass., 1974.

9. Donald E. Knuth, “Computer Science and its Relation to Mathematics,”
American Mathematical Monthly 81 (April 1974), 323-343.

10. Donald E. Knuth, “Notes on generalized Dedekind sums,” Acta Arithmetica
33 (1977), 297-325.

11. Donald E. Knuth, “An algorithm for Brownian zeroes,” Computing 33 (1984),
89-94.

12. George Polya, letter to the author dated July 8, 1973.
13. J. W. Porter, “On a theorem of Heilbronn,” Mathematika 22 (1975), 20-28.

14. Gian-Carlo Rota, review of An Introduction to the Theory of Surreal Numbers
by H. Gonshor, Advances in Math. 66 (1987), 318.

15. G. S. Tseytin, “From logicism to proceduralism (an autobiographical ac-
count),” in Algorithms in Modern Mathematics and Computer Science, A. P. Ershov
and D. E. Knuth, eds., Lecture Notes in Computer Science 122 (1981), 390-396.

16. Eric Weiss, “Mathematics on the beach,” Abacus 1, 3 (Spring 1984), 44.

	Frontmatter
	Mathematical Progess in America by Thomas Scott Fiske
	The Beginnings of The American Mathematical Society, Reminiscences of Thomas Scott Fiske
	For the 100th Birthday of the American Mathematical Society by J.L. Synge
	J.J. Sylvester, John Hopkins and Partitions by George E. Andrews
	Thomas S. Fiske and Charles S. Peirce by Carolyn Eisele
	Luther Pfahler Eisenhart by Solomon Lefschetz
	Some Mathematical Reminiscences by D.V. Widder
	The Role of Logical Investigations in Mathematics Since 1930 by Stephen C. Kleene
	Memories of Bygone Meetings by R.P. Boas
	Moscow 1935: Topology Moving Toward America by Hassler Whitney
	Oswald Veblen by Deane Montgomery
	Some Books of Auld Lang Syne by P.R. Halmos
	Refugee Mathematicians in the United States of America, 1933-1941: Reception and Reaction by Nathan Reingold
	Reminiscences of a Mathematical Immigrant in the U.S. by Solomon Lefschetz
	The Threadbare Thirties by Ivan Niven
	The European Mathematicians' Migration to America by Lipman Bers
	Abraham Adrian Albert by Irving Kaplansky
	A Half Century of Reviewing by D.H. Lehmer
	American Mathematicians in WWI by G. Baley Price
	American Mathematicians in War Service
	The Mathematical Sciences and World War Service by Mina Rees
	Reminiscences of Bletchley Park, 1942-1945 by Peter Hilton
	Mathematics and Mathematicians in WWII by J. Barkley Rosser
	A Brief History of the Computer by Herman H. Goldstine
	Concepts and Categories in Perspective by Saunders Mac Lane
	Mathematical Biography by Marshall Hall, Jr.
	American Differential geometry--Some Personal Notes by Shiing-Shen Chern
	The Mathematical Scene, 1940-1965 by G. Baley Price
	Reminiscences of Forty Years as a Mathematician by W.S. Massey
	The Purge by Chandler Davis
	The Use of Mathematics by R.W. Hamming
	Algorithmic Themes by Donald E. Knuth
	The Classification of the Finite Simple Groups, A Personal Journey: The Early Years by Daniel Gorenstein
	Backmatter

